CN108807673A - 具有优异的稳定性和高效率的钙钛矿太阳能电池 - Google Patents

具有优异的稳定性和高效率的钙钛矿太阳能电池 Download PDF

Info

Publication number
CN108807673A
CN108807673A CN201711337275.4A CN201711337275A CN108807673A CN 108807673 A CN108807673 A CN 108807673A CN 201711337275 A CN201711337275 A CN 201711337275A CN 108807673 A CN108807673 A CN 108807673A
Authority
CN
China
Prior art keywords
solar cell
perovskite solar
solid solution
cell according
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711337275.4A
Other languages
English (en)
Other versions
CN108807673B (zh
Inventor
李恩荣
宋美莲
S·金
金相学
鱼文祯
金亨俊
田智圆
严太大兄
洪起夏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hyundai Motor Co
Industry Academic Cooperation Foundation of Hanbat National University
Kia Corp
Original Assignee
Hyundai Motor Co
Kia Motors Corp
Industry Academic Cooperation Foundation of Hanbat National University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyundai Motor Co, Kia Motors Corp, Industry Academic Cooperation Foundation of Hanbat National University filed Critical Hyundai Motor Co
Publication of CN108807673A publication Critical patent/CN108807673A/zh
Application granted granted Critical
Publication of CN108807673B publication Critical patent/CN108807673B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02016Circuit arrangements of general character for the devices
    • H01L31/02019Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02021Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/055Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • H10K30/151Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L2031/0344Organic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/102Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising tin oxides, e.g. fluorine-doped SnO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及具有优异的稳定性和高效率的钙钛矿太阳能电池。本发明的各个方面旨在提供一种钙钛矿太阳能电池,并且其技术特征在于通过使用具有特定组成的固溶体作为光吸收体而同时确保优异的稳定性和高效率。

Description

具有优异的稳定性和高效率的钙钛矿太阳能电池
技术领域
本发明涉及钙钛矿太阳能电池(perovskite solar cell)。所述钙钛矿太阳能电池使用具有特定光吸收体组成(composition)的固溶体,由此同时提供优异的稳定性和高效率。
背景技术
钙钛矿太阳能电池是指基于具有钙钛矿(ABX3)结构的光吸收体的固态太阳能电池。
钙钛矿太阳能电池具有如此高的消光系数使得即使在亚微米厚度下,钙钛矿太阳能电池也能有效地吸收太阳光。因此,近年来,钙钛矿太阳能电池由于例如达到约20%的功率转换效率(PCE)的良好效率而倍受关注。
迄今报道的大多数钙钛矿太阳能电池使用MAPbI3作为光吸收体。然而,已经报道,在约55℃(其为太阳能电池的工作温度范围)下,MAPbI3的晶体结构发生从四方相到立方相的可逆相变。这种相变可能不利地影响太阳能电池的光稳定性和热稳定性。
因此,近来,由于(例如但不限于)其降低的带隙能量,长的电荷扩散距离,以及优异的光稳定性,甲脒盐基卤化铅钙钛矿(formamidinium-based lead halide perovskite,FAPbI3)被认为是MAPbI3的替代物。然而,FAPbI3是不具有光伏性能的六方(hexagonal)非钙钛矿相和具有光伏性能的三方(trigonal)钙钛矿相的多晶型物(polymorph)。不幸的是,FAPbI3在低温范围(例如-40℃至25℃)内发生从三方相至六方相的相变,且因此其光伏性能下降和/或消失。
为了稳定FAPbI3,已经提出了例如(FAPbI3)x(MAPbBr3)1-x的混合阳离子和/或卤化物体系。然而,与溴离子(Br-)混合会产生与相分离或相分解有关的其他问题。例如,相分离或相分解以及溴离子(Br-)的混合可能导致低带隙的损失。因此,在钙钛矿太阳能电池中对FAPbI3的使用存在限制。这样的钙钛矿太阳能电池可能不能提供所需要的优异的稳定性和高效率。
公开于该发明背景技术部分的信息仅仅旨在加深对本发明的一般背景技术的理解,而不可以被视为承认或以任何形式暗示该信息构成已为本领域技术人员所公知的现有技术。
发明内容
本发明的各个方面旨在提供一种在宽的温度范围(例如,-40℃至150℃)内稳定且具有高效率的钙钛矿太阳能电池。
具体而言,本发明的各个方面旨在提供一种包含在钙钛矿太阳能电池中的光吸收体的特定组成,所述钙钛矿太阳能电池在约-40℃至约150℃的温度范围内稳定且具有高效率。
本发明在各个方面还致力于提供一种能够获得这样的光吸收体的特定组成的方法,所述光吸收体在约-40℃至约150℃的温度范围内稳定,具有低带隙能量,并且不发生相分离或相分解。
本发明的目的并不限于上文提到的目的。本发明的目的将在下面的描述中更加明显,并且将通过权利要求中所述的手段及其组合而实现。
本发明的各个方面旨在提供含有通过以下化学式1表示的作为光吸收体的固溶体的钙钛矿太阳能电池。
[化学式1]
(A11-mA2m)M(X11-nX2n)3
在化学式1中,A1为甲脒盐阳离子(HC(NH2)2 +),A2为甲基铵盐阳离子(CH3NH3 +),M为二价金属离子,X1为碘离子(I-),X2为溴离子(Br-),0.2≤m≤0.7且0<n≤0.15。
在各种示例性实施方案中,在化学式1中,0.2≤m≤0.7以及0<n≤0.15。在一些情形中,m可以为0.2、0.7,或者为0.2至0.7中的任何数,并且n可以为0、0.15,或者为0至0.15中的任何数。
在其它示例性实施方案中,在化学式1中,0.4≤m≤0.5且0.04≤n≤0.07。换言之,m可以为0.4、0.5,或者为0.4至0.5中的任何数。例如,m为等于0.4的数,在0.4和0.5之间的数,或者等于0.5的数。并且,n可以为0.04、0.07,或者为0.04至0.07中的任何数。例如,n为等于0.04的数,在0.04和0.07之间的数,或者等于0.07的数。
在本发明的另一示例性实施方案中,m和n可以满足以下等式1。
[等式1]
在各种示例性实施方案中,二价金属离子可以选自二价过渡金属、稀土金属、碱土金属、铅(Pb)、锡(Sn)、锗(Ge)、镓(Ga)、铟(In)、铝(Al)、锑(Sb)、铋(Bi)、钋(Po)及其组合。
在各种示例性实施方案中,固溶体在约-40℃至约150℃(例如,约-40℃至约150℃、约-30℃至约150℃、约-20℃至约150℃、约-10℃至约150℃、约-5℃至约150℃、约0℃至约150℃、约-40℃至约140℃、约-40℃至约130℃、约-40℃至约120℃、约-40℃至约110℃、约-30℃至约140℃、约-30℃至约130℃、约-30℃至约120℃、约-30℃至约110℃、约-20℃至约140℃、约-20℃至约130℃、约-20℃至约120℃、约-20℃至约110℃等)的温度下可以具有三方相晶体结构。
而在另一示例性实施方案中,固溶体在约-40℃至约150℃(例如,约-40℃至约150℃、约-30℃至约150℃、约-20℃至约150℃、约-10℃至约150℃、约-5℃至约150℃、约0℃至约150℃、约-40℃至约140℃、约-40℃至约130℃、约-40℃至约120℃、约-40℃至约110℃、约-30℃至约140℃、约-30℃至约130℃、约-30℃至约120℃、约-30℃至约110℃、约-20℃至约140℃、约-20℃至约130℃、约-20℃至约120℃、约-20℃至约110℃等)的温度下不发生相分离或相分解。
在各种示例性实施方案中,固溶体的带隙能量(Eg)可以满足以下等式2。在一些情形中,固溶体的带隙能量(Eg)的范围为1.4eV至1.5eV(例如,1.4eV、1.40eV、1.41eV、1.42eV、1.43eV、1.44eV、1.45eV、1.46eV、1.47eV、1.48eV、1.49eV、或1.5eV)。
[等式2]
Eg=1.61-1.32.m+5.48.m2-13.13.m3+18.11.m4-13.00.m5+3.74·m6
在其它示例性实施方案中,固溶体的带隙能量(Eg)为1.47eV或更小(例如,1.47eV、1.46eV、1.45eV、1.44eV、1.43eV、1.42eV、1.41eV、1.40eV)。
在各种示例性实施方案中,在化学式1中,M可以为铅(Pb),m=0.45(m等于0.45),并且n=0.05(n等于0.05),且固溶体可以在-40℃至150℃的温度范围中具有三方相晶体结构,可以不发生相分离或相分解,并且可以具有为1.47eV或更小的带隙能量。
在其它示例性实施方案中,钙钛矿太阳能电池可以包括:第一电极;电子传输层,其形成在所述第一电极上;光吸收层,其包含光吸收体;空穴传输层,其形成在所述光吸收层上;以及第二电极,其形成在所述空穴传输层上。
本发明使用具有特定组成的固溶体作为光吸收体,所述固溶体即使在低温区域也保持显示出光伏性能的晶体结构,由此可以提供一种在宽广的温度区域内稳定并显示出高效率的钙钛矿太阳能电池。
本发明还提出了在为了降低或调节带隙能量而加入溴离子(Br-)时不发生相分离或相分解的固溶体的特定组成,由此可以提供显示出更高效率的钙钛矿太阳能电池。
本发明的方法和装置具有其它特征和优点,这些特征和优点将在纳入本文的附图以及随后与附图一起用于解释本发明的某些原理的具体实施方式中显现或得到更详细地阐明。
附图说明
图1示意性地示出根据本发明的示例性实施方案的钙钛矿太阳能电池;
图2是对于由(A11-mA2m)M(X11-nX2n)3表示的固溶体,当m和n为0至1时,在对应于每种组成的固溶体是三方相的情况下计算自由能以及在对应于每种组成的固溶体是六方相的情况下计算自由能的视图;
图3是将甲基铵(MA)的比例(m)分化成当三方相稳定时溴离子(Br-)的比例以及将甲基铵(MA)的比例(m)分化成当六方相稳定时溴离子(Br-)的比例的视图;
图4是表示图3中的带隙能量为1.4eV和1.5eV的固溶体的特定组成(m,n)的视图;
图5是示出等式1(m和n的函数)和等式2(m和带隙能量的函数)两者的曲线图;
图6是示出固溶体通过甲基铵(MA)取代A-位点时形成的焓而发生相分离的区域的视图;
图7是示出在仅溴离子(Br-)取代X-位点而没有任何A-位点取代的情况下在240K至380K的绝对温度范围内固溶体发生相分解的区域的视图;
图8示出当甲基铵(MA)取代A-位点,溴离子(Br-)取代X-位点,并且比例(m、n)彼此相同时,在240K至380K的绝对温度范围内固溶体发生相分解的区域;以及
图9是示出在300K或更低的绝对温度下固溶体发生相分解的甲基铵(MA)的比例(m)与溴离子(Br-)的比例(n)的区域的视图。
列于附图中的附图标记包括对下文中将进一步讨论的如下元件的引用:
10:第一电极
20:电子传输层
30:光吸收层
40:空穴传输层
50:第二电极
应当了解,附图并非按比例地绘制,而是图示性地简化呈现各种特征以显示本发明的基本原理。在此所公开的本发明的特定的设计特征,包括例如特定的尺寸、定向、位置和形状,将部分地由特定目标应用和使用环境确定。
在这些图形中,贯穿附图的多幅图形,附图标记指代本发明的同样的或等同的部件。
具体实施方式
现在将在下文中详细地参考本发明的各个实施方案,这些实施方案的示例示出在附图中并描述如下。虽然本发明与示例性的实施方案相结合进行描述,但是应当了解,本说明书不是要将本发明限制为那些示例性的实施方案。相反,本发明旨在不但覆盖这些示例性实施方案,而且覆盖可以被包括在由所附权利要求所限定的本发明的精神和范围之内的各种替换形式、修改形式、等同形式和其它实施方案。
在下文中,将通过示例详细地描述本发明。只要本发明的要点不改变,本发明的示例可以以各种形式进行修改。然而,本发明的权利范围并不限于以下示例。
如果判断为公知构造和功能可能模糊本发明的要点,则将省略对公知构造和功能的描述。
在本说明书中的术语“包括”意指进一步包括其它组成要素,除非另外有具体说明。
图1为示意性地示出根据本发明的示例性实施方案的钙钛矿太阳能电池的视图。钙钛矿太阳能电池可以包括第一电极10;电子传输层20,其形成在所述第一电极10上;光吸收层30,其形成在所述电子传输层20上并包括光吸收体;空穴传输层40,其形成在所述光吸收层30上;以及第二电极50,其形成在所述空穴传输层40上。
所述第一电极10可以是包含透明电极的透明衬底,但是只要衬底是通常用于太阳能电池领域的衬底,可以使用任何衬底。例如,透明电极可以是氟掺杂的氧化锡(FTO)、铟掺杂的氧化锡(ITO)、氧化锌(ZnO)、碳纳米管、石墨烯等,而透明衬底可以是玻璃衬底或者包括聚对苯二甲酸乙二醇酯、聚萘二甲酸乙二醇酯、聚酰亚胺等的衬底。
只要电子可以平稳地移动,电子传输层20可以任何构造和形式而形成,但是可以优选地由包括例如二氧化钛(TiO2)的金属氧化物颗粒构成的多孔层形成。
光吸收层30可以含有有机和无机复合钙钛矿作为光吸收体。光吸收体可以是具有特定组成的固溶体,其在宽广的温度区域内保持晶体结构,不发生相分离或相分解,并具有低带隙能量,其具体描述将在下文进行说明。
可以为了还原(reducing)氧化的光吸收层30的目的而形成空穴传输层40,但不限于此。所述空穴传输层可以包括单分子空穴传输材料或聚合物空穴传输材料,并且只要是通常用于太阳能电池领域的材料,可以使用任何材料。例如,作为单分子空穴传输材料,可以使用2,2',7,7'-四(N,N-对-二甲氧基-苯基氨基)-9,9'-螺二芴(螺-MeOTAD),而作为聚合物空穴传输材料,可以使用聚(3-己基噻吩)(P3HT)、聚三芳基胺(PTAA)或聚(3,4-亚乙基二氧噻吩)聚苯乙烯磺酸盐(PEDOT:PSS)。
只要第二电极50通常用作太阳能电池领域中的第一电极的对电极,则可以使用任何材料。例如,所述材料可以是金、银、铂、钯、铜、铝、碳、硫化钴、硫化铜、氧化镍等。
根据本发明的示例性实施方案的钙钛矿太阳能电池可以含有由以下化学式1表示的固溶体作为光吸收体。
[化学式1]
(A11-mA2m)M(X11-nX2n)3
在各种示例性实施方案中,A1为甲脒盐阳离子(HC(NH2)2 +),A2为甲基铵盐阳离子(CH3NH3 +),M为二价金属离子,X1为碘离子(I-),而X2为溴离子(Br-)。
特别地,0.2≤m≤0.7。例如,m为0.2、0.7或在0.2至0.7的范围内的数。在一些情形中,0.4≤m≤0.5,或换言之,m为0.4、0.5或在0.4至0.5的范围内的数。在各种示例性实施方案中,0<n≤0.15,或换言之,n大于0且小于0.15,或为0.15。在一些情形中,0.04≤n≤0.07,或换言之,n为0.04、0.07或在0.04至0.07的范围内的数。
在下文中,在化学式1中,术语“A11-mA2m”、“M”和“X11-nX2n”分别指“A-位点”,“B-位点”和“X-位点”。然而,为了便于描述,也可能同时使用“A11-mA2m”和“A-位点”、“M”和“B-位点”以及“X11-nX2n”和“X-位点”。由于在太阳能电池中用作光吸收体的钙钛矿材料通常以ABX3表示,所以即使上述术语同时使用,本领域技术人员也将清楚地知道在本发明的示例性实施方案中这些术语所指的内容。
在化学式1中,“m”是指“甲基铵(MA)的比例”,而“n”是指“溴离子(Br-)的比例”。然而,为了便于描述,也可以同时使用“m”和“甲基铵(MA)的比例”,以及“n”和“溴离子(Br-)的比例”。
固溶体是指具有不同组成的两种或更多种钙钛矿结构的有机金属卤化物形成固溶体相。
具体而言,本发明的技术特征在于提供一种光吸收体,其允许作为一种有机金属卤化物的甲基溴化铅铵(methyl ammonium lead bromide,MAPbBr3)取代作为另一有机金属卤化物的甲脒铅碘盐(formamidinium lead iodide,FAPbI3),允许取代A-位点的甲基铵(MA)的比例与取代X-位点的溴离子(Br-)的比例(n)不对称,并且因此由于光吸收体在宽广的温度区域(-40℃至150℃)内不发生相变、相分离和相分解而是稳定的,并且由于低带隙能量而具有高效率。
根据本发明的示例性实施方案的具有由化学式1表示的特定组成的固溶体可以在例如-40℃至150℃的宽温度范围内保持能够显示出光伏性能的三方相。
如上所述,在低温区域(-40℃至25℃)中,FAPbI3发生从三方相至六方相的相变,并且因此具有光伏性能消失的问题。本发明的技术特征在于通过形成具有由化学式1表示的特定组成的固溶体来解决上述问题。
图2是对于由(A11-mA2m)M(X11-nX2n)3表示的固溶体,当m和n为0至1时,在对应于每种组成的固溶体是三方相的情况下计算自由能(深色表面,三方的),以及在对应于每种组成的固溶体是六方相的情况下计算自由能(浅色表面,六方的)的视图。在图2中,当在三方相的情形中的自由能低于在六方相的情形中的自由能时,可以说固溶体具有三方相晶体结构。
由于通过图2可以将甲基铵(MA)的比例(m)分化成(differentiate)当三方相稳定时溴离子(Br-)的比例,以及将甲基铵(MA)的比例(m)分化成当六方相稳定时溴离子(Br-)的比例,其二维表示示出于图3中。
根据图3,当化学式1中的m和n对应于三方区域60时,固溶体具有能够显示出光伏性能的三方相晶体结构,而当化学式1中的m和n对应于六方区域70时,固溶体具有失去光伏性能的六方相晶体结构。
在图3中,S曲线(其为延伸自属于三方区域60的临界值的m和n的线)的数学表达式示出在以下等式1中。
[等式1]
同时,当应用下面的维加德定律(Vegard’s law)时,可以根据甲基铵(MA)的比例(m)和溴离子(Br-)的比例(n)来计算固溶体的带隙能量(Eg)。
图4是表示图3中带隙能量为1.4eV和1.5eV的固溶体的特定组成(m,n)的视图,m和n可以根据维加德定律进行计算。
参考图4,当m和n属于P区域时,可以看出固溶体可以保持显示出光伏性能的三方相晶体结构而不发生相变,并且具有低带隙能量,因此可以确保高效率。
即,本发明的技术特征在于m和n是三方区域60的临界值,其中固溶体可以保持三方相,并且根据维加德定律计算的带隙能量(Eg)属于P区域(其为1.5eV或更小,具体而言,约1.47eV或更小)。
具体而言,由于m和n满足等式1,所以固溶体具有三方相晶体结构,由于满足0.2≤m≤0.7和0<n≤0.15的范围,因此具有低带隙能量。
这也可以如图5所示的那样进行描述。图5是示出等式1(m和n的函数)和等式2(m和带隙能量的函数)两者的曲线图。
以下等式2示出了作为甲基铵(MA)的比例(m)的函数的,通过使用甲基铵(MA)的比例(m)和溴离子(Br-)的比例(n)(其满足等式1)根据维加德定律而计算的带隙能量(Eg)。
[等式2]
Eg=1.61-1.32·m+5.48·m2-13.13·m3+18.1l·m4-13.0O·m5+3.74·m6
通过图5,可以获得具有相稳定性(phase stability)和最高效率的固溶体的组成。当固溶体的带隙能量最小时(为约1.47eV),甲基铵(MA)的比例(m)为0.45(Q)。当甲基铵(MA)的比例(m)为0.45时,溴离子(Br-)的比例(n)需要为0.05,以使得固溶体具有三方相晶体结构。即,当使用由以下化学式2表示的固溶体作为光吸收体时,可以获得具有最佳稳定性并显示出最高效率的钙钛矿太阳能电池。
[化学式2]
(FA0.55MA0.45)Pb(I0.95Br0.05)3
通过图5,可以获得具有期望的带隙能量和期望的吸收波长的固溶体的组成。这是因为可以通过图5的等式2获得能够实现特定带隙能量值的甲基铵(MA)的比例(m),并且一旦确定了甲基铵(MA)的比例(m),则通过等式1,当甲基铵(MA)的比例(m)是特定值时,可以找出能够保持相稳定性的溴离子(Br-)的比例(n)。
因此,根据本发明的示例性实施方案,即使吸收波长根据使用钙钛矿太阳能电池的环境、目的等而变化,但通过灵活地调整固溶体的组成,也可以提供具有优异的稳定性和高效率的太阳能电池。
与此同时,即使如上所述通过调整甲基铵(MA)的比例(m)和溴离子(Br-)的比例而实现了优异的相稳定性和高效率的效果,当发生相分离或相分解时,可能不会适当地展现出上述效果。
然而,如图6所示,通过对当甲基铵(MA)取代A-位点时形成的焓进行计算,可以看出只有当甲基铵(MA)以约0.9或更大的比例取代时才发生相分离。
由于根据本发明示例性实施方案的由化学式1表示的固溶体具有0.2≤m≤0.7的范围,特别地,0.4≤m≤0.5且0<n≤0.15,特别地,0.04≤n≤0.07,可以看到,不会发生相分离。
图7是示出在仅溴离子(Br-)取代X-位点而没有任何A-位点取代的情况下在240K至380K的绝对温度范围内固溶体发生相分解的区域的视图。在图7中,s、m和u分别表示稳定状态,亚稳定状态和不稳定状态,固溶体的亚稳定状态和不稳定状态意味着发生相分解。
参考图7,可以看出,在溴离子(Br-)取代X-位点而没有任何A-位点取代的情况下,在300K的绝对温度下当溴离子(Br-)的比例(n)在0.3和0.8之间时发生相分解,而在240K的绝对温度下当溴离子(Br-)的比例(n)在0.25和0.85之间时发生相分解。
图8示出当甲基铵(MA)取代A-位点,溴离子(Br-)取代X-位点,并且比例(m、n)彼此相同时,在240K至380K的绝对温度范围内固溶体发生相分解的区域。在图8中,s、m和u分别表示稳定状态,亚稳定状态和不稳定状态,固溶体的亚稳定状态和不稳定状态意味着发生相分解。
参考图8,可以看出,在A-位点和X-位点以相同比例取代的情况下,在绝对温度为240K下当甲基铵(MA)的比例(m)和溴离子(Br-)的比例(n)在0.6和0.85之间时发生相分解。
图9是示出在300K或更低的绝对温度下固溶体发生相分解的甲基铵(MA)的比例(m)与溴离子(Br-)的比例(n)的区域的视图。
具体而言,根据图7,当甲基铵(MA)的比例为0时(在甲基铵没有取代A-位点的情况下),表现为在溴离子(Br-)的比例(n)为0.25至0.85(图9中的a-b区间)的情况下发生相分解。此外,根据图8,表现为在甲基铵(MA)的比例(m)与溴离子(Br-)的比例(n)为0.6至0.85(图9中的c-d区间)的情况下发生相分解。
因此,参考图9,可以看出,在绝对温度为300K或更低的低温区域中,当甲基铵(MA)的比例(m)与溴离子(Br-)的比例(n)属于连接a,b,c和d的Z区域时,固溶体发生相分解。
由于根据本发明的示例性实施方案的由化学式1表示的固溶体具有如上所述的P区域的组成,而不属于Z区域,因此可以看出,即使在绝对温度为300K或更低的低温区域中也会不发生相分解。
由于根据本发明的示例性实施方案的由以下化学式1表示的固溶体可以如上所述地在-40℃至150℃的宽广温度范围内保持显示出光伏性能的三方相晶体结构,并且在该温度区域中不发生相分离或相分解,所以所述固溶体具有优异的稳定性和高效率(由于约1.47eV或更小的带隙能量),因此,当所述固溶体用作光吸收体时,可以获得具有优异的稳定性和高效率的钙钛矿太阳能电池。
[化学式1]
(A11-mA2m)M(X11-nX2n)3
在化学式1中,A1为甲脒盐阳离子(HC(NH2)2 +),A2为甲基铵盐阳离子(CH3NH3 +),M为二价金属离子,X1为碘离子(I-),X2为溴离子(Br-),0.2≤m≤0.7,并且0<n≤0.15,并且m和n满足以下等式1。
[等式1]
已经如上所述详细描述了测试示例和本发明的示例,但是本发明的权利范围不限于上述测试示例和示例,并且本领域技术人员使用在所附权利要求书中限定的本发明的基本构思而进行的各种修改和改进也落入本发明的权利范围内。
前面对本发明具体示例性实施方案所呈现的描述是出于说明和描述的目的。它们并不旨在是毫无遗漏的,也不旨在将本发明限制为所公开的精确形式,显然,根据上述教导,很多修改和变化都是可能的。选择示例性实施方案并进行描述是为了解释本发明的特定原理及其它们的实际应用,从而使得本领域的其它技术人员能够实现并利用本发明的各种示例性实施方案及其不同的选择形式和修改形式。本发明的范围旨在由所附权利要求书及其等同形式限定。

Claims (10)

1.一种钙钛矿太阳能电池,其含有通过以下化学式1表示的固溶体作为光吸收体:
化学式1
(A11-mA2m)M(X11-nX2n)3
其中,A1为甲脒盐阳离子(HC(NH2)2 +),A2为甲基铵盐阳离子(CH3NH3 +);
M为二价金属离子;
X1为碘离子,X2为溴离子;并且,
0.2≤m≤0.7且0<n≤0.15。
2.根据权利要求1所述的钙钛矿太阳能电池,其中,m的范围为0.4至0.5,n的范围为0.04至0.07。
3.根据权利要求1所述的钙钛矿太阳能电池,其中,m和n满足以下等式1
等式1
4.根据权利要求1所述的钙钛矿太阳能电池,其中,所述二价金属离子选自二价过渡金属、稀土金属、碱土金属、Pb、Sn、Ge、Ga、In、Al、Sb、Bi、Po及其组合。
5.根据权利要求1所述的钙钛矿太阳能电池,其中,所述固溶体在-40℃至150℃的温度下具有三方晶体结构。
6.根据权利要求1所述的钙钛矿太阳能电池,其中,所述固溶体在-40℃至150℃的温度下不发生相分离或相分解。
7.根据权利要求1所述的钙钛矿太阳能电池,其中,所述固溶体具有1.4eV至1.5eV的带隙能量。
8.根据权利要求1所述的钙钛矿太阳能电池,其中,所述固溶体具有1.47eV或更小的带隙能量。
9.根据权利要求1所述的钙钛矿太阳能电池,其中,在化学式1中,M为铅,m=0.45且n=0.05,并且所述固溶体在-40℃至150℃的温度下具有三方晶体结构,不发生相分离或相分解,且具有1.47eV或更小的带隙能量。
10.根据权利要求1所述的钙钛矿太阳能电池,其中所述钙钛矿太阳能电池包括:
第一电极;
电子传输层,其形成在所述第一电极上;
光吸收层,其包含光吸收体;
空穴传输层,其形成在所述光吸收层上;以及
第二电极,其形成在所述空穴传输层上。
CN201711337275.4A 2017-05-02 2017-12-14 具有优异的稳定性和高效率的钙钛矿太阳能电池 Active CN108807673B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170056152A KR102463610B1 (ko) 2017-05-02 2017-05-02 안정성이 우수한 고효율의 페로브스카이트 태양전지
KR10-2017-0056152 2017-05-02

Publications (2)

Publication Number Publication Date
CN108807673A true CN108807673A (zh) 2018-11-13
CN108807673B CN108807673B (zh) 2023-11-24

Family

ID=64014922

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711337275.4A Active CN108807673B (zh) 2017-05-02 2017-12-14 具有优异的稳定性和高效率的钙钛矿太阳能电池

Country Status (3)

Country Link
US (1) US10804412B2 (zh)
KR (1) KR102463610B1 (zh)
CN (1) CN108807673B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109627259A (zh) * 2018-11-30 2019-04-16 华中科技大学 一种新型钙钛矿功能材料及其在光电器件中的应用
CN110534648A (zh) * 2019-08-30 2019-12-03 华中科技大学 一种有机小分子卤化物改性的钙钛矿光电功能材料、其制备及应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI841529B (zh) * 2017-05-15 2024-05-11 國立大學法人九州大學 鈣鈦礦膜、其製造方法、發光裝置及太陽能電池
KR102109001B1 (ko) * 2018-11-13 2020-05-11 단국대학교 천안캠퍼스 산학협력단 순차적 기상 공정을 이용한 혼합 유기물 동시 기화방식의 페로브스카이트 박막 제조방법 및 이를 이용한 태양전지

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105742504A (zh) * 2016-05-13 2016-07-06 中国科学院重庆绿色智能技术研究院 一种高稳定性钙钛矿太阳能电池
US20160322591A1 (en) * 2013-12-23 2016-11-03 Korea Research Institute Of Chemical Technology Precursor of inorganic/organic hybrid perovskite compound
CN106410044A (zh) * 2016-11-30 2017-02-15 天津市职业大学 一种钙钛矿太阳电池用卤化铅甲胺的生产方法
CN106449982A (zh) * 2016-10-11 2017-02-22 中山大学 一种以氧化铬为电子传输层的钙钛矿太阳能电池及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101430139B1 (ko) 2012-06-29 2014-08-14 성균관대학교산학협력단 페로브스카이트 기반 메조다공 박막 태양전지 제조 기술
GB201416042D0 (en) * 2014-09-10 2014-10-22 Oxford Photovoltaics Ltd Hybrid Organic-Inorganic Perovskite Compounds
KR101723824B1 (ko) * 2015-04-27 2017-04-06 한국과학기술연구원 이온성고분자 물질을 포함하는 유무기 하이브리드 페로브스카이트 광전변환소자용 수분차단막, 이를 포함하는 광전변환소자 및 이의 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160322591A1 (en) * 2013-12-23 2016-11-03 Korea Research Institute Of Chemical Technology Precursor of inorganic/organic hybrid perovskite compound
CN105742504A (zh) * 2016-05-13 2016-07-06 中国科学院重庆绿色智能技术研究院 一种高稳定性钙钛矿太阳能电池
CN106449982A (zh) * 2016-10-11 2017-02-22 中山大学 一种以氧化铬为电子传输层的钙钛矿太阳能电池及其制备方法
CN106410044A (zh) * 2016-11-30 2017-02-15 天津市职业大学 一种钙钛矿太阳电池用卤化铅甲胺的生产方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
JUN HONG NOH等: "Chemical Management for Colorful, Efficient, and Stable Inorganic−Organic Hybrid Nanostructured Solar Cells", 《NANO LETTERS》 *
JUN HONG NOH等: "Chemical Management for Colorful, Efficient, and Stable Inorganic−Organic Hybrid Nanostructured Solar Cells", 《NANO LETTERS》, 21 March 2013 (2013-03-21), pages 1766 - 1768 *
NORMAN PELLET等: "Mixed-Organic-Cation Perovskite Photovoltaics for Enhanced Solar-Light Harvesting", 《ANGEWANDTE CHEMMIE》 *
NORMAN PELLET等: "Mixed-Organic-Cation Perovskite Photovoltaics for Enhanced Solar-Light Harvesting", 《ANGEWANDTE CHEMMIE》, vol. 126, 14 March 2014 (2014-03-14), pages 3156 *
T. JESPER JACOBSSON等: "An exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells", 《ENERGY &ENVIRONMENTAL SCIENCE》 *
T. JESPER JACOBSSON等: "An exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells", 《ENERGY &ENVIRONMENTAL SCIENCE》, vol. 9, 10 March 2016 (2016-03-10), pages 5 - 8 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109627259A (zh) * 2018-11-30 2019-04-16 华中科技大学 一种新型钙钛矿功能材料及其在光电器件中的应用
CN110534648A (zh) * 2019-08-30 2019-12-03 华中科技大学 一种有机小分子卤化物改性的钙钛矿光电功能材料、其制备及应用
CN110534648B (zh) * 2019-08-30 2021-10-08 华中科技大学 一种有机小分子卤化物改性的钙钛矿光电功能材料、其制备及应用

Also Published As

Publication number Publication date
US20180323317A1 (en) 2018-11-08
KR102463610B1 (ko) 2022-11-03
US10804412B2 (en) 2020-10-13
KR20180122110A (ko) 2018-11-12
CN108807673B (zh) 2023-11-24

Similar Documents

Publication Publication Date Title
CN108807673A (zh) 具有优异的稳定性和高效率的钙钛矿太阳能电池
Chao et al. Roadmap for advanced aqueous batteries: From design of materials to applications
Hassoun et al. Advances in anode and electrolyte materials for the progress of lithium-ion and beyond lithium-ion batteries
Shin et al. Factors influencing the capacity fade of spinel lithium manganese oxides
Taniguchi et al. Rechargeable Mg battery cathode TiS3 with d–p orbital hybridized electronic structures
Chen et al. Colloidal paradigm in supercapattery electrode systems
Elseman et al. Novel hole transport layer of nickel oxide composite with carbon for high-performance perovskite solar cells
Wang et al. Methods for rational design of advanced Zn‐based batteries
Lee et al. Solution-processed semitransparent inverted organic solar cells from a transparent conductive polymer electrode
CN107615505A (zh) 太阳能电池
Fegade et al. Recent development of aqueous zinc‐ion battery cathodes and future challenges
Wu et al. Research progress on vanadium oxides for potassium-ion batteries
Long et al. Flexible perovskite solar cells: device design and perspective
Soam et al. Power performance of BFO-graphene composite electrodes based supercapacitor
TW201521221A (zh) 薄膜太陽電池、半導體薄膜、及半導體形成用塗佈液
Wu et al. 2022 Roadmap on aqueous batteries
Vignesh et al. Spherical-like ball-by-ball architecture of Ni-Co-Zn-S electrodes for electrochemical energy storage application in supercapacitors
Shi et al. In situ construction of a heterostructured Zn–Mo–Ni–O–S hollow microflower for high-performance hybrid supercapacitors
Xu et al. Ion Conduction in Composite Polymer Electrolytes: Potential Electrolytes for Sodium‐Ion Batteries
Gupta et al. Principles and Challenges of Lithium–Sulfur Batteries
Molenda Electronic structure ‘engineering’in the development of materials for Li-ion and Na-ion batteries1
Rheem et al. Electrospun hybrid MoS2 nanofibers for high-efficiency electrocatalytic hydrogen evolution reaction
Jo et al. Characterization of Ti3+-doped TiO2 based composite electrode for lithium polymer secondary batteries
Hu et al. One-Step Regulatory Synthesis of Quaternary Transition Metal Sulfide Cu2MnSnS4 as Electrode Material for High-Performance Supercapacitors
Rai et al. Charge Selective Layer Optimization of a Double Perovskite Solar Cell by Numerical Simulation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant