CN108807673B - 具有优异的稳定性和高效率的钙钛矿太阳能电池 - Google Patents
具有优异的稳定性和高效率的钙钛矿太阳能电池 Download PDFInfo
- Publication number
- CN108807673B CN108807673B CN201711337275.4A CN201711337275A CN108807673B CN 108807673 B CN108807673 B CN 108807673B CN 201711337275 A CN201711337275 A CN 201711337275A CN 108807673 B CN108807673 B CN 108807673B
- Authority
- CN
- China
- Prior art keywords
- solid solution
- phase
- solar cell
- perovskite solar
- bromide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000006104 solid solution Substances 0.000 claims abstract description 54
- 239000006096 absorbing agent Substances 0.000 claims abstract description 20
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical group [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 claims description 29
- 239000000126 substance Substances 0.000 claims description 23
- 238000000354 decomposition reaction Methods 0.000 claims description 21
- -1 formamidine salt cation Chemical class 0.000 claims description 14
- 238000005191 phase separation Methods 0.000 claims description 14
- 239000013078 crystal Substances 0.000 claims description 13
- 230000005525 hole transport Effects 0.000 claims description 13
- 229940006460 bromide ion Drugs 0.000 claims description 3
- XMBWDFGMSWQBCA-UHFFFAOYSA-M iodide Chemical group [I-] XMBWDFGMSWQBCA-UHFFFAOYSA-M 0.000 claims description 3
- 229940006461 iodide ion Drugs 0.000 claims description 3
- 239000000203 mixture Substances 0.000 abstract description 19
- BAVYZALUXZFZLV-UHFFFAOYSA-O Methylammonium ion Chemical compound [NH3+]C BAVYZALUXZFZLV-UHFFFAOYSA-O 0.000 description 56
- 239000000463 material Substances 0.000 description 10
- 230000001747 exhibiting effect Effects 0.000 description 8
- 239000000758 substrate Substances 0.000 description 7
- 150000004820 halides Chemical class 0.000 description 5
- 238000006467 substitution reaction Methods 0.000 description 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 229910021645 metal ion Inorganic materials 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- PNKUSGQVOMIXLU-UHFFFAOYSA-N Formamidine Chemical compound NC=N PNKUSGQVOMIXLU-UHFFFAOYSA-N 0.000 description 3
- ZSBXGIUJOOQZMP-JLNYLFASSA-N Matrine Chemical compound C1CC[C@H]2CN3C(=O)CCC[C@@H]3[C@@H]3[C@H]2N1CCC3 ZSBXGIUJOOQZMP-JLNYLFASSA-N 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- 229920000144 PEDOT:PSS Polymers 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 229920001167 Poly(triaryl amine) Polymers 0.000 description 2
- 241001136842 Trigona Species 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical group I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 229910001887 tin oxide Inorganic materials 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- XDXWNHPWWKGTKO-UHFFFAOYSA-N 207739-72-8 Chemical compound C1=CC(OC)=CC=C1N(C=1C=C2C3(C4=CC(=CC=C4C2=CC=1)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)C1=CC(=CC=C1C1=CC=C(C=C13)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)C1=CC=C(OC)C=C1 XDXWNHPWWKGTKO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- HRHBQGBPZWNGHV-UHFFFAOYSA-N azane;bromomethane Chemical compound N.BrC HRHBQGBPZWNGHV-UHFFFAOYSA-N 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 125000001246 bromo group Chemical group Br* 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- INPLXZPZQSLHBR-UHFFFAOYSA-N cobalt(2+);sulfide Chemical compound [S-2].[Co+2] INPLXZPZQSLHBR-UHFFFAOYSA-N 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- OMZSGWSJDCOLKM-UHFFFAOYSA-N copper(II) sulfide Chemical compound [S-2].[Cu+2] OMZSGWSJDCOLKM-UHFFFAOYSA-N 0.000 description 1
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 229910021432 inorganic complex Inorganic materials 0.000 description 1
- MJFXORGVTOGORM-UHFFFAOYSA-L lead(2+) methanamine dibromide Chemical compound [Pb+2].[Br-].CN.[Br-] MJFXORGVTOGORM-UHFFFAOYSA-L 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910052699 polonium Inorganic materials 0.000 description 1
- HZEBHPIOVYHPMT-UHFFFAOYSA-N polonium atom Chemical compound [Po] HZEBHPIOVYHPMT-UHFFFAOYSA-N 0.000 description 1
- 229920000301 poly(3-hexylthiophene-2,5-diyl) polymer Polymers 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/02016—Circuit arrangements of general character for the devices
- H01L31/02019—Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier
- H01L31/02021—Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier for solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0256—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
- H01L31/0264—Inorganic materials
- H01L31/032—Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/02002—Arrangements for conducting electric current to or from the device in operations
- H01L31/02005—Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
- H01L31/02008—Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0224—Electrodes
- H01L31/022408—Electrodes for devices characterised by at least one potential jump barrier or surface barrier
- H01L31/022425—Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/054—Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
- H01L31/055—Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/10—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
- H10K30/15—Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
- H10K30/151—Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising titanium oxide, e.g. TiO2
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/80—Constructional details
- H10K30/81—Electrodes
- H10K30/82—Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/50—Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0256—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
- H01L2031/0344—Organic materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/10—Transparent electrodes, e.g. using graphene
- H10K2102/101—Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/10—Transparent electrodes, e.g. using graphene
- H10K2102/101—Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
- H10K2102/102—Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising tin oxides, e.g. fluorine-doped SnO2
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/10—Transparent electrodes, e.g. using graphene
- H10K2102/101—Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
- H10K2102/103—Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/50—Photovoltaic [PV] devices
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/52—PV systems with concentrators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Chemical & Material Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Inorganic Chemistry (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Photovoltaic Devices (AREA)
Abstract
本发明涉及具有优异的稳定性和高效率的钙钛矿太阳能电池。本发明的各个方面旨在提供一种钙钛矿太阳能电池,并且其技术特征在于通过使用具有特定组成的固溶体作为光吸收体而同时确保优异的稳定性和高效率。
Description
技术领域
本发明涉及钙钛矿太阳能电池(perovskite solar cell)。所述钙钛矿太阳能电池使用具有特定光吸收体组成(composition)的固溶体,由此同时提供优异的稳定性和高效率。
背景技术
钙钛矿太阳能电池是指基于具有钙钛矿(ABX3)结构的光吸收体的固态太阳能电池。
钙钛矿太阳能电池具有如此高的消光系数使得即使在亚微米厚度下,钙钛矿太阳能电池也能有效地吸收太阳光。因此,近年来,钙钛矿太阳能电池由于例如达到约20%的功率转换效率(PCE)的良好效率而倍受关注。
迄今报道的大多数钙钛矿太阳能电池使用MAPbI3作为光吸收体。然而,已经报道,在约55℃(其为太阳能电池的工作温度范围)下,MAPbI3的晶体结构发生从四方相到立方相的可逆相变。这种相变可能不利地影响太阳能电池的光稳定性和热稳定性。
因此,近来,由于(例如但不限于)其降低的带隙能量,长的电荷扩散距离,以及优异的光稳定性,甲脒盐基卤化铅钙钛矿(formamidinium-based lead halide perovskite,FAPbI3)被认为是MAPbI3的替代物。然而,FAPbI3是不具有光伏性能的六方(hexagonal)非钙钛矿相和具有光伏性能的三方(trigonal)钙钛矿相的多晶型物(polymorph)。不幸的是,FAPbI3在低温范围(例如-40℃至25℃)内发生从三方相至六方相的相变,且因此其光伏性能下降和/或消失。
为了稳定FAPbI3,已经提出了例如(FAPbI3)x(MAPbBr3)1-x的混合阳离子和/或卤化物体系。然而,与溴离子(Br-)混合会产生与相分离或相分解有关的其他问题。例如,相分离或相分解以及溴离子(Br-)的混合可能导致低带隙的损失。因此,在钙钛矿太阳能电池中对FAPbI3的使用存在限制。这样的钙钛矿太阳能电池可能不能提供所需要的优异的稳定性和高效率。
公开于该发明背景技术部分的信息仅仅旨在加深对本发明的一般背景技术的理解,而不可以被视为承认或以任何形式暗示该信息构成已为本领域技术人员所公知的现有技术。
发明内容
本发明的各个方面旨在提供一种在宽的温度范围(例如,-40℃至150℃)内稳定且具有高效率的钙钛矿太阳能电池。
具体而言,本发明的各个方面旨在提供一种包含在钙钛矿太阳能电池中的光吸收体的特定组成,所述钙钛矿太阳能电池在约-40℃至约150℃的温度范围内稳定且具有高效率。
本发明在各个方面还致力于提供一种能够获得这样的光吸收体的特定组成的方法,所述光吸收体在约-40℃至约150℃的温度范围内稳定,具有低带隙能量,并且不发生相分离或相分解。
本发明的目的并不限于上文提到的目的。本发明的目的将在下面的描述中更加明显,并且将通过权利要求中所述的手段及其组合而实现。
本发明的各个方面旨在提供含有通过以下化学式1表示的作为光吸收体的固溶体的钙钛矿太阳能电池。
[化学式1]
(A11-mA2m)M(X11-nX2n)3
在化学式1中,A1为甲脒盐阳离子(HC(NH2)2 +),A2为甲基铵盐阳离子(CH3NH3 +),M为二价金属离子,X1为碘离子(I-),X2为溴离子(Br-),0.2≤m≤0.7且0<n≤0.15。
在各种示例性实施方案中,在化学式1中,0.2≤m≤0.7以及0<n≤0.15。在一些情形中,m可以为0.2、0.7,或者为0.2至0.7中的任何数,并且n可以为0、0.15,或者为0至0.15中的任何数。
在其它示例性实施方案中,在化学式1中,0.4≤m≤0.5且0.04≤n≤0.07。换言之,m可以为0.4、0.5,或者为0.4至0.5中的任何数。例如,m为等于0.4的数,在0.4和0.5之间的数,或者等于0.5的数。并且,n可以为0.04、0.07,或者为0.04至0.07中的任何数。例如,n为等于0.04的数,在0.04和0.07之间的数,或者等于0.07的数。
在本发明的另一示例性实施方案中,m和n可以满足以下等式1。
[等式1]
在各种示例性实施方案中,二价金属离子可以选自二价过渡金属、稀土金属、碱土金属、铅(Pb)、锡(Sn)、锗(Ge)、镓(Ga)、铟(In)、铝(Al)、锑(Sb)、铋(Bi)、钋(Po)及其组合。
在各种示例性实施方案中,固溶体在约-40℃至约150℃(例如,约-40℃至约150℃、约-30℃至约150℃、约-20℃至约150℃、约-10℃至约150℃、约-5℃至约150℃、约0℃至约150℃、约-40℃至约140℃、约-40℃至约130℃、约-40℃至约120℃、约-40℃至约110℃、约-30℃至约140℃、约-30℃至约130℃、约-30℃至约120℃、约-30℃至约110℃、约-20℃至约140℃、约-20℃至约130℃、约-20℃至约120℃、约-20℃至约110℃等)的温度下可以具有三方相晶体结构。
而在另一示例性实施方案中,固溶体在约-40℃至约150℃(例如,约-40℃至约150℃、约-30℃至约150℃、约-20℃至约150℃、约-10℃至约150℃、约-5℃至约150℃、约0℃至约150℃、约-40℃至约140℃、约-40℃至约130℃、约-40℃至约120℃、约-40℃至约110℃、约-30℃至约140℃、约-30℃至约130℃、约-30℃至约120℃、约-30℃至约110℃、约-20℃至约140℃、约-20℃至约130℃、约-20℃至约120℃、约-20℃至约110℃等)的温度下不发生相分离或相分解。
在各种示例性实施方案中,固溶体的带隙能量(Eg)可以满足以下等式2。在一些情形中,固溶体的带隙能量(Eg)的范围为1.4eV至1.5eV(例如,1.4eV、1.40eV、1.41eV、1.42eV、1.43eV、1.44eV、1.45eV、1.46eV、1.47eV、1.48eV、1.49eV、或1.5eV)。
[等式2]
Eg=1.61-1.32.m+5.48.m2-13.13.m3+18.11.m4-13.00.m5+3.74·m6
在其它示例性实施方案中,固溶体的带隙能量(Eg)为1.47eV或更小(例如,1.47eV、1.46eV、1.45eV、1.44eV、1.43eV、1.42eV、1.41eV、1.40eV)。
在各种示例性实施方案中,在化学式1中,M可以为铅(Pb),m=0.45(m等于0.45),并且n=0.05(n等于0.05),且固溶体可以在-40℃至150℃的温度范围中具有三方相晶体结构,可以不发生相分离或相分解,并且可以具有为1.47eV或更小的带隙能量。
在其它示例性实施方案中,钙钛矿太阳能电池可以包括:第一电极;电子传输层,其形成在所述第一电极上;光吸收层,其包含光吸收体;空穴传输层,其形成在所述光吸收层上;以及第二电极,其形成在所述空穴传输层上。
本发明使用具有特定组成的固溶体作为光吸收体,所述固溶体即使在低温区域也保持显示出光伏性能的晶体结构,由此可以提供一种在宽广的温度区域内稳定并显示出高效率的钙钛矿太阳能电池。
本发明还提出了在为了降低或调节带隙能量而加入溴离子(Br-)时不发生相分离或相分解的固溶体的特定组成,由此可以提供显示出更高效率的钙钛矿太阳能电池。
本发明的方法和装置具有其它特征和优点,这些特征和优点将在纳入本文的附图以及随后与附图一起用于解释本发明的某些原理的具体实施方式中显现或得到更详细地阐明。
附图说明
图1示意性地示出根据本发明的示例性实施方案的钙钛矿太阳能电池;
图2是对于由(A11-mA2m)M(X11-nX2n)3表示的固溶体,当m和n为0至1时,在对应于每种组成的固溶体是三方相的情况下计算自由能以及在对应于每种组成的固溶体是六方相的情况下计算自由能的视图;
图3是将甲基铵(MA)的比例(m)分化成当三方相稳定时溴离子(Br-)的比例以及将甲基铵(MA)的比例(m)分化成当六方相稳定时溴离子(Br-)的比例的视图;
图4是表示图3中的带隙能量为1.4eV和1.5eV的固溶体的特定组成(m,n)的视图;
图5是示出等式1(m和n的函数)和等式2(m和带隙能量的函数)两者的曲线图;
图6是示出固溶体通过甲基铵(MA)取代A-位点时形成的焓而发生相分离的区域的视图;
图7是示出在仅溴离子(Br-)取代X-位点而没有任何A-位点取代的情况下在240K至380K的绝对温度范围内固溶体发生相分解的区域的视图;
图8示出当甲基铵(MA)取代A-位点,溴离子(Br-)取代X-位点,并且比例(m、n)彼此相同时,在240K至380K的绝对温度范围内固溶体发生相分解的区域;以及
图9是示出在300K或更低的绝对温度下固溶体发生相分解的甲基铵(MA)的比例(m)与溴离子(Br-)的比例(n)的区域的视图。
列于附图中的附图标记包括对下文中将进一步讨论的如下元件的引用:
10:第一电极
20:电子传输层
30:光吸收层
40:空穴传输层
50:第二电极
应当了解,附图并非按比例地绘制,而是图示性地简化呈现各种特征以显示本发明的基本原理。在此所公开的本发明的特定的设计特征,包括例如特定的尺寸、定向、位置和形状,将部分地由特定目标应用和使用环境确定。
在这些图形中,贯穿附图的多幅图形,附图标记指代本发明的同样的或等同的部件。
具体实施方式
现在将在下文中详细地参考本发明的各个实施方案,这些实施方案的示例示出在附图中并描述如下。虽然本发明与示例性的实施方案相结合进行描述,但是应当了解,本说明书不是要将本发明限制为那些示例性的实施方案。相反,本发明旨在不但覆盖这些示例性实施方案,而且覆盖可以被包括在由所附权利要求所限定的本发明的精神和范围之内的各种替换形式、修改形式、等同形式和其它实施方案。
在下文中,将通过示例详细地描述本发明。只要本发明的要点不改变,本发明的示例可以以各种形式进行修改。然而,本发明的权利范围并不限于以下示例。
如果判断为公知构造和功能可能模糊本发明的要点,则将省略对公知构造和功能的描述。
在本说明书中的术语“包括”意指进一步包括其它组成要素,除非另外有具体说明。
图1为示意性地示出根据本发明的示例性实施方案的钙钛矿太阳能电池的视图。钙钛矿太阳能电池可以包括第一电极10;电子传输层20,其形成在所述第一电极10上;光吸收层30,其形成在所述电子传输层20上并包括光吸收体;空穴传输层40,其形成在所述光吸收层30上;以及第二电极50,其形成在所述空穴传输层40上。
所述第一电极10可以是包含透明电极的透明衬底,但是只要衬底是通常用于太阳能电池领域的衬底,可以使用任何衬底。例如,透明电极可以是氟掺杂的氧化锡(FTO)、铟掺杂的氧化锡(ITO)、氧化锌(ZnO)、碳纳米管、石墨烯等,而透明衬底可以是玻璃衬底或者包括聚对苯二甲酸乙二醇酯、聚萘二甲酸乙二醇酯、聚酰亚胺等的衬底。
只要电子可以平稳地移动,电子传输层20可以任何构造和形式而形成,但是可以优选地由包括例如二氧化钛(TiO2)的金属氧化物颗粒构成的多孔层形成。
光吸收层30可以含有有机和无机复合钙钛矿作为光吸收体。光吸收体可以是具有特定组成的固溶体,其在宽广的温度区域内保持晶体结构,不发生相分离或相分解,并具有低带隙能量,其具体描述将在下文进行说明。
可以为了还原(reducing)氧化的光吸收层30的目的而形成空穴传输层40,但不限于此。所述空穴传输层可以包括单分子空穴传输材料或聚合物空穴传输材料,并且只要是通常用于太阳能电池领域的材料,可以使用任何材料。例如,作为单分子空穴传输材料,可以使用2,2',7,7'-四(N,N-对-二甲氧基-苯基氨基)-9,9'-螺二芴(螺-MeOTAD),而作为聚合物空穴传输材料,可以使用聚(3-己基噻吩)(P3HT)、聚三芳基胺(PTAA)或聚(3,4-亚乙基二氧噻吩)聚苯乙烯磺酸盐(PEDOT:PSS)。
只要第二电极50通常用作太阳能电池领域中的第一电极的对电极,则可以使用任何材料。例如,所述材料可以是金、银、铂、钯、铜、铝、碳、硫化钴、硫化铜、氧化镍等。
根据本发明的示例性实施方案的钙钛矿太阳能电池可以含有由以下化学式1表示的固溶体作为光吸收体。
[化学式1]
(A11-mA2m)M(X11-nX2n)3
在各种示例性实施方案中,A1为甲脒盐阳离子(HC(NH2)2 +),A2为甲基铵盐阳离子(CH3NH3 +),M为二价金属离子,X1为碘离子(I-),而X2为溴离子(Br-)。
特别地,0.2≤m≤0.7。例如,m为0.2、0.7或在0.2至0.7的范围内的数。在一些情形中,0.4≤m≤0.5,或换言之,m为0.4、0.5或在0.4至0.5的范围内的数。在各种示例性实施方案中,0<n≤0.15,或换言之,n大于0且小于0.15,或为0.15。在一些情形中,0.04≤n≤0.07,或换言之,n为0.04、0.07或在0.04至0.07的范围内的数。
在下文中,在化学式1中,术语“A11-mA2m”、“M”和“X11-nX2n”分别指“A-位点”,“B-位点”和“X-位点”。然而,为了便于描述,也可能同时使用“A11-mA2m”和“A-位点”、“M”和“B-位点”以及“X11-nX2n”和“X-位点”。由于在太阳能电池中用作光吸收体的钙钛矿材料通常以ABX3表示,所以即使上述术语同时使用,本领域技术人员也将清楚地知道在本发明的示例性实施方案中这些术语所指的内容。
在化学式1中,“m”是指“甲基铵(MA)的比例”,而“n”是指“溴离子(Br-)的比例”。然而,为了便于描述,也可以同时使用“m”和“甲基铵(MA)的比例”,以及“n”和“溴离子(Br-)的比例”。
固溶体是指具有不同组成的两种或更多种钙钛矿结构的有机金属卤化物形成固溶体相。
具体而言,本发明的技术特征在于提供一种光吸收体,其允许作为一种有机金属卤化物的甲基溴化铅铵(methyl ammonium lead bromide,MAPbBr3)取代作为另一有机金属卤化物的甲脒铅碘盐(formamidinium lead iodide,FAPbI3),允许取代A-位点的甲基铵(MA)的比例与取代X-位点的溴离子(Br-)的比例(n)不对称,并且因此由于光吸收体在宽广的温度区域(-40℃至150℃)内不发生相变、相分离和相分解而是稳定的,并且由于低带隙能量而具有高效率。
根据本发明的示例性实施方案的具有由化学式1表示的特定组成的固溶体可以在例如-40℃至150℃的宽温度范围内保持能够显示出光伏性能的三方相。
如上所述,在低温区域(-40℃至25℃)中,FAPbI3发生从三方相至六方相的相变,并且因此具有光伏性能消失的问题。本发明的技术特征在于通过形成具有由化学式1表示的特定组成的固溶体来解决上述问题。
图2是对于由(A11-mA2m)M(X11-nX2n)3表示的固溶体,当m和n为0至1时,在对应于每种组成的固溶体是三方相的情况下计算自由能(深色表面,三方的),以及在对应于每种组成的固溶体是六方相的情况下计算自由能(浅色表面,六方的)的视图。在图2中,当在三方相的情形中的自由能低于在六方相的情形中的自由能时,可以说固溶体具有三方相晶体结构。
由于通过图2可以将甲基铵(MA)的比例(m)分化成(differentiate)当三方相稳定时溴离子(Br-)的比例,以及将甲基铵(MA)的比例(m)分化成当六方相稳定时溴离子(Br-)的比例,其二维表示示出于图3中。
根据图3,当化学式1中的m和n对应于三方区域60时,固溶体具有能够显示出光伏性能的三方相晶体结构,而当化学式1中的m和n对应于六方区域70时,固溶体具有失去光伏性能的六方相晶体结构。
在图3中,S曲线(其为延伸自属于三方区域60的临界值的m和n的线)的数学表达式示出在以下等式1中。
[等式1]
同时,当应用下面的维加德定律(Vegard’s law)时,可以根据甲基铵(MA)的比例(m)和溴离子(Br-)的比例(n)来计算固溶体的带隙能量(Eg)。
图4是表示图3中带隙能量为1.4eV和1.5eV的固溶体的特定组成(m,n)的视图,m和n可以根据维加德定律进行计算。
参考图4,当m和n属于P区域时,可以看出固溶体可以保持显示出光伏性能的三方相晶体结构而不发生相变,并且具有低带隙能量,因此可以确保高效率。
即,本发明的技术特征在于m和n是三方区域60的临界值,其中固溶体可以保持三方相,并且根据维加德定律计算的带隙能量(Eg)属于P区域(其为1.5eV或更小,具体而言,约1.47eV或更小)。
具体而言,由于m和n满足等式1,所以固溶体具有三方相晶体结构,由于满足0.2≤m≤0.7和0<n≤0.15的范围,因此具有低带隙能量。
这也可以如图5所示的那样进行描述。图5是示出等式1(m和n的函数)和等式2(m和带隙能量的函数)两者的曲线图。
以下等式2示出了作为甲基铵(MA)的比例(m)的函数的,通过使用甲基铵(MA)的比例(m)和溴离子(Br-)的比例(n)(其满足等式1)根据维加德定律而计算的带隙能量(Eg)。
[等式2]
Eg=1.61-1.32·m+5.48·m2-13.13·m3+18.1l·m4-13.0O·m5+3.74·m6
通过图5,可以获得具有相稳定性(phase stability)和最高效率的固溶体的组成。当固溶体的带隙能量最小时(为约1.47eV),甲基铵(MA)的比例(m)为0.45(Q)。当甲基铵(MA)的比例(m)为0.45时,溴离子(Br-)的比例(n)需要为0.05,以使得固溶体具有三方相晶体结构。即,当使用由以下化学式2表示的固溶体作为光吸收体时,可以获得具有最佳稳定性并显示出最高效率的钙钛矿太阳能电池。
[化学式2]
(FA0.55MA0.45)Pb(I0.95Br0.05)3
通过图5,可以获得具有期望的带隙能量和期望的吸收波长的固溶体的组成。这是因为可以通过图5的等式2获得能够实现特定带隙能量值的甲基铵(MA)的比例(m),并且一旦确定了甲基铵(MA)的比例(m),则通过等式1,当甲基铵(MA)的比例(m)是特定值时,可以找出能够保持相稳定性的溴离子(Br-)的比例(n)。
因此,根据本发明的示例性实施方案,即使吸收波长根据使用钙钛矿太阳能电池的环境、目的等而变化,但通过灵活地调整固溶体的组成,也可以提供具有优异的稳定性和高效率的太阳能电池。
与此同时,即使如上所述通过调整甲基铵(MA)的比例(m)和溴离子(Br-)的比例而实现了优异的相稳定性和高效率的效果,当发生相分离或相分解时,可能不会适当地展现出上述效果。
然而,如图6所示,通过对当甲基铵(MA)取代A-位点时形成的焓进行计算,可以看出只有当甲基铵(MA)以约0.9或更大的比例取代时才发生相分离。
由于根据本发明示例性实施方案的由化学式1表示的固溶体具有0.2≤m≤0.7的范围,特别地,0.4≤m≤0.5且0<n≤0.15,特别地,0.04≤n≤0.07,可以看到,不会发生相分离。
图7是示出在仅溴离子(Br-)取代X-位点而没有任何A-位点取代的情况下在240K至380K的绝对温度范围内固溶体发生相分解的区域的视图。在图7中,s、m和u分别表示稳定状态,亚稳定状态和不稳定状态,固溶体的亚稳定状态和不稳定状态意味着发生相分解。
参考图7,可以看出,在溴离子(Br-)取代X-位点而没有任何A-位点取代的情况下,在300K的绝对温度下当溴离子(Br-)的比例(n)在0.3和0.8之间时发生相分解,而在240K的绝对温度下当溴离子(Br-)的比例(n)在0.25和0.85之间时发生相分解。
图8示出当甲基铵(MA)取代A-位点,溴离子(Br-)取代X-位点,并且比例(m、n)彼此相同时,在240K至380K的绝对温度范围内固溶体发生相分解的区域。在图8中,s、m和u分别表示稳定状态,亚稳定状态和不稳定状态,固溶体的亚稳定状态和不稳定状态意味着发生相分解。
参考图8,可以看出,在A-位点和X-位点以相同比例取代的情况下,在绝对温度为240K下当甲基铵(MA)的比例(m)和溴离子(Br-)的比例(n)在0.6和0.85之间时发生相分解。
图9是示出在300K或更低的绝对温度下固溶体发生相分解的甲基铵(MA)的比例(m)与溴离子(Br-)的比例(n)的区域的视图。
具体而言,根据图7,当甲基铵(MA)的比例为0时(在甲基铵没有取代A-位点的情况下),表现为在溴离子(Br-)的比例(n)为0.25至0.85(图9中的a-b区间)的情况下发生相分解。此外,根据图8,表现为在甲基铵(MA)的比例(m)与溴离子(Br-)的比例(n)为0.6至0.85(图9中的c-d区间)的情况下发生相分解。
因此,参考图9,可以看出,在绝对温度为300K或更低的低温区域中,当甲基铵(MA)的比例(m)与溴离子(Br-)的比例(n)属于连接a,b,c和d的Z区域时,固溶体发生相分解。
由于根据本发明的示例性实施方案的由化学式1表示的固溶体具有如上所述的P区域的组成,而不属于Z区域,因此可以看出,即使在绝对温度为300K或更低的低温区域中也会不发生相分解。
由于根据本发明的示例性实施方案的由以下化学式1表示的固溶体可以如上所述地在-40℃至150℃的宽广温度范围内保持显示出光伏性能的三方相晶体结构,并且在该温度区域中不发生相分离或相分解,所以所述固溶体具有优异的稳定性和高效率(由于约1.47eV或更小的带隙能量),因此,当所述固溶体用作光吸收体时,可以获得具有优异的稳定性和高效率的钙钛矿太阳能电池。
[化学式1]
(A11-mA2m)M(X11-nX2n)3
在化学式1中,A1为甲脒盐阳离子(HC(NH2)2 +),A2为甲基铵盐阳离子(CH3NH3 +),M为二价金属离子,X1为碘离子(I-),X2为溴离子(Br-),0.2≤m≤0.7,并且0<n≤0.15,并且m和n满足以下等式1。
[等式1]
已经如上所述详细描述了测试示例和本发明的示例,但是本发明的权利范围不限于上述测试示例和示例,并且本领域技术人员使用在所附权利要求书中限定的本发明的基本构思而进行的各种修改和改进也落入本发明的权利范围内。
前面对本发明具体示例性实施方案所呈现的描述是出于说明和描述的目的。它们并不旨在是毫无遗漏的,也不旨在将本发明限制为所公开的精确形式,显然,根据上述教导,很多修改和变化都是可能的。选择示例性实施方案并进行描述是为了解释本发明的特定原理及其它们的实际应用,从而使得本领域的其它技术人员能够实现并利用本发明的各种示例性实施方案及其不同的选择形式和修改形式。本发明的范围旨在由所附权利要求书及其等同形式限定。
Claims (2)
1.一种钙钛矿太阳能电池,其含有通过以下化学式1表示的固溶体作为光吸收体:
化学式1
(A11-mA2m)M(X11-nX2n)3,
其中,A1为甲脒盐阳离子(HC(NH2)2 +),A2为甲基铵盐阳离子(CH3NH3 +);
M为铅;
X1为碘离子,X2为溴离子;
m=0.45;并且,
n=0.05,
其中n满足以下等式1,从而使得所述固溶体在-40℃至150℃的温度下具有三方晶体结构,并且具有1.4eV至1.47eV的带隙能量,
所述固溶体在-40℃至150℃的温度下不发生相分离或相分解,
等式1
2.根据权利要求1所述的钙钛矿太阳能电池,其中所述钙钛矿太阳能电池包括:
第一电极;
电子传输层,其形成在所述第一电极上;
光吸收层,其包含光吸收体;
空穴传输层,其形成在所述光吸收层上;以及
第二电极,其形成在所述空穴传输层上。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2017-0056152 | 2017-05-02 | ||
KR1020170056152A KR102463610B1 (ko) | 2017-05-02 | 2017-05-02 | 안정성이 우수한 고효율의 페로브스카이트 태양전지 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108807673A CN108807673A (zh) | 2018-11-13 |
CN108807673B true CN108807673B (zh) | 2023-11-24 |
Family
ID=64014922
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711337275.4A Active CN108807673B (zh) | 2017-05-02 | 2017-12-14 | 具有优异的稳定性和高效率的钙钛矿太阳能电池 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10804412B2 (zh) |
KR (1) | KR102463610B1 (zh) |
CN (1) | CN108807673B (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11515491B2 (en) * | 2017-05-15 | 2022-11-29 | Kyushu University, National University Corporation | Perovskite film, method for producing the same, light-emitting device and solar cell |
KR102109001B1 (ko) * | 2018-11-13 | 2020-05-11 | 단국대학교 천안캠퍼스 산학협력단 | 순차적 기상 공정을 이용한 혼합 유기물 동시 기화방식의 페로브스카이트 박막 제조방법 및 이를 이용한 태양전지 |
CN109627259B (zh) * | 2018-11-30 | 2020-11-17 | 华中科技大学 | 一种新型钙钛矿功能材料及其在光电器件中的应用 |
CN110534648B (zh) * | 2019-08-30 | 2021-10-08 | 华中科技大学 | 一种有机小分子卤化物改性的钙钛矿光电功能材料、其制备及应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105742504A (zh) * | 2016-05-13 | 2016-07-06 | 中国科学院重庆绿色智能技术研究院 | 一种高稳定性钙钛矿太阳能电池 |
CN106410044A (zh) * | 2016-11-30 | 2017-02-15 | 天津市职业大学 | 一种钙钛矿太阳电池用卤化铅甲胺的生产方法 |
CN106449982A (zh) * | 2016-10-11 | 2017-02-22 | 中山大学 | 一种以氧化铬为电子传输层的钙钛矿太阳能电池及其制备方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101430139B1 (ko) | 2012-06-29 | 2014-08-14 | 성균관대학교산학협력단 | 페로브스카이트 기반 메조다공 박막 태양전지 제조 기술 |
KR101893493B1 (ko) * | 2013-12-23 | 2018-08-30 | 한국화학연구원 | 무/유기 하이브리드 페로브스카이트 화합물 전구물질 |
GB201416042D0 (en) * | 2014-09-10 | 2014-10-22 | Oxford Photovoltaics Ltd | Hybrid Organic-Inorganic Perovskite Compounds |
KR101723824B1 (ko) * | 2015-04-27 | 2017-04-06 | 한국과학기술연구원 | 이온성고분자 물질을 포함하는 유무기 하이브리드 페로브스카이트 광전변환소자용 수분차단막, 이를 포함하는 광전변환소자 및 이의 제조방법 |
-
2017
- 2017-05-02 KR KR1020170056152A patent/KR102463610B1/ko active IP Right Grant
- 2017-12-08 US US15/835,997 patent/US10804412B2/en active Active
- 2017-12-14 CN CN201711337275.4A patent/CN108807673B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105742504A (zh) * | 2016-05-13 | 2016-07-06 | 中国科学院重庆绿色智能技术研究院 | 一种高稳定性钙钛矿太阳能电池 |
CN106449982A (zh) * | 2016-10-11 | 2017-02-22 | 中山大学 | 一种以氧化铬为电子传输层的钙钛矿太阳能电池及其制备方法 |
CN106410044A (zh) * | 2016-11-30 | 2017-02-15 | 天津市职业大学 | 一种钙钛矿太阳电池用卤化铅甲胺的生产方法 |
Non-Patent Citations (3)
Title |
---|
An exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells;T. Jesper Jacobsson等;《Energy &Environmental Science》;20160310;第9卷;第5-8页实验部分,图1以及图11 * |
Chemical Management for Colorful, Efficient, and Stable Inorganic−Organic Hybrid Nanostructured Solar Cells;Jun Hong Noh等;《Nano Letters》;20130321;第1766-1768页和图1-4 * |
Mixed-Organic-Cation Perovskite Photovoltaics for Enhanced Solar-Light Harvesting;Norman Pellet等;《Angewandte Chemmie》;20140314;第126卷;第3156页 * |
Also Published As
Publication number | Publication date |
---|---|
US20180323317A1 (en) | 2018-11-08 |
KR20180122110A (ko) | 2018-11-12 |
CN108807673A (zh) | 2018-11-13 |
US10804412B2 (en) | 2020-10-13 |
KR102463610B1 (ko) | 2022-11-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108807673B (zh) | 具有优异的稳定性和高效率的钙钛矿太阳能电池 | |
Qin et al. | Recent progress in stability of perovskite solar cells | |
Yin et al. | Halide perovskite materials for solar cells: a theoretical review | |
Jamal et al. | Effect of defect density and energy level mismatch on the performance of perovskite solar cells by numerical simulation | |
Salah et al. | A comprehensive simulation study of hybrid halide perovskite solar cell with copper oxide as HTM | |
Sun et al. | Discovering lead-free perovskite solar materials with a split-anion approach | |
Palmstrom et al. | Atomic layer deposition in nanostructured photovoltaics: tuning optical, electronic and surface properties | |
Wang et al. | Controllable fabrication of nanostructured materials for photoelectrochemical water splitting via atomic layer deposition | |
Yu et al. | Oriented tuning the photovoltaic properties of γ-RbGeX3 by strain-induced electron effective mass mutation | |
Liang et al. | First principles study for band engineering of KNbO 3 with 3d transition metal substitution | |
Ju et al. | A computational view of the change in the geometric and electronic properties of perovskites caused by the partial substitution of Pb by Sn | |
Ye et al. | Applications of cesium in the perovskite solar cells | |
Nkele et al. | Structural and electronic properties of metal oxides and their applications in solar cells | |
Aftab et al. | Recent development in shape memory based perovskite materials for energy conversion and storage applications | |
Choi et al. | Heavy pnictogen chalcohalides for efficient, stable, and environmentally friendly solar cell applications | |
Krbal et al. | Improved ordering of quasi-two-dimensional mos2 via an amorphous-to-crystal transition initiated from amorphous sulfur-rich MoS2+ x | |
Shirahata et al. | Microstructures, optical and photovoltaic properties of CH3NH3PbI3 (1− x) Clx perovskite films with CuSCN additive | |
Ando et al. | Rietveld refinement of crystal structure of perovskite CH3NH3Pb (Sb) I3 solar cells | |
Wang et al. | Exploration of B-site alloying in partially reducing Pb toxicity and regulating thermodynamic stability and electronic properties of halide perovskites | |
Kim et al. | Quantitative fraction analysis of coexisting phases in a polycrystalline CH3NH3PbI3 perovskite | |
Li et al. | Preparation and characterization of narrow bandgap ferroelectric (K, Ba)(Ni, Nb) O3− δ films for mesoporous all-oxide solar cells | |
Santhosh et al. | Spray pyrolysed microporous TiO2 thin films by optimisation of substrate temperature for ‘all sprayed’solar cells | |
Murugan et al. | Effects of different chloride precursors on crystal growth of lead halide perovskites | |
Tara et al. | Performance evaluation of all-inorganic cesium-based perovskite solar cell with BaSnO3 as ETL | |
Rheem et al. | Electrospun hybrid MoS2 nanofibers for high-efficiency electrocatalytic hydrogen evolution reaction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |