TWI841529B - 鈣鈦礦膜、其製造方法、發光裝置及太陽能電池 - Google Patents

鈣鈦礦膜、其製造方法、發光裝置及太陽能電池 Download PDF

Info

Publication number
TWI841529B
TWI841529B TW107116440A TW107116440A TWI841529B TW I841529 B TWI841529 B TW I841529B TW 107116440 A TW107116440 A TW 107116440A TW 107116440 A TW107116440 A TW 107116440A TW I841529 B TWI841529 B TW I841529B
Authority
TW
Taiwan
Prior art keywords
less
calcium
methylammonium
formamidinium
film
Prior art date
Application number
TW107116440A
Other languages
English (en)
Other versions
TW201900950A (zh
Inventor
秦川江
松島敏則
安達千波矢
Original Assignee
國立大學法人九州大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立大學法人九州大學 filed Critical 國立大學法人九州大學
Publication of TW201900950A publication Critical patent/TW201900950A/zh
Application granted granted Critical
Publication of TWI841529B publication Critical patent/TWI841529B/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/24Lead compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • C09K11/664Halogenides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • C09K11/664Halogenides
    • C09K11/665Halogenides with alkali or alkaline earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2004Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
    • H01G9/2009Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/10Organic photovoltaic [PV] modules; Arrays of single organic PV cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/188Metal complexes of other metals not provided for in one of the previous groups
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Photovoltaic Devices (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本發明揭示在預定溫度範圍內實質上無相轉移之穩定鈣鈦礦膜。在該等膜中,載流子陷阱之形成受到抑制。亦揭示使用該等膜之熱穩定鈣鈦礦太陽能電池及發光裝置。

Description

鈣鈦礦膜、其製造方法、發光裝置及太陽能電池
儘管已在基於CH3 NH3 PbI3 之鈣鈦礦太陽能電池中達成超過20%之功率轉換效率,但與接近室溫之正方結構與立方結構之間的相轉移的存在相關之低熱穩定性為主要問題,必須克服該問題以用於未來實際應用。在此,藉由比較五種具有鹵素原子、銣及有機組分之不同組成的鈣鈦礦膜來詳細地研究相轉移對鈣鈦礦太陽能電池之熱穩定性之影響。熱刺激電流量測結果顯示,在高於相轉移溫度之85℃下操作之後大量載流子陷阱生成於具有鈣鈦礦CH3 NH3 PbI3 之太陽能電池中作為光吸收劑。此等載流子陷阱對於熱穩定性為有害的。鈣鈦礦合金不具有此相轉移,這引起有效地抑制載流子陷阱之形成。藉由將銣離子引入鈣鈦礦中,太陽能電池之裝置效能及熱穩定性得到進一步改進,此係因為在使裝置溫度頻繁循環期間分別減少非輻射再結合且抑制載流子陷阱形成。實現在標準熱循環測試下具有改進熱穩定性之鈣鈦礦太陽能電池。
本申請案揭示以下發明: (1) 一種在0℃至100℃之溫度範圍內實質上無相轉移之鈣鈦礦膜。 (2) 如(1)之鈣鈦礦膜,其中該相轉移為晶體結構之改變。 (3) 如(2)之鈣鈦礦膜,其中該相轉移為正方結構與立方結構之間的相轉移。 (4) 如(2)之鈣鈦礦膜,其中該相轉移為八面體結構與正方結構之間的相轉移。 (5) 一種鈣鈦礦膜,其中在0℃至100℃之溫度範圍內載流子陷阱之形成受到抑制。 (6) 如(5)之鈣鈦礦,其中在10℃至100℃之溫度範圍內載流子陷阱之形成受到抑制。 (7) 如(5)或(6)之鈣鈦礦,其中相較於CH3 NH3 PbI3 ,載流子陷阱之形成受到更多抑制。 (8) 如(1)至(7)中任一項之鈣鈦礦膜,其包含由下式(1)表示之鈣鈦礦化合物, A1 n A2 1-n BX1 m X2 3-m (1) 其中A1 及A2 中之一者表示甲基銨(CH3 NH3 + )且A1 及A2 中之另一者表示甲脒鎓(NH2 CH2 NH2 + ),B表示二價金屬離子,X1 及X2 中之一者表示I- 且X1 及X2 中之另一者表示Br- ,n表示0或更大且小於1之數值,m表示0或更大且小於3之數值,且n及m中之至少一者大於0。 (9) 如(8)之鈣鈦礦膜,其中n及m均大於0。 (10) 如(8)或(9)之鈣鈦礦膜,其中A1 為甲脒鎓,A2 為甲基銨,n為0.1或更大及0.7或更小。 (11) 如(8)至(10)中任一項之鈣鈦礦膜,其中X1 為Br- ,X2 為I- ,m為0.1或更大及0.7或更小。 (12) 如(8)至(11)中任一項之鈣鈦礦膜,其中B為Pb2+ 。 (13) 如(1)至(7)中任一項之鈣鈦礦膜,其包含由以下通式(2)表示之鈣鈦礦化合物, Mr A1 t A2 1-(r+t) BX1 m X2 3-m (2) 其中M表示Rb+ 、Cs或K,A1 及A2 中之一者表示甲基銨(CH3 NH3 + )且A1 及A2 中之另一者表示甲脒鎓(NH2 CH2 NH2 + ),B表示二價金屬離子,X1 及X2 中之一者表示I- 且X1 及X2 中之另一者表示Br- ,r表示大於0及0.1或更小之數值,t表示0或更大且小於0.9之數值,m表示0或更大且小於3之數值,且t及m中之至少一者大於0。 (14) 如(13)之鈣鈦礦膜,其中M為Rb+ 。 (15) 如(14)之鈣鈦礦膜,其中t及m均大於0。 (16) 如(14)或(15)之鈣鈦礦膜,其中A1 為甲脒鎓,A2 為甲基銨,且t為0.1或更大及0.7或更小。 (17) 如(14)至(16)中任一項之鈣鈦礦膜,其中X1 為Br- ,X2 為I- ,且m為0.1或更大及0.7或更小。 (18) 如(14)至(17)中任一項之鈣鈦礦膜,其中B為Pb2+ 。 (19) 一種鈣鈦礦膜,其包含由以下通式(1')表示之鈣鈦礦化合物, (NH2 CH2 NH2 )n ' (CH3 NH3 )1-n ' PbBrm ' I3-m ' (1') 其中n'及m'各自獨立地表示0或0.1或更大及0.7或更小之數值,且n'及m'中之至少一者為0.1或更大及0.7或更小。 (20) 如(19)之鈣鈦礦膜,其中n'及m'均為0.1或更大及0.7或更小。 (21) 一種鈣鈦礦膜,其包含由以下通式(2')表示之鈣鈦礦化合物, Rbr ' (NH2 CH2 NH2 )t ' (CH3 NH3 )1-(r ' t ' ) PbBrm ' I3-m ' (2') 其中r'表示0.01或更大及0.1或更小之數值,t'及m'各自獨立地表示0或0.1或更大及0.7或更小之數值,且n'及m'中之至少一者為0.1或更大及0.7或更小。 (22) 如(21)之鈣鈦礦膜,其中t'及m'均為0.1或更大及0.7或更小。 (23) 一種用於製造鈣鈦礦膜之方法,其包含: 觀察在預定溫度範圍內之兩種或超過兩種具有不同原子組成之鈣鈦礦膜的相轉移以偵測原子組成比率促進抑制該相轉移之傾向, 基於該傾向確定鈣鈦礦膜之更好的原子組成,及 製造具有該更好的原子組成之鈣鈦礦膜。 (24) 一種用於製造鈣鈦礦膜之方法,其包含: 觀察在預定溫度範圍內之兩種或超過兩種具有不同原子組成之鈣鈦礦膜中之載流子陷阱的形成,從而偵測原子組成比率促進抑制該載流子陷阱形成之傾向, 基於該傾向確定鈣鈦礦膜之更好的原子組成,及 製造具有該更好的原子組成之鈣鈦礦膜。 (25) 一種包含如(1)至(22)中任一項之鈣鈦礦膜的發光裝置。 (26) 一種包含如(1)至(22)中任一項之鈣鈦礦膜的太陽能電池。
有機-無機鹵化鈣鈦礦太陽能電池(PSC)對於下一代清潔能量為有前景的,因為其可達成大功率轉化效率(η )且可用簡單及低成本方法製成。1,2 儘管已經由現代化裝置工程達成22.1%認證η ,但裝置穩定性對於廣泛的商業化仍不足夠。3-5 諸如水分、氧氣、UV光及溫度之外來因素已知用來限制鈣鈦礦材料及由其製成之PSC的穩定性,5,6-9 但必須仍進一步闡明內在降解機制以發現用於製作具有極佳長期穩定性之PSC的新穎溶液。
在已知內在因素之中,已在具有甲基銨三碘化鉛(CH3 NH3 PbI3 )鈣鈦礦吸收劑之PSC中觀察到降低裝置效能及壽命之載流子陷阱及缺陷。10-12 已基於不同實驗性技術及理論模擬提出缺陷之若干可能性起源。13-15 Stevart等人報告碘鉛酸鹽物種中之化學平衡可在創建電荷再結合中心中起作用。14 藉由降低在鈣鈦礦成膜期間使用之鉛離子物種濃度,可在溶液中減低缺陷前驅體之濃度。在吾人之工作中,吾等發現電洞陷阱在將CH3 NH3 PbI3 鈣鈦礦膜曝露於空氣中之水分之後容易地生成,加速PSC在連續性光照射下之降解。12 經由系統性實驗性研究,吾等展示法侖克耳缺陷(Frenkel defect)對於PSC穩定性為有害的且展示金屬鉛為載流子陷阱之可能性內在起源。15 藉助於苯醌添加劑之弱還原性質,吾等能夠抑制金屬鉛之形成且有效地延長PSC之壽命。
另一重要考慮為相轉移存在於大部分鈣鈦礦材料中。舉例而言,廣泛使用之CH3 NH3 PbI3 具有兩個相轉移:一者為在約161 K下八面體結構與正方結構之間的相轉移且另一者為在約328 K下正方結構與立方結構之間的相轉移。16 基於熱刺激電流(TSC)之分析,已顯示在約161 K下之相轉移誘導載流子陷阱之形成。11,12,15 因為此相轉移溫度比天然存在之地面環境中之PSC的操作溫度低得多,所以應可忽略低溫相轉移對裝置效能之影響。然而,高溫相轉移係在恰好略微地高於室溫之溫度下。17 因此,必須瞭解高溫相轉移如何影響裝置效能及穩定性來研發可通過在高達85℃之高溫下的嚴格的壽命測試之PSC以用於未來實際應用。
在此,吾等首先在85℃下使相轉移與諸如轉化效率、降解行為及壽命之裝置性質產生關聯以用於四種具有鹵素[溴(Br)及碘(I)]及有機組分[甲基銨(MA)及甲脒鎓(FA)]之不同組合的基於鉛之鈣鈦礦材料。用於此研究之鈣鈦礦之化學式為MA0.6 FA0.4 PbI3 、MAPbI2.6 Br0.4 、MA0.6 FA0.4 PbI2.8 Br0.2 及MAPbI3 。其中,如藉由差示掃描熱量測定所量測,鈣鈦礦合金(MA0.6 FA0.4 PbI3 、MAPbI2.6 Br0.4 及MA0.6 FA0.4 PbI2.8 Br0.2 )在室溫至200℃溫度範圍內不展現相轉移,而純鈣鈦礦MAPbI3 在分別用於放熱及吸熱過程之54.6℃及56.2℃下具有相轉移。此外,利用純鈣鈦礦及鈣鈦礦合金作為光吸收劑之PSC展示在85℃下在連續性光照射下之不同的降解行為。18 在此研究中經測試之PSC中,由於如藉由TSC分析所確認之減少的載流子陷阱形成,基於MA0.6 FA0.4 PbI2.8 Br0.2 之PSC達成最佳熱穩定性。吾等藉由將碘化銣併入用於鈣鈦礦膜製作之前驅體溶液中來進一步製作用於PSC之Rb0.05 MA0.55 FA0.4 PbI2.8 Br0.2 膜。銣之包括產生1.21 V開路電壓,此為所有平面PSC中之最低電壓損失及基於Rb0.05 MA0.55 FA0.4 PbI2.8 Br0.2 之PSC中之轉化效率及裝置熱穩定性均得到改進的結果。
因為鈣鈦礦合金主要用於伴以鈣鈦礦合金浸潤半導體架構之中孔太陽能電池,19-21 所以吾等首先篩選若干類型之鈣鈦礦材料,MA0.6 FA0.4 PbI3 、MAPbI2.6 Br0.4 、MA0.6 FA0.4 PbI2.8 Br0.2 及MAPbI3 ,從而發現用於高效能平面裝置之最佳組分。在此製作之經旋塗鈣鈦礦合金膜具有與先前已報導之吸收特徵類似的吸收特徵:19,20 將FA或Br引入MAPbI3 中,得到MA0.6 FA0.4 PbI3 及MAPbI2.6 Br0.4 ,使吸收起點分別變成紅色或藍色,如圖1a中所示。因為吾等使諸如前驅體溶液中之各組分之莫耳比、甲苯滴加時序及熱退火溫度及持續時間之旋塗條件最佳化以用於各膜,所有吾等鈣鈦礦膜均在掃描電子顯微鏡(SEM)影像(圖1b)中展示具有完全基板覆蓋度之平滑、均勻的表面,這引起良好的裝置效能及穩定性。
圖1c及1d中所示之吾等鈣鈦礦膜之X射線繞射(XRD)圖案指出,FA及/或Br實際上整合於MAPbI3 晶體中且形成MA0.6 FA0.4 PbI3 、MAPbI2.6 Br0.4 、MA0.6 FA0.4 PbI2.8 Br0.2 合金。可在合併FA及/或Br後觀察到清楚的峰值偏移,但所有峰值均可指示至預期相。由於殘餘的溴化物,(110)繞射峰略微地偏移至更高的角度,而當添加FA陽離子時其移至更低的角度。19 未偵測到次級相或未併入的PbI2 及有機陽離子之跡象,這表明形成純鈣鈦礦合金。
為瞭解鈣鈦礦合金化合物之熱性質,對藉由在氮氣填充的手套箱中在100℃下乾燥用於裝置製作之前驅體溶液30分鐘而製成之MA0.6 FA0.4 PbI3 、MAPbI2.6 Br0.4 、MA0.6 FA0.4 PbI2.8 Br0.2 及MAPbI3 粉末進行熱解重量分析(TGA)及差示掃描熱量測定(DSC)。圖1e中之TGA結果顯示,當MAPbI3 之分解溫度高達300℃時,MA0.6 FA0.4 PbI3 及MA0.6 FA0.4 PbI2.8 Br0.2 具有類似的熱分解溫度。另一方面,MAPbI2.6 Br0.4 具有約200℃之相對較低的分解溫度,這可能由MAPbI2.6 Br0.4 相分離成MAPbI3 及MAPbBr3 所導致。22 在高溫下,甚至在混合鹵化鈣鈦礦之情況下,亦容易發生化學分解及結晶相變化。
圖1f顯示四種鈣鈦礦粉末之DSC性質。類似於所報導之MAPbI3 單晶之DSC性質,16,23 在分別用於放熱及吸熱過程之54.6℃及56.2℃下觀察到正方結構與立方結構之間的可逆相轉移。其他三種鈣鈦礦合金無可偵測到的室溫與200℃之間的相轉移,這表明在約60℃溫度下之裝置操作期間在基於鈣鈦礦合金之PSC中可能不存在可能的相轉移相關的降解,該60℃為在高海拔區域中在太陽能照射下之太陽能電池的正常表面溫度。
如方法部分所詳述,太陽能電池係藉由在塗佈有一層氧化銦錫(ITO)及一層聚(3,4-伸乙二氧基噻吩)聚苯乙烯磺酸酯(PEDOT:PSS)之玻璃基板頂部上由前驅體溶液旋塗鈣鈦礦合金及MAPbI3 層來製作。為獲得均勻、平坦的鈣鈦礦膜及類似的裝置效能以用於不同組成之無偏比較,吾等單獨地使各鈣鈦礦膜所用之旋塗條件最佳化。當在空氣中製作PEDOT:PSS層時,所有鈣鈦礦層均在氮氣填充的手套箱中製作以避免空氣中之任何降解。在鈣鈦礦層上沈積C60 (30 nm)、浴銅靈(BCP,10 nm)及金之後,將所有PSC囊封於具有玻璃帽及UV密封劑之手套箱中然後移除用於在周圍空氣中進行評估。圖2b顯示當在由配備有氙燈(AM1.5G,100 mW cm- 2 )之太陽能模擬器照明下操作時PSC之電流密度-電壓曲線。由電流密度-電壓曲線估計之短路電流密度(J SC )、開路電壓(V OC )、填充因數(FF)及功率轉化效率(η )之值概括於表1中。
1. 使用不同鈣鈦礦之PSC之太陽能電池效能。
當在正向偏壓掃描下進行量測時,基於CH3 NH3 PbI3 之PSC展現J SC = 20.93 mA cm- 2V OC = 1.02 V,FF = 0.72且η = 15.35%。基於MA0.6 FA0.4 PbI3 之PSC之21.31 mA cm- 2 增強的J SC 係歸因於如圖2c中所示之更廣的外部量子效率(EQE)光譜,其與MA0.6 FA0.4 PbI3 之紅色偏移吸收光譜一致。由於藍色偏移吸收光譜,基於MAPbI2.6 Br0.4 之PSC之J SC (19.97 mA cm- 2 )較低。對於基於MA0.6 FA0.4 PbI2.8 Br0.2 之PSC,吾等獲得J SC = 20.14 mA cm- 2V OC = 1.01 V,FF = 0.73且η = 14.83%。所有PSC均展示相當的效能及可忽略的滯後,此係因為其具有類似的膜形態及光學性質及電子性質,這種情況對於可靠地研究及比較裝置穩定性為重要的。
為在無來自UV誘導之鈣鈦礦降解之效應使結果變複雜之情況下論述鈣鈦礦組成對穩定性之影響,將白光發光二極體(WLED)用作光源。吾等首先篩選四種PSC在85℃下連續性光照射500 h下之高溫穩定性。在圖2d中觀察到所有太陽能電池之具有不同降解速度之兩個方案:在首次100 h (亦即預燒時間段)內之初始快速降解,隨後減緩的相對線性的降解。在預燒時間段期間,在具有鈣鈦礦合金之PSC中,當V OC 略微地增加時J SC 及FF降低。在預燒時間段期間,基於MA0.6 FA0.4 PbI2.8 Br0.2 之PSC的效率降低了僅12%,其小於在100 h高溫操作之後之其他PSC的幾乎50%的降低。在預燒階段之後,對於MAPbI3 、MA0.6 FA0.4 PbI3 及MAPbI2.6 Br0.4 PSC,η 損失減速。MA0.6 FA0.4 PbI2.8 Br0.2 PSC為最穩定的,在500 h之後保持其初始效率的約80%,且在預燒之後隨後進入線性降解時間段之前展現η 之略微增加。注意,η 之主要降低係源自FF之降低,這表明效率及穩定性可藉由系統性界面工程化進一步改進。
圖2e顯示降解樣品之XRD圖案。在9.4°處之強繞射峰及在12.6°處之弱繞射峰可分別歸因於MAI及PbI2 。此等指出,在連續性光照射情況下高溫下使所有四種類型的鈣鈦礦降解之後生成更大量的MAI。24 由於頂部金屬電極賦予之保護,所以熱揮發性MAI可保持在鈣鈦礦層內部且在剝離金屬電極之後由XRD偵測。實際上,在吾等先前研究中,在無室溫下操作之囊封的情況下在降解裝置中僅觀察到PbI2 之更強的繞射峰。12 然而,MAI可能不為導致降低的裝置效能之關鍵因素,因為MAI以類似方式出現於具有更加穩定的η 之降解MA0.6 FA0.4 PbI2.8 Br0.2 PSC中。此表明,一定量的諸如MA+ 、Pb2+ 及I 之肖特基缺陷(Schottky defect)對於PSC之長期穩定性並非嚴重有害的。
在剝離金電極之後量測降解PSC之SEM表面影像(圖2f)。一些C60 及BCP可能仍保持在鈣鈦礦之頂部上,因為其之間具有比與無機金屬一起具有更強的黏著力。相較於新製膜,具有混合陽離子及陰離子之PSC展示顯著的形態學變化及大針孔之形成,且一些小針孔亦出現於降解MAPbI3 PSC中。僅MA0.6 FA0.4 PbI2.8 Br0.2 膜保持完全覆蓋度。
在所量測之藉由在85℃下500 h照明降解之PSC的TSC剖面(圖2g)中,未在降解MA0.6 FA0.4 PbI2.8 Br0.2 PSC中偵測到載流子陷阱,這種情況應與其具有最佳裝置穩定性之情況一致。25 在其他三種老化裝置中,在約350 K下觀察到可能歸結於由鈣鈦礦與陰極之間的界面劣化所導致之陷阱的類似的TSC峰值,這種情況與如SEM影像中所示之顯著的形態學變化及針孔之形成一致。26 注意,如先前所報導,當在室溫下進行穩定性測試時,在高效能新製裝置中未發現可偵測到的載流子陷阱,且在新製及老化裝置中亦未觀察到該等相轉移相關的陷阱。12 此外,吾等發現基於中孔TiO2 之鈣鈦礦太陽能電池產生具有較差可再生性之複雜的TSC信號。具有PEDOT:PSS作為電洞傳輸層之倒置裝置結構之使用對於獲得可靠的TSC結果為重要的。
MAPbI3 PSC之TSC剖面更加複雜。在161 K及201 K下觀察到兩個TSC峰值,這表明形成兩種相對應的陷阱深度分別為0.32 eV及0.41 eV之載流子陷阱。與低溫相轉移有關之載流子陷阱之存在係與先前報導一致。11,12 然而,在基於鈣鈦礦合金之降解PSC中在此溫度範圍中未觀察到可偵測到的信號(參見圖4),這確認在連續性光照射下使用鈣鈦礦合金可抑制淺載流子陷阱之形成。此外,覆蓋正方相至立方相之高溫相轉移(約330 K)之高於300 K之溫度下之大量深陷阱生成於降解MAPbI3 PSC中。此證明此等載流子陷阱係由連續性加熱所導致且光照射對於裝置穩定性為有害的。27 吾等咸信正方至立方之高溫相轉移可經由晶格中之變化來加速晶界周圍之缺陷形成。
如圖2d中所示,在降解MAPbI2.6 Br0.4 裝置中觀察到類似的TSC曲線,該裝置具有與MAPbI3 PSC之降解行為類似之降解行為。此可歸結於由於MAPbI2.6 Br0.4 之相分離產生之純半結晶MAPbI3 之相的形成,該相分離已在先前研究中觀察到。22 此等結果顯示,除了載流子陷阱形成之外的形態學變化均發生在高溫下,這提供基於MAPbI3 之裝置為何在高溫下不穩定之額外的原因。注意,吾等重複所有降解實驗及其他表徵至少三次以確認結果之可靠性。
基於此等結果及最新的報導,21 吾等將銣(Rb)離子引入混合鈣鈦礦中以形成Rb0.05 MA0.55 FA0.4 PbI2.8 Br0.2 。Rb (152 pm)之合適的離子半徑應保持在0.8與1.0之間的適當的戈耳斯密特公差因數(Goldschmidt tolerance factor),其可藉由t =r A +r X / [2(r B +r X )]1/2 來計算,其中r 表示ABX3 之相對應的離子之離子半徑,且可產生三維鈣鈦礦。28 具有及不具有Rb離子之鈣鈦礦膜之低角度XRD峰值分別出現在13.8°及14.0°處,這顯示Rb確實併入晶格中(參見圖5)。29 在添加Rb後,吸收邊緣幾乎不變,但激子吸收加強(圖6)。此外,位於約770 nm處之光致發光(PL)峰之強度係藉由合併Rb增強20倍(圖7),這表明合併Rb可抑制鈣鈦礦中之非輻射衰變。
使用相同的具有摻雜Rb之鈣鈦礦作為吸收劑之倒置PSC架構,達成18.11%冠軍η 及21.23 mA cm- 2 J sc,1.21 VV OC 及0.70 FF,如圖3a中所示。裝置展現可忽略的光電流滯後。1.21 V之突出的V OC 為任何平面倒置PSC中之最低的所報導之電壓損失的結果,這意味著極小的非輻射再結合損失。如圖3b中所示,此係藉由量測相同結構之電致發光(EL)外部量子效率(EQEEL )性質來確認。在具有NIR光譜範圍(參見插圖影像)中之位於777 nm處之EL峰之情況下獲得0.9%之最大EQEEL ,而未摻雜樣品之最大EQEEL 為0.037%(參見圖8)。吾等Rb鈣鈦礦裝置之極佳光伏打及EL效能指示,非輻射再結合受到強烈地抑制,這有可能歸因於主體膜中或膜表面處之缺陷密度之降低。
根據裝置穩定性之先前論述,載流子陷阱之減少將促進改進裝置穩定性。為進一步確認新穎Rb鈣鈦礦合金之熱穩定性及相轉移之影響,吾等使用標準ISOS-T-1熱循環來執行熱循環測試。17 圖3c及3d顯示基於Rb0.05 MA0.55 FA0.4 PbI2.8 Br0.2 -及基於MAPbI3 之裝置在25℃與85℃之間的熱循環(5次循環)期間在連續性光照射下之演化曲線。首先,兩種裝置均在初始測試時間段在25℃下極其穩定,這表明高品質裝置。15 與在25℃下之η 相比較,當裝置溫度起初升高至85℃時,η 下降約7%,此係因為兩種類型之鈣鈦礦之V OC 的降低。此V OC 中之損失係與先前結果一致且可能由增加的再結合所導致。9
當裝置持續在85℃下操作時,在基於Rb鈣鈦礦合金之裝置之情況下在連續性加熱及光照射下效率僅略微地降低。相反地,由於J SC 之降低,基於MAPbI3 之裝置之效能快速地降低,這與先前結果類似。當溫度返回至25℃時,由於V OC 之恢復,Rb鈣鈦礦之裝置效能略微地提高,且接著以在進一步循環之後持續降低之慢速降低。然而,MAPbI3 PSC之效率並不恢復太多,因為儘管V OC 之恢復,FF仍顯著地下降。
在第二高溫操作區域中進一步見到降解,在此期間J sc、FF及η 連續地且大大地降低。 FF之降低意謂形態及界面變得更糟。作為比較,基於Rb鈣鈦礦之裝置仍展示與在第一循環期間之行為類似的行為且具有僅少量的降解。在隨後的三次循環中,基於Rb鈣鈦礦之裝置變得更穩定且FF變化更小且其他兩個參數幾乎無變化。在所有五次循環之後,其η 保持在其初始的87%。相比之下,MAPbI3 PSC之η 保持僅其初始η 的18%。
為進一步瞭解相轉移與裝置降解之間的關係,吾等選擇兩種基於鈣鈦礦之裝置以用於EIS量測,28,29 分別為新製及經老化500 h 的MAPbI3 及MA0.6 FA0.4 PbI2.8 Br0.2 裝置。在加熱期間在25℃、55℃及70℃下進行EIS且在冷卻期間在相同溫度下再次進行EIS。在各量測之前插入10分鐘等待時間以確保熱平衡。值得注意地,吾等亦在各EIS前後量測電流密度-電壓曲線。參數FF、ηJ scV oc 在此等測試期間不顯示任何相異的趨勢且裝置效能不受EIS量測結果影響。如圖9a中所示,將所獲得之光譜擬合至簡單的過程導向的等效電路模型(ECM)。此可能為顯著的簡化,但吾等認為其適合於此定性分析。此外,已顯示用此電路測定之值與其他模型相當,諸如參考28中顯示之基礎模型。此研究中所量測之光譜中無一者展示負迴路。起初在25℃下及在70℃下所量測之新製及老化MAPbI3 及MA0.6 FA0.4 PbI2.8 Br0.2 裝置之光譜分別顯示於圖9b-e中。電阻R 0R 1R 2 之演化繪製於圖9f、g及h中。吾等亦根據RQ子電路(電阻器與等相位元件之並聯)之對應的電阻Rx 及時間常數τx 計算有效電容C 1C 2Cx =τx /Rx 。此等者展示於圖9i中。
在溫度處理之後所有樣品之歐姆電阻R 0 均處於5.04與5.73 Ωcm²之間(圖9f),因此吾等排除由於老化MAPbI3 裝置降解導致之形態變化而造成嚴重的接觸損失。此外,顯而易見新製及老化MA0.6 FA0.4 PbI2.8 Br0.2 裝置均不顯示由於升高溫度引起之高頻率電弧中之任何變化,然而新製及老化MAPbI3 裝置展現70℃下之其直徑的顯著減小。此過程之起源又無法專門地歸因於主體或界面效應。文獻中存在一些爭論且吾等不想要在此時過度解釋阻抗結果。然而,對於MAPbI3 裝置,R 1 顯示對溫度之獨特的依賴性且在過去其主要歸因於主體鈣鈦礦。其可能由移除由於在將裝置升溫超過相平衡溫度之後相轉移而產生之載流子陷阱導致。隨後,連續冷卻將因此導致相較於初始狀態數目增加之載流子陷阱的形成。重複循環很可能增加此等陷阱之整體數目,這應解釋老化MAPbI3 裝置之R 1 的10倍增加。對於所有經量測之光譜,相關電容C 1 展現< 10-7 Fcm-2 值,這表明其為幾何電容。所有C 1 值之良好的一致為另一強指示,即老化MAPbI3 裝置之降解並不由形態學變化所導致,該等形態學變化預期與C 1 之顯著降低一起出現。
此系列中之另一可辨特性為新製MAPbI3 裝置在首次加熱期間自在25℃下28 Ωcm²至在70℃下9 Ωcm²之R 2 的減低,這表明MAPbI3 裝置中之重大變化,然而MA0.6 FA0.4 PbI2.8 Br0.2 裝置之R 2 幾乎不受首次熱處理影響。然而,所有新製樣品均顯示冷卻之後之R 2 增加,其歸因於如下文將論述之裝置恢復之前的狀態。R 2 已歸因於界面或耦合的電子-離子阻抗,其中離子之分佈強烈地影響電荷載流子再結合,繼而預期該再結合主要發生在界面處。又,吾等認為以下觀察結果不大可能由形態變化導致:(i)在70℃下新製MAPbI3 裝置之R 2 下降68.6%,及(ii)在不影響R 0C 1 的情況下老化之後MAPbI3R 2 增加幾乎兩個數量級。相反地,吾等將此等結果看作另一指示,即在熱處理MAPbI3 裝置期間之相變引入額外的載流子陷阱,且此等為此材料之熱穩定性降低之主要原因。
對於在此部分中論述之所有測試,自新製及老化裝置之阻抗分析顯而易見,MAPbI3 顯示在先前用於一次熱循環以及用於500 h老化測試之後之裝置的溫度循環後之相異的降解,然而MA0.6 FA0.4 PbI2.8 Br0.2 裝置在抵抗高達70℃之熱處理方面較堅固。圖10及表2中提供所有模型參數及用於擬合之殘差。
2. 獲自阻抗分析之擬合參數。在主要物件中,所用等效電路展示於圖9a中。所列為等相位元件之電阻Rx 、時間常數τx 及指數nx 。電容Cx 為藉由Cx =τx /Rx 計算之有效電容。
吾等研究五種不同的基於鈣鈦礦之太陽能電池之降解行為。在高操作溫度下老化之基於MAPbI3 之PSC的TSC曲線中觀察到較大載流子陷阱密度。此等載流子陷阱對於長期穩定性為有害的。具有混合陽離子及陰離子之鈣鈦礦合金可由於缺乏類似的內在相轉移有效地避免相轉移誘導之載流子陷阱的形成。藉助於引入銣離子,由於減少的缺陷及非輻射再結合,基於鈣鈦礦合金之太陽能電池的裝置效能得到進一步改進。最後,實現具有改進的熱穩定性之鈣鈦礦太陽能電池,且在1,000 h連續性光照射下之五次熱循環之後,η 僅下降13%。吾等咸信本發明研究結果提供洞察力以幫助獲得有效且穩定的有機-無機雜合鈣鈦礦太陽能電池以用於未來應用。
材料及方法 裝置製作及表徵。 藉由在清潔劑溶液、純水、丙酮及異丙醇中之超音波處理依序清潔塗佈有厚度為約150 nm (ATSUGI MICRO)且薄層電阻為12 Ω/sq.之預圖案化ITO層之玻璃基板各10分鐘,且接著經受UV/臭氧處理15分鐘。薄層(約50 nm) PEDOT:PSS (Clevios,Al4083)係藉由以下來製備:在空氣中在ITO之頂部上使用具有0.45 μm孔徑之聚(四氟乙烯)針筒過濾器以3000 rpm旋塗45秒,隨後在160℃下烘烤PEDOT:PSS層10分鐘。鈣鈦礦層係在氮氣填充的手套箱(H2 O及O2 濃度<0.1 ppm)中使用一步法用以下方式來製備。將用於CH3 NH3 PbI3 之PbI2 (98%;TCI)及CH3 NH3 I (以莫耳計1:1)之混合物及用於鈣鈦礦合金之具有特定比率之PbI2 、PbBr2 (98%;TCI)、CH3 NH3 I (TCI)、HC(NH2 )2 I (TCI)及RbI ((Aldrich,99.999%痕量金屬基礎))之混合物溶解於1.2 M γ-丁內酯(GBL)及DMF (4:6 vol/vol;GBL,≥99%;DMF,99.8%;TCI)之混合物中且在60℃下攪拌12小時。隨後將混合物以4000 rpm旋塗於PEDOT:PSS層上30秒。在旋塗期間,將0.3 mL甲苯滴加至鈣鈦礦前驅體層上。在60℃下在加熱板上烘烤前驅體層15分鐘,隨後在100℃下30分鐘。使用Dektak表面輪廓儀(DektakXT,Bruker)量測鈣鈦礦層之厚度為約300 nm。最後,在高真空(10-4 Pa)下經由接觸蔽蔭遮罩將30 nm C60 、10 nm BCP及100 nm Au層熱沈積於CH3 NH3 PbI3 層之頂部上。在將PSC直接卸載至附接至蒸發系統之手套箱中之後,使用玻璃蓋及經UV固化之密封劑囊封PSC。電流密度-電壓及外部量子效率量測係在PSC上使用電腦控制之Keithley 2400源單元及外部量子效率量測系統(WXS-155S-10:Wacom Denso)在來自基於Xe燈之太陽能模擬器(SRO-25 GD,Bunkokeiki)的模擬AM1.5G太陽能照明下進行。藉由重疊經圖案化ITO及Au電極將PSC之有效面積定義為16 mm2 。在100 mW cm- 2 (1日光)下使用具有非晶形Si濾光器(Bunkokeiki)之結晶Si參考單元謹慎地校準燈功率,該非晶形Si濾光器由日本之the National Institute of Advanced Industrial Science and Technology認證。吾等裝置之光伏打效能不由獨立的認證實驗室確認。
對於諸如XRD及SEM之降解鈣鈦礦之表徵,吾等在謹慎地移除囊封玻璃之後使用透明膠帶來剝離頂部金屬電極。
裝置壽命量測。 在藉由溫度控制器將裝置保持在25℃或85℃下之情況下在開路條件下將來自WLED之經刺激日光(AM1.5G)連續地照明至PSC上。使用壽命量測系統(System Engineers)自動地量測時間依賴性V OCJ SC 、FF及η 。對於熱循環測試,約每一百小時手動改變一次裝置溫度。
TSC 量測。 將PSC置放於TSC量測腔室(Rigaku TSC-FETT EL2000)中,且將ITO陽極層及Au陰極層連接至金引線。隨後使用旋轉式機械泵將腔室抽成真空且用氦氣填充,充當傳熱介質。此等抽真空及填充程序重複三次以用氦氣完全替換腔室中之氛圍。使用液氮將裝置冷卻至-183℃ (90 K)。在液氮溫度下以1 mA cm-2 對PSC加偏壓2分鐘以用來自電極之噴射載流子填充載流子陷阱。隨後以5 K min-1 加熱速率將裝置溫度升高至110℃(383 K)。將在加熱過程期間自陷阱釋放之載流子作為電流量測以繪製TSC曲線。在不在液氮溫度下填充陷阱之情況下量測背景電流曲線。可使用方程式1計算陷阱深度(ET )。ET =kB Tm ln(Tm 4 /β ) (1) 其中kB 為Bolzmann常數(8.617 × 10-5 eV K-1 ),T m 為TSC峰值之溫度,且β 為加熱速率(5 K min-1 )。
陷阱密度(N t )由方程式2給出。Nt =Q /q AL (2) 其中Q 為在TSC峰值下之面積,其等於在加熱過程期間由樣品發射之電荷(在此情況下,電洞)之數目,q 為電子電荷,A 為有效裝置面積,且L 為層厚度。
吸收量測。 鈣鈦礦膜之紫外線可見近紅外線之吸收光譜係使用Perkin-Elmer Lambda 950-PKA光譜光度計在相對濕度為25%之空氣中量測。經ITO塗佈之玻璃基板用作參考物。
X 射線繞射量測。 XRD特徵係用X射線繞射系統使用2θ /θ 技術[λ=1.54 Å (CuKα)] (Rigaku,RINT-2500)來評估。來自ITO、PEDOT:PSS及C60 之繞射峰為不可檢測的。
電致發光表徵。 PSC之J -V -L -EQE特徵係使用與電腦控制之源表(2400,Keithley)及多通道分析儀(PMA-12,Hamamatsu Photonics)連接之絕對EQE量測系統(C9920-12,Hamamatsu Photonics)來量測。使用相同系統在每一量測點處自動地記錄EL光譜。
參考文獻 1. Park N.-G., Grätzel M., Miyasaka T., Zhu K.及Emery K. Towards stable and commercially available perovskite solar cells.Nature Energy 1 , 16152 (2016)。 2. Zhao, Y.及Zhu, K. Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications.Chem. Soc. Rev. 45 , 655-689 (2016)。 3. Leijtens, T., Eperon, G. E., Noel, N. K., Habisreutinger, S. N., Petrozza, A.及Snaith, H. J. Stability of metal halide perovskite solar cells.Adv. Energy Mater. 5 , 1500963 (2015)。 4. Berhe, T. A. 等人 Organometal halide perovskite solar cells: degradation and stability.Energy Environ. Sci. 9 , 323-356 (2016)。 5. Yang, J.及Kelley, T. L. Decomposition and cell failure mechanisms in lead halide perovskite solar cells,Inorg. Chem. 56 , 92-101 (2017)。 6. Niu, G., Guo, X.及Wang, L. Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A 3, 8970-8980 (2015)。 7. Leijtens, T. 等人 Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells.Nature Commun. 4 , 2885 (2014)。 8. Bryant, D. 等人 Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells.Energy Environ. Sci. 9 , 1655-1660 (2016)。 9. Divitini, G. 等人 In situ observation of heat-induced degradation of perovskite solar cells.Nature Energy 1 , 15012 (2016)。 10 Kim, J., Lee, S.-H., Lee, J.及Hong, K.-H. The role of intrinsic defects in methylammonium lead iodide perovskite.J. Phys. Chem. Lett. 5 , 1312-1317 (2014)。 11 Baumann, A. 等人 Identification of trap states in perovskite solar cells.J. Phys. Chem. Lett. 137 , 2350-2354 (2015)。 12 Qin, C. 等人 Degradation mechanisms of solution-processed planar perovskite solar cells: thermally stimulated current measurement for analysis of carrier traps.Adv. Mater. 28 , 466-471 (2016)。 13. Yin, W.J., Shi, T.,及Yan, Y. Unusual defect physics in CH3 NH3 PbI3 perovskite solar cell absorber.Appl. Phys. Lett. 104 , 063903 (2014)。 14. Stevart, R. J. 等人 Molecular origins of defects in organohalide perovskites and their influence on charge carrier dynamics,J. Phys. Chem. C 120 , 12392-12402 (2016)。 15. Qin, C. 等人 Multifunctional benzoquinone additive for efficient and stable planar perovskite solar cells.Adv. Mater. 29 , 1603808 (2017)。 16. Biakie, T. 等人 Synthesis and crystal chemistry of the hybrid perovskite (CH3 NH3 )PbI3 for solid-state sensitized solar cell applications.J. Mater. Chem. A 1 , 5628-5641. (2013)。 17. Roesch, R. 等人 Procedures and practices for evaluating thin-film solar cell stability.Adv. Energy Mater. 5 , 1501407 (2015)。 18. Conings, B. 等人 Intrinsic thermal instability of methylammonium lead trihalide perovskite.Adv. Energy Mater. 5 , 1500477 (2015)。19. Jeon, N. J. 等人 Compositional engineering of perovskite materials for high-performance solar cells.Nature 517 , 476-480 (2015)。 20. McMeekin, D. P. 等人 A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells.Science 351 , 151-155 (2016)。 21. Saliba, M. 等人 Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance,Science 354 , 206-209 (2016)。 22. Rosales, B. A. 等人 Persistent dopants and phase segregation in organolead mixed-halide perovskites.Chem. Mater. 28 , 6848-6859 (2016)。 23. Stoumpos, C. C., Malliakas, C. D.及Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties.Inorg. Chem. 52 , 9019-9038 (2013)。 24. Juarez-Perez, E. J. 等人 Thermal degradation of CH3 NH3 PbI3 perovskite into NH3 and CH3 I gases observed by coupled thermogravimetry-mass spectrometry analysis.Energy Environ. Sci. 9 , 3406-3410 (2016)。 25. Ahn, N. 等人 Trapped charge-driven degradation of perovskite solar cells.Nature Commun. 7 , 13422 (2016)。 26. Kawano, K.及Adachi, C. Evaluating carrier accumulation in degraded bulk heterojunction organic solar cells by a thermally stimulated current technique.Adv. Func. Mater. 19 , 3934-3940 (2009)。 27. Wu, X. 等人 Trap states in lead iodide perovskites.J. Am. Chem. Soc. 137 , 2089-2096 (2015)。 28. Goldschmidt, V. M. Laws of crystal chemistry.Naturwissenschaften 14 , 477-485 (1926) 29. Zhang, M. 等人 High-efficiency rubidium-incorporated perovskite solar cells by gas quenching.ACS Energy Lett. 2 , 438-444 (2017)。
1. 具有不同組成之鈣鈦礦膜之光學性質、形態學性質、結構性質及熱性質。 a 為吸收光譜,b 為比例尺為1 μm之SEM影像,且cd 為鈣鈦礦膜之XRD圖案,且ef 為由用於PSC製作之前驅體溶液製成之鈣鈦礦粉末的TG及DSC性質。 2. 具有不同組成之平面 PSC 之裝置能量圖、效能、壽命、 XRD TSC SEM 影像。 a 為四種鈣鈦礦以及用於PSC之其他材料的能量圖。b 為在50 mV s-1 掃描速率下之正向(-0.2至1.2 V)及反向(1.2至-0.2 V)掃描及2 s延遲時間情況下的所量測的各鈣鈦礦之最佳PSC之代表性電流密度-電壓曲線。c 為四種基於不同鈣鈦礦之PSC之EQE光譜。d 為在開路條件下在85℃下在連續性一個日光太陽能照射(100 mW cm-2 ,AM 1.5G)下之J SCV OC 、FF及η 之典型的演化曲線。為量測演化曲線,使用電腦控制之源表每小時自動量測一次各參數。efg 為在85℃下老化500 h之PSC的XRD、SEM及TSC表徵。 3. 冠軍太陽能電池及參考物之裝置效能及壽命表徵。 a 為在50 mV s-1 掃描速率下之正向(-0.2至1.2 V)及反向(1.2至-0.2 V)掃描及2 s延遲時間情況下之所量測的最佳PSC之電流密度-電壓曲線。該插圖顯示詳細的效能參數。b 為最佳PSC之電致發光EQE-電壓曲線。右插圖顯示在3.5 V下之EL光譜。該插圖影像為作為顯示清楚可見的紅光發射之LED操作之太陽能電池。cd 為在開路條件下根據ISOS-T-1標準在25℃與85℃之間熱循環情況下在連續性一個日光太陽能照射(100 mW cm-2 ,AM 1.5G)下的J SCV OC 、FF及η 之典型的演化曲線。約每一百小時轉換一次溫度。 4. 在85℃下500 h之後之老化PSC的低溫區域處之TSC曲線。 5. 兩種具有及不具有Rb離子之鈣鈦礦的XRD圖案。 6. 兩種具有及不具有Rb離子之鈣鈦礦的UV-vis吸收光譜。 7. 兩種具有及不具有Rb離子之鈣鈦礦的PL光譜。 8. MA0.6 FA0.4 PbI2.8 Br0.2 PSC之EQE電致發光-電壓曲線。 9. 裝置之阻抗分析。 a 為與光譜擬合之過程導向的ECM。be 為顯示新製及老化MAPbI3 裝置(黑色)、新製及老化MA0.6 FA0.4 PbI2.8 Br0.2 裝置(洋紅色)上之在25℃下(正方形)及在最高溫度下70℃下(菱形)之初始量測結果的經選擇之阻抗光譜。fi 為藉由來自在25℃、55℃及70℃下升溫且隨後再次冷卻至55℃及25℃期間所量測之光譜的ECM擬合測定之電阻R 0R 1R 2 的演化。注意在整個此圖中保持色碼。新製樣品係由實心符號及實線指示,老化樣品係由空心符號及虛線指示。be 之正方形及菱形符號亦在fi 中示出。 10. 阻抗擬合之殘差。在此圖中,產生表S2中之參數之擬合的所有殘差覆蓋於一個圖中。注意,擬合在兩個階段中進行,因為亦在兩個步驟中記錄阻抗光譜以便能夠使用最佳化設置以用於在高頻率及低頻率下進行量測。

Claims (21)

  1. 一種在0℃至100℃之溫度範圍內實質上無相轉移之鈣鈦礦膜,其包含由下式(1)或下式(2)表示之鈣鈦礦化合物,A1 nA2 1-nBX1 mX2 3-m (1)其中A1及A2中之一者表示甲基銨(CH3NH3 +)且A1及A2中之另一者表示甲脒鎓(NH2CH2NH2 +),B表示二價金屬離子,X1及X2中之一者表示I-且X1及X2中之另一者表示Br-,n表示0以上且小於1之數值,m表示0以上且小於3之數值,且n及m中之至少一者大於0,MrA1 tA2 1-(r+t)BX1 mX2 3-m (2)其中M表示Rb+、Cs或K,A1及A2中之一者表示甲基銨(CH3NH3 +)且A1及A2中之另一者表示甲脒鎓(NH2CH2NH2 +),B表示二價金屬離子,X1及X2中之一者表示I-且X1及X2中之另一者表示Br-,r表示大於0且0.1以下之數值,t表示0以上且小於0.9之數值,m表示0以上且小於3之數值,且t及m中之至少一者大於0,其中式(1)滿足下述條件(A)及(B)之兩者,式(2)滿足下述條件(C)~(E)之全部,(A)X1為Br-,X2為I-,m為0.1以上且0.7以下之數值,(B)A1為甲脒鎓(NH2CH2NH2 +),A2為甲基銨(CH3NH3 +),n為大於0且0.4以下之數值,(C)A1為甲脒鎓(NH2CH2NH2 +),A2為甲基銨(CH3NH3 +),(D)M為Rb+,(E)r為大於0且小於0.1之數值。
  2. 一種鈣鈦礦膜,其中在0℃至100℃之溫度範圍內載流子陷阱之形成受到抑制,且該鈣鈦礦膜包含由下式(1)或下式(2)表示之鈣鈦礦化合物,A1 nA2 1-nBX1 mX2 3-m (1)其中A1及A2中之一者表示甲基銨(CH3NH3 +)且A1及A2中之另一者表示甲脒鎓(NH2CH2NH2 +),B表示二價金屬離子,X1及X2中之一者表示I-且X1及X2中之另一者表示Br-,n表示0以上且小於1之數值,m表示0以上且小於3之數值,且n及m中之至少一者大於0,MrA1 tA2 1-(r+t)BX1 mX2 3-m (2)其中M表示Rb+、Cs或K,A1及A2中之一者表示甲基銨(CH3NH3 +)且A1及A2中之另一者表示甲脒鎓(NH2CH2NH2 +),B表示二價金屬離子,X1及X2中之一者表示I-且X1及X2中之另一者表示Br-,r表示大於0且0.1以下之數值,t表示0以上且小於0.9之數值,m表示0以上且小於3之數值,且t及m中之至少一者大於0,其中式(1)滿足下述條件(A)及(B)之兩者,式(2)滿足下述條件(C)~(E)之全部,(A)X1為Br-,X2為I-,m為0.1以上且0.7以下之數值,(B)A1為甲脒鎓(NH2CH2NH2 +),A2為甲基銨(CH3NH3 +),n為大於0且0.4以下之數值,(C)A1為甲脒鎓(NH2CH2NH2 +),A2為甲基銨(CH3NH3 +),(D)M為Rb+,(E)r為大於0且小於0.1之數值。
  3. 如請求項1或2之鈣鈦礦膜,其包含由下式(1)表示之鈣鈦礦化合物,A1 nA2 1-nBX1 mX2 3-m (1)其中A1及A2中之一者表示甲基銨(CH3NH3 +)且A1及A2中之另一者表示甲脒鎓(NH2CH2NH2 +),B表示二價金屬離子,X1及X2中之一者表示I-且X1及X2中之另一者表示Br-,n表示0或更大且小於1之數值,m表示0或更大且小於3之數值,且n及m中之至少一者大於0,其中式(1)滿足下述條件(A)及(B)之兩者,(A)X1為Br-,X2為I-,m為0.1以上且0.7以下之數值,(B)A1為甲脒鎓(NH2CH2NH2 +),A2為甲基銨(CH3NH3 +),n為大於0且0.4以下之數值。
  4. 如請求項3之鈣鈦礦膜,其中n及m均大於0。
  5. 如請求項3之鈣鈦礦膜,其中A1為甲脒鎓,A2為甲基銨,n為0.1或更大及0.4或更小。
  6. 如請求項3之鈣鈦礦膜,其中X1為Br-,X2為I-,m為0.1或更大及0.7或更小。
  7. 如請求項3之鈣鈦礦膜,其中B為Pb2+
  8. 如請求項1或2之鈣鈦礦膜,其包含由下式(2)表示之鈣鈦礦化合物,MrA1 tA2 1-(r+t)BX1 mX2 3-m (2) 其中M表示Rb+、Cs或K,A1及A2中之一者表示甲基銨(CH3NH3 +)且A1及A2中之另一者表示甲脒鎓(NH2CH2NH2 +),B表示二價金屬離子,X1及X2中之一者表示I-且X1及X2中之另一者表示Br-,r表示大於0及0.1或更小之數值,t表示0或更大且小於0.9之數值,m表示0或更大且小於3之數值,且t及m中之至少一者大於0,其中式(2)滿足下述條件(C)~(E)之全部,(C)A1為甲脒鎓(NH2CH2NH2 +),A2為甲基銨(CH3NH3 +),(D)M為Rb+,(E)r為大於0且小於0.1之數值。
  9. 如請求項8之鈣鈦礦膜,其中M為Rb+
  10. 如請求項9之鈣鈦礦膜,其中t及m均大於0。
  11. 如請求項9之鈣鈦礦膜,其中A1為甲脒鎓,A2為甲基銨,且t為0.1或更大及0.7或更小。
  12. 如請求項9之鈣鈦礦膜,其中X1為Br-,X2為I-,且m為0.1或更大及0.7或更小。
  13. 如請求項9之鈣鈦礦膜,其中B為Pb2+
  14. 一種鈣鈦礦膜,其包含由下式(1')表示之鈣鈦礦化合物, (NH2CH2NH2)n'(CH3NH3)1-n'PbBrm'I3-m' (1')其中n'及m'各自獨立地表示0或0.1或更大及0.7或更小之數值,且n'及m'中之至少一者為0.1或更大及0.7或更小。
  15. 如請求項14之鈣鈦礦膜,其中n'及m'均為0.1或更大及0.7或更小。
  16. 一種鈣鈦礦膜,其包含由下式(2')表示之鈣鈦礦化合物,Rbr'(NH2CH2NH2)t'(CH3NH3)1-(r'+t')PbBrm'I3-m' (2')其中r'表示0.01或更大及0.1或更小之數值,t'及m'各自獨立地表示0或0.1或更大及0.7或更小之數值,且t'及m'中之至少一者為0.1或更大及0.7或更小。
  17. 如請求項16之鈣鈦礦膜,其中t'及m'均為0.1或更大及0.7或更小。
  18. 一種用於製造包含由下式(1)或下式(2)表示之鈣鈦礦化合物之鈣鈦礦膜之方法,其包含:觀察在預定溫度範圍內之兩種或超過兩種具有不同原子組成之鈣鈦礦膜的相轉移以偵測原子組成比率促進抑制該相轉移之傾向,基於該傾向確定鈣鈦礦膜之原子組成,及製造具有該確定之原子組成之鈣鈦礦膜,A1 nA2 1-nBX1 mX2 3-m (1)其中A1及A2中之一者表示甲基銨(CH3NH3 +)且A1及A2中之另一者表示甲脒鎓(NH2CH2NH2 +),B表示二價金屬離子,X1及X2中之一者表示I- 且X1及X2中之另一者表示Br-,n表示0以上且小於1之數值,m表示0以上且小於3之數值,且n及m中之至少一者大於0,MrA1 tA2 1-(r+t)BX1 mX2 3-m (2)其中M表示Rb+、Cs或K,A1及A2中之一者表示甲基銨(CH3NH3 +)且A1及A2中之另一者表示甲脒鎓(NH2CH2NH2 +),B表示二價金屬離子,X1及X2中之一者表示I-且X1及X2中之另一者表示Br-,r表示大於0且0.1以下之數值,t表示0以上且小於0.9之數值,m表示0以上且小於3之數值,且t及m中之至少一者大於0,其中式(1)滿足下述條件(A)及(B)之兩者,式(2)滿足下述條件(C)~(E)之全部,(A)X1為Br-,X2為I-,m為0.1以上且0.7以下之數值,(B)A1為甲脒鎓(NH2CH2NH2 +),A2為甲基銨(CH3NH3 +),n為大於0且0.4以下之數值,(C)A1為甲脒鎓(NH2CH2NH2 +),A2為甲基銨(CH3NH3 +),(D)M為Rb+,(E)r為大於0且小於0.1之數值。
  19. 一種用於製造包含由下式(1)或下式(2)表示之鈣鈦礦化合物之鈣鈦礦膜之方法,其包含:觀察在預定溫度範圍內之兩種或超過兩種具有不同原子組成之鈣鈦礦膜中之載流子陷阱的形成,從而偵測原子組成比率促進抑制該載流子陷阱形成之傾向,基於該傾向確定鈣鈦礦膜之原子組成,及 製造具有該確定之原子組成之鈣鈦礦膜,A1 nA2 1-nBX1 mX2 3-m (1)其中A1及A2中之一者表示甲基銨(CH3NH3 +)且A1及A2中之另一者表示甲脒鎓(NH2CH2NH2 +),B表示二價金屬離子,X1及X2中之一者表示I-且X1及X2中之另一者表示Br-,n表示0以上且小於1之數值,m表示0以上且小於3之數值,且n及m中之至少一者大於0,MrA1 tA2 1-(r+t)BX1 mX2 3-m (2)其中M表示Rb+、Cs或K,A1及A2中之一者表示甲基銨(CH3NH3 +)且A1及A2中之另一者表示甲脒鎓(NH2CH2NH2 +),B表示二價金屬離子,X1及X2中之一者表示I-且X1及X2中之另一者表示Br-,r表示大於0且0.1以下之數值,t表示0以上且小於0.9之數值,m表示0以上且小於3之數值,且t及m中之至少一者大於0。
  20. 一種包含在0℃至100℃之溫度範圍內實質上無相轉移之鈣鈦礦膜的發光裝置,該鈣鈦礦膜包含由下式(1)或下式(2)表示之鈣鈦礦化合物,A1 nA2 1-nBX1 mX2 3-m (1)其中A1及A2中之一者表示甲基銨(CH3NH3 +)且A1及A2中之另一者表示甲脒鎓(NH2CH2NH2 +),B表示二價金屬離子,X1及X2中之一者表示I-且X1及X2中之另一者表示Br-,n表示0以上且小於1之數值,m表示0以上且小於3之數值,且n及m中之至少一者大於0,MrA1 tA2 1-(r+t)BX1 mX2 3-m (2)其中M表示Rb+、Cs或K,A1及A2中之一者表示甲基銨(CH3NH3 +)且A1及A2中之另一者表示甲脒鎓(NH2CH2NH2 +),B表示二價金屬離子,X1 及X2中之一者表示I-且X1及X2中之另一者表示Br-,r表示大於0且0.1以下之數值,t表示0以上且小於0.9之數值,m表示0以上且小於3之數值,且t及m中之至少一者大於0。
  21. 一種包含如請求項1至17中任一項之鈣鈦礦膜的太陽能電池。
TW107116440A 2017-05-15 2018-05-15 鈣鈦礦膜、其製造方法、發光裝置及太陽能電池 TWI841529B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-096690 2017-05-15
JP2017096690 2017-05-15

Publications (2)

Publication Number Publication Date
TW201900950A TW201900950A (zh) 2019-01-01
TWI841529B true TWI841529B (zh) 2024-05-11

Family

ID=64274415

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107116440A TWI841529B (zh) 2017-05-15 2018-05-15 鈣鈦礦膜、其製造方法、發光裝置及太陽能電池

Country Status (3)

Country Link
US (1) US11515491B2 (zh)
TW (1) TWI841529B (zh)
WO (1) WO2018212356A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3679607A4 (en) * 2017-09-06 2021-06-16 Alliance for Sustainable Energy, LLC ORGANIC-INORGANIC PEROVSKITE MATERIALS AND METHOD FOR THEIR PRODUCTION
TWI753551B (zh) 2020-08-27 2022-01-21 財團法人工業技術研究院 鈣鈦礦膜及其製造方法
WO2022066707A1 (en) * 2020-09-22 2022-03-31 Caelux Corporation Methods and devices for integrated tandem solar module fabrication
TWI732704B (zh) * 2020-10-29 2021-07-01 中華學校財團法人中華科技大學 鈣鈦礦金屬-半導體-金屬型光電探測器及其製法
CN115101602B (zh) * 2021-03-03 2023-09-01 隆基绿能科技股份有限公司 一种太阳能电池及光伏组件

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106025087A (zh) * 2016-07-13 2016-10-12 苏州协鑫集成科技工业应用研究院有限公司 叠层太阳能电池及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2720591T3 (es) * 2015-06-12 2019-07-23 Oxford Photovoltaics Ltd Dispositivo fotovoltaico
KR101857052B1 (ko) * 2015-11-24 2018-06-25 재단법인 멀티스케일 에너지시스템 연구단 페로브스카이트, 이의 제조방법 및 이를 포함하는 태양전지
TWI657123B (zh) * 2016-01-27 2019-04-21 國立交通大學 鈣鈦礦型發光元件及其製造方法
EP3272757A1 (en) * 2016-07-21 2018-01-24 Ecole Polytechnique Fédérale de Lausanne (EPFL) Mixed cation perovskite solid state solar cell and fabrication thereof
CN109478596B (zh) * 2016-08-03 2023-07-21 南洋理工大学 卤化物钙钛矿薄膜和包含其的太阳能电池及其形成方法
EP3907229A1 (en) * 2016-10-14 2021-11-10 Alliance for Sustainable Energy, LLC Oriented perovskite crystals and methods of making the same
KR102463610B1 (ko) * 2017-05-02 2022-11-03 현대자동차주식회사 안정성이 우수한 고효율의 페로브스카이트 태양전지

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106025087A (zh) * 2016-07-13 2016-10-12 苏州协鑫集成科技工业应用研究院有限公司 叠层太阳能电池及其制备方法

Also Published As

Publication number Publication date
WO2018212356A1 (en) 2018-11-22
TW201900950A (zh) 2019-01-01
US20200203633A1 (en) 2020-06-25
US11515491B2 (en) 2022-11-29

Similar Documents

Publication Publication Date Title
TWI841529B (zh) 鈣鈦礦膜、其製造方法、發光裝置及太陽能電池
Duan et al. Defects and stability of perovskite solar cells: a critical analysis
JP7245527B2 (ja) 光電子素子
Marshall et al. Tin perovskite/fullerene planar layer photovoltaics: improving the efficiency and stability of lead-free devices
Hendriks et al. 2-Methoxyethanol as a new solvent for processing methylammonium lead halide perovskite solar cells
Boopathi et al. Synergistic improvements in stability and performance of lead iodide perovskite solar cells incorporating salt additives
Wu et al. A perovskite cell with a record-high-V oc of 1.61 V based on solvent annealed CH 3 NH 3 PbBr 3/ICBA active layer
Wang et al. Hot-substrate deposition of all-inorganic perovskite films for low-temperature processed high-efficiency solar cells
Fairfield et al. Structure and chemical stability in perovskite–polymer hybrid photovoltaic materials
Song et al. HC (NH 2) 2 PbI 3 as a thermally stable absorber for efficient ZnO-based perovskite solar cells
CA3079471C (en) Quasi two-dimensional layered perovskite material, related devices and methods for manufacturing the same
Liu et al. High performance low-bandgap perovskite solar cells based on a high-quality mixed Sn–Pb perovskite film prepared by vacuum-assisted thermal annealing
Qin et al. The Relation of Phase‐Transition Effects and Thermal Stability of Planar Perovskite Solar Cells
AU2016316984A1 (en) Double perovskite
Zhu et al. Enhancing the efficiency and stability of perovskite solar cells by incorporating CdS and Cd (SCN 2 H 4) 2 Cl 2 into the CH 3 NH 3 PbI 3 active layer
Clegg et al. Systematic study on the impact of water on the performance and stability of perovskite solar cells
Coskun et al. Thermally evaporated two-dimensional SnS as an efficient and stable electron collection interlayer for inverted planar perovskite solar cells
Ma et al. Air-stable layered bismuth-based perovskite-like materials: Structures and semiconductor properties
WO2018068101A1 (en) A method of forming a light absorbing perovskite layer for a photovoltaic cell and a photovoltaic cell comprising the light absorbing perovskite layer
Liu et al. Solvent engineering approach via introducing poly (3, 4-ethylene dioxy-thiophene)–poly (styrene sulfonate)(PEDOT: PSS) into photosensitive absorber layer for ambient temperature processed efficient inverted planar perovskite solar cells
Ramanujam et al. Interfacial Layer Materials with a Truxene Core for Dopant‐Free NiOx‐Based Inverted Perovskite Solar Cells
Jeong et al. The introduction of a perovskite seed layer for high performance perovskite solar cells
Xu et al. Microencapsulated Perovskite Crystals via In Situ Permeation Growth from Polymer Microencapsulation‐Expansion‐Contraction Strategy: Advancing a Record Long‐Term Stability beyond 10 000 h for Perovskite Solar Cells
Fan et al. Enhanced efficiency of planar-heterojunction perovskite solar cells through a thermal gradient annealing process
Guo et al. Fabrication of single phase CsPbBr 3 films via in situ metal reaction