CN108794941A - 一种高介电常数无机/有机复合材料薄膜及其制备方法 - Google Patents

一种高介电常数无机/有机复合材料薄膜及其制备方法 Download PDF

Info

Publication number
CN108794941A
CN108794941A CN201810714811.6A CN201810714811A CN108794941A CN 108794941 A CN108794941 A CN 108794941A CN 201810714811 A CN201810714811 A CN 201810714811A CN 108794941 A CN108794941 A CN 108794941A
Authority
CN
China
Prior art keywords
polymer
composite material
powder
preparation
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810714811.6A
Other languages
English (en)
Inventor
王光
王一光
孙丹丹
高燕
陈�峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Priority to CN201810714811.6A priority Critical patent/CN108794941A/zh
Publication of CN108794941A publication Critical patent/CN108794941A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明涉及一种高介电常数无机/有机复合材料薄膜及其制备方法,属于高介电薄膜及其制备方法。本发明所述复合材料薄膜由聚合物转化陶瓷作为无机填料和有机聚合物基体组成,膜成型工艺包括溶液流延法和真空热压法。聚合物转化陶瓷是一种无定型共价键陶瓷,在低频下具有极高的介电常数,0.01Hz下可达35000以上,用于无机/有机复合材料,大大提高了复合材料的介电性能,主要作为电介质层应用于薄膜电容器、高储能密度超级电容器中。

Description

一种高介电常数无机/有机复合材料薄膜及其制备方法
技术领域
本发明涉及高介电材料技术领域,特别是一种高介电常数的无机/有机复合材料薄膜及其制备方法。
背景技术
随着微电子与电力工程技术领域的迅速发展,对介电材料提出了更高的要求。高介电复合材料应用非常广泛。要实现电子整机小型、轻量和薄型化,整体封装技术必须提高,该技术用的嵌入式电容器要求必须有高的介电常数。而多层陶瓷介质电容器工艺复杂,柔韧性差,易开裂。具有高介电常数、低损耗、易加工的复合材料薄膜受到人们的广泛关注。此外,高介电复合材料还可作为高储能密度电介质用于薄膜电容器。薄膜电容器是最常用的储能元件,能够快速充放电,有很高的功率密度,耐受较高的电压。高储能密度超级电容器可用于混合动力汽车、电磁武器、脉冲供电设备及电磁发射平台等高负载工作环境。目前高介电聚合物复合材料主要分为以下两种:
(一)向聚合物基体中添加高介电常数的陶瓷材料,综合陶瓷的高介电性和聚合物的柔韧性。常用陶瓷填料有钛酸钡(BaTiO3)、钛酸铜钙(CaCuTiO3)、钛酸铅(PbTiO3)等。但目前得到的陶瓷/聚合物复合材料的介电常数并不很高。增大陶瓷的填充量虽然能提高介电常数,但往往会破坏复合材料的柔韧性。
(二)向聚合物基体中添加导电材料,利用渗流效应获得高介电的复合材料。常用导电填料包括金属粒子、碳纳米管、石墨烯等。少量的导电填料就能大大增加复合材料的介电性能,但纳米颗粒往往具有较高的表面能,容易在基体中团聚,形成导电通道,从而使复合材料失去介电性能。大大限制了其实际应用中的可靠性。
因此,开发新的功能填料、制备更高介电常数的复合材料是解决现有复合材料局限性的重要途径。
发明内容
本发明的目的是提出一种新型高介电常数无机/有机复合材料薄膜。
本发明的目的是这样实现的:一种高介电常数无机/有机复合材料薄膜,所用无机填料为一种聚合物转化陶瓷PDCs,也称前驱体陶瓷,成分为硅基陶瓷,结构为无定型/非晶态;上述前驱体陶瓷为聚硅氮烷、聚硅氧烷、聚硼硅氮烷或聚硼硅氧烷,上述前驱体陶瓷具有SiCNO、SiCO、SiBCNO或SiBCO成分;
所用有机聚合物基体,包括但不限于以下聚合物材料:聚偏氟乙烯PVDF及其共聚物,聚氨酯PU,聚苯乙烯PS,聚酰亚胺PI,聚丙烯PP;
上述材料由体积分数1~60vol%的无机填料组成,余量为有机聚合物基体。
本发明的另一目的是提供一种上述薄膜的制备方法。
本发明的另一目的是这样实现的:上述薄膜的制备步骤如下:
(1)聚合物转化硅基陶瓷的制备:聚合物前驱体先在100-400℃下进行交联固化,再在1000-1300℃下热处理得到所需硅基陶瓷粉;依照前驱体的不同,热处理过程在空气、氩气或氮气下进行;
(2)A、流延成型法:将聚合物粉体溶于N,N-二甲基酰胺,水浴加热40~50℃下磁力搅拌直至聚合物粉体完全溶解,加入步骤1)中制备的硅基陶瓷粉体,其中陶瓷粉体占混合物的体积比为1~60%;混合料在玛瑙罐中球磨1~5h得到混合均匀的浆料,取出混合浆料,真空脱泡1h,随后倒入流延机料槽中流延成膜,等待溶剂蒸发完全后剥离出薄膜;
B、热压成型法:按一定比例称取陶瓷粉体以及聚合物粉体,将两种粉体溶于定量的无水乙醇中,磁力搅拌2~6h,超声处理0.5~2h,将混合液平铺烘干得到预混合的粉体;将预混粉体倒入挤出机进一步熔融混合,加热温度180℃~220℃,得到长条状挤出料;再用切料机进行切割得到颗粒状混合料;取一定颗粒状的混合料放置真空热压机中进行热压,其中热压板温度设置为180℃~220℃,压力为10MPa,保压保温时间为2min。
高介电常数无机/有机复合材料,使用一种无定型硅基陶瓷作为填料,以聚合物,如聚四氟乙烯(PVDF),作为基体。硅基陶瓷填料采用PDC技术制备,原来为含硅的聚合物前驱体。在复合薄膜中,硅基陶瓷的体积分数为1%~60%,余量为聚合物。
本发明具有以下有益效果:
本发明所提供的复合材料薄膜,采用流延法成型时,40vol%的SiCN/PVDF复合材料在100Hz的介电常数为54,是流延法制备的纯PVDF介电常数(9.4)的5.74倍;采用热压法制备的复合材料薄膜,20vol%的SiCN/PVDF的介电常数为35.5,是热压法制备的纯PVDF介电常数(11.95)的2.97倍。0.01Hz时,流延法制备的40vol%的SiCN/PVDF复合材料的介电常数高达18000,是纯PVDF介电常数(30)的600倍;热压法制备的20vol%的SiCN/PVDF的介电常数为990,是纯PVDF介电常数(21.7)的45.6倍。
附图说明
图1是实施例2和实施例3中制备的复合材料薄膜的断面扫描电子显微镜(SEM)图片。
图2是实施例1、2、3、4和5中采用流延法制备的复合材料薄膜的介电常数与频率之间的变化关系;其中,1是纯PVDF,2是无机粉体填充量为10vol%的SiCN/PVDF薄膜,3是无机粉体填充量为20vol%的SiCN/PVDF薄膜,4是无机粉体填充量为30vol%的SiCN/PVDF薄膜,5是无机粉体填充量为40vol%的SiCN/PVDF薄膜。
图3是实施例6、7、8中采用热压法制备的复合材料薄膜的介电常数与频率之间的变化关系;其中,1是纯PVDF,2是无机粉体填充量为10vol%的SiCN/PVDF薄膜,3是无机粉体填充量为20vol%的SiCN/PVDF薄膜。
具体实施方式
本发明提供了一种高介电常数无机/有机复合材料薄膜及其制备方法,制备过程主要包括以下两步:
步骤1:PDC法制备聚合物转化SiCN陶瓷:聚合物前驱体在100-400℃下进行交联固化,再在1000-1300℃下热处理得到所需SiCN陶瓷粉。以上热处理过程在高纯氮气保护下进行。
步骤2:制备SiCN/PVDF复合材料薄膜,成型方法包括溶液流延法和真空热压法。
下面结合具体实施例对本发明进行详细说明,不能理解为对本发明保护范围的限制,该领域的专业技术人员根据本发明的内容作出的一些非本质的改进和调整,仍属于本发明的保护范围。
实施例1
流延法制备纯PVDF薄膜:称取3.5g PVDF粉体,量筒量取49.05ml的DMF溶剂,在磁力搅拌下将PVDF粉体倒入DMF溶剂中,45℃水浴加热并搅拌至PVDF完全溶解。将混合液真空脱泡1h,将溶液倒入流延机料槽中流延成膜。
实施例2
称取3.5g PVDF粉体,量筒量取49.05ml的DMF溶剂,在磁力搅拌下将PVDF粉体倒入DMF溶剂中,45℃水浴加热并搅拌至PVDF完全溶解。称取按步骤1制备的SiCN粉体0.712g,加入PVDF-DMF溶液中,球磨3h,将混合料浆真空脱泡1h,随后倒入流延机料槽中流延成膜。
实施例3
本实施例与实施例2中不同的是:SiCN粉体的加入量为1.602g,其他与实施例2相同。
实施例4
本实施例与实施例2、3中不同的是:SiCN粉体的加入量为2.746g,其他与实施例2、3相同。
实施例5
本实施例与实施例2、3、4中不同的是:SiCN粉体的加入量为4.272g,其他与实施例2、3、4相同。
实施例6
热压法制备纯PVDF薄膜:称取1.75g PVDF粉体,在磁力搅拌下将PVDF粉体加入50ml无水乙醇溶剂中,磁力搅拌5h,超声处理1h,将混合液平铺烘干得到预混合的粉体;将预混粉体倒入挤出机200℃进一步熔融混合,得到长条状挤出料;再用切料机进行切割得到颗粒状混合料。取一定颗粒状的混合料放置真空热压机中进行热压,其中热压板上下温度均设置为200℃,压力为10MPa,保压保温时间为2min。
实施例7
称取PVDF粉体1.75g,称取按步骤1制备的SiCN粉体0.356g,在磁力搅拌下依次加入50ml无水乙醇溶剂中,磁力搅拌5h,超声处理1h,将混合液平铺烘干得到预混合的粉体;将预混粉体倒入挤出机200℃进一步熔融混合,得到长条状挤出料;再用切料机进行切割得到颗粒状混合料。取一定颗粒状的混合料放置真空热压机中进行热压,其中热压板上下温度均设置为200℃,压力为10MPa,保压保温时间为2min。
实施例8
本实施例与实施例7中不同的是:SiCN粉体的加入量为0.320g,其他与实施例7相同。

Claims (2)

1.一种高介电常数无机/有机复合材料薄膜,其特征在于,所用无机填料为一种聚合物转化陶瓷PDCs,也称前驱体陶瓷,成分为硅基陶瓷,结构为无定型/非晶态;上述前驱体为聚硅氮烷、聚硅氧烷、聚硼硅氮烷或聚硼硅氧烷,上述前驱体陶瓷具有SiCNO、SiCO、SiBCNO或SiBCO成分;
所用有机聚合物基体,包括但不限于以下聚合物材料:聚偏氟乙烯PVDF及其共聚物,聚氨酯PU,聚苯乙烯PS,聚酰亚胺PI,聚丙烯PP;
上述材料由体积分数1~60vol%的无机填料组成,余量为有机聚合物基体。
2.一种如权利要求1所述薄膜的制备方法,其特征在于,制备步骤如下:
(1)聚合物转化硅基陶瓷的制备:聚合物前驱体先在100-400℃下进行交联固化,再在1000-1300℃下热处理得到所需硅基陶瓷粉;依照前驱体的不同,热处理过程在空气、氩气或氮气下进行;
(2)A、流延成型法:将聚合物粉体溶于N,N-二甲基酰胺,水浴加热40~50℃下磁力搅拌直至聚合物粉体完全溶解,加入步骤1)中制备的硅基陶瓷粉体,其中陶瓷粉体占混合物的体积比为1~60%;混合料在玛瑙罐中球磨1~5h得到混合均匀的浆料,取出混合浆料,真空脱泡1h,随后倒入流延机料槽中流延成膜,等待溶剂蒸发完全后剥离出薄膜;
B、热压成型法:按一定比例称取陶瓷粉体以及聚合物粉体,将两种粉体溶于定量的无水乙醇中,磁力搅拌2~6h,超声处理0.5~2h,将混合液平铺烘干得到预混合的粉体;将预混粉体倒入挤出机进一步熔融混合,加热温度180℃~220℃,得到长条状挤出料;再用切料机进行切割得到颗粒状混合料;取一定颗粒状的混合料放置真空热压机中进行热压,其中热压板温度设置为180℃~220℃,压力为10MPa,保压保温时间为2min。
CN201810714811.6A 2018-07-03 2018-07-03 一种高介电常数无机/有机复合材料薄膜及其制备方法 Pending CN108794941A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810714811.6A CN108794941A (zh) 2018-07-03 2018-07-03 一种高介电常数无机/有机复合材料薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810714811.6A CN108794941A (zh) 2018-07-03 2018-07-03 一种高介电常数无机/有机复合材料薄膜及其制备方法

Publications (1)

Publication Number Publication Date
CN108794941A true CN108794941A (zh) 2018-11-13

Family

ID=64073178

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810714811.6A Pending CN108794941A (zh) 2018-07-03 2018-07-03 一种高介电常数无机/有机复合材料薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN108794941A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109910400A (zh) * 2019-04-12 2019-06-21 中国电子科技集团公司第三十八研究所 微波复合介质板的流延制备方法及制得的微波复合介质板
CN110452481A (zh) * 2019-08-19 2019-11-15 胡治法 一种综合性能优异的0-3型压电复合薄膜
CN111454576A (zh) * 2020-05-07 2020-07-28 北京宇航系统工程研究所 一种SiAlCN陶瓷先驱体改性聚氨酯橡胶及其制备方法和应用
CN112725732A (zh) * 2020-12-24 2021-04-30 温州大学 一种SiCNO基压阻薄膜体系及其制备方法
CN113652034A (zh) * 2021-07-15 2021-11-16 哈尔滨理工大学 一种gnp/ps-bt/pvdf选择性复合薄膜及其制备方法
CN114103348A (zh) * 2021-11-22 2022-03-01 四川大学 多层复合bope电容膜及其制备方法
CN115109358A (zh) * 2022-07-04 2022-09-27 中国地质大学(北京) 钻杆疲劳磨损监测设备压电材料及立体薄膜的制备方法
CN115260623A (zh) * 2022-08-26 2022-11-01 石家庄安耐普电缆附件有限公司 一种柔性高介电材料及其生产方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102675779A (zh) * 2012-05-10 2012-09-19 北京科技大学 一种含有改性石墨烯高介电常数三相复合材料及制备方法
CN103319736A (zh) * 2013-06-20 2013-09-25 电子科技大学 一种制造高介电复合薄膜的方法
CN108017861A (zh) * 2017-10-09 2018-05-11 南通洪明电工科技有限公司 一种二氧化硅包覆钛酸铜钙纳米纤维的聚合物基介电复合材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102675779A (zh) * 2012-05-10 2012-09-19 北京科技大学 一种含有改性石墨烯高介电常数三相复合材料及制备方法
CN103319736A (zh) * 2013-06-20 2013-09-25 电子科技大学 一种制造高介电复合薄膜的方法
CN108017861A (zh) * 2017-10-09 2018-05-11 南通洪明电工科技有限公司 一种二氧化硅包覆钛酸铜钙纳米纤维的聚合物基介电复合材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BAISHENG MA ET AL.: "Dielectric property and interfacial polarization of polymer-derived amorphous silicon carbonitride", 《CERAMICS INTERNATIONAL》 *
乔玉林等: "聚合物先驱体材料体系的陶瓷化研究进展与展望", 《材料导报》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109910400A (zh) * 2019-04-12 2019-06-21 中国电子科技集团公司第三十八研究所 微波复合介质板的流延制备方法及制得的微波复合介质板
CN109910400B (zh) * 2019-04-12 2021-05-07 中国电子科技集团公司第三十八研究所 微波复合介质板的流延制备方法及制得的微波复合介质板
CN110452481A (zh) * 2019-08-19 2019-11-15 胡治法 一种综合性能优异的0-3型压电复合薄膜
CN110452481B (zh) * 2019-08-19 2021-11-02 山东隆昌塑业有限公司 一种综合性能优异的0-3型压电复合薄膜
CN111454576A (zh) * 2020-05-07 2020-07-28 北京宇航系统工程研究所 一种SiAlCN陶瓷先驱体改性聚氨酯橡胶及其制备方法和应用
CN112725732A (zh) * 2020-12-24 2021-04-30 温州大学 一种SiCNO基压阻薄膜体系及其制备方法
CN112725732B (zh) * 2020-12-24 2022-11-25 温州大学 一种SiCNO基压阻薄膜体系及其制备方法
CN113652034A (zh) * 2021-07-15 2021-11-16 哈尔滨理工大学 一种gnp/ps-bt/pvdf选择性复合薄膜及其制备方法
CN114103348A (zh) * 2021-11-22 2022-03-01 四川大学 多层复合bope电容膜及其制备方法
CN115109358A (zh) * 2022-07-04 2022-09-27 中国地质大学(北京) 钻杆疲劳磨损监测设备压电材料及立体薄膜的制备方法
CN115260623A (zh) * 2022-08-26 2022-11-01 石家庄安耐普电缆附件有限公司 一种柔性高介电材料及其生产方法

Similar Documents

Publication Publication Date Title
CN108794941A (zh) 一种高介电常数无机/有机复合材料薄膜及其制备方法
Cho et al. Study on epoxy/BaTiO3 composite embedded capacitor films (ECFs) for organic substrate applications
You et al. Constructing three-dimensionally interwoven structures for ceramic/polymer composites to exhibit colossal dielectric constant and high mechanical strength: CaCu3Ti4O12/epoxy as an example
CN1175033C (zh) 粉末填充物和聚合物粘合剂的复合材料及其制备方法
CN105541389B (zh) 一种钛酸钡泡沫陶瓷/热固性树脂复合材料及其制备方法
CN105949725A (zh) 一种环氧树脂基高介电复合材料及其制备方法
CN108724900A (zh) 一种干法微波复合介质板的制备方法
Suematsu et al. Synthesis of BaTiO3/polymer composite ink to improve the dielectric properties of thin films
CN109320235A (zh) 一种nbt基压电织构陶瓷及其制备方法
US4071604A (en) Method of producing homogeneous carbon and graphite bodies
JP2020532144A (ja) ポリマーおよびセラミックの冷間焼結材料を含む基板
CN111822223B (zh) 介质层浆料涂布装置及平面电容的制作方法
Zheng et al. Unique pure barium titanate foams with three-dimensional interconnecting pore channels and their high-k cyanate ester resin composites at very low barium titanate loading
Jiang et al. Preparation of high performance AlN/Hydantion composite by gelcasting and infiltration processes
CN115872744A (zh) 一种固相增密制备高性能无粘结剂炭石墨材料的方法
CN112919902A (zh) 电场辅助低温快速烧结细晶钛酸钡电容器陶瓷制备方法
CN107658230A (zh) 一种生瓷片及ltcc基板表面粗糙度的调控方法
CN101921479B (zh) 一种氰酸酯树脂基复合材料及其制备方法
Zeng et al. Microstructural changes and properties of LaxBa (1-x)(Zr0· 1Ti0. 9) O3 multilayer dielectric ceramics via digital light processing
Wu et al. The chemical and dielectric properties of epoxy/(Ba0. 8Sr0. 2)(Ti0. 9Zr0. 1) O3 composites for embedded capacitor application
JP2773536B2 (ja) 分極性電極の製造方法
CN105802131B (zh) 基于钛酸铜铋钠陶瓷的高介电常数复合材料及其制备方法
CN114874007B (zh) 锆酸钙-钛酸锶高效率储能电介质复合陶瓷的制备方法
CN107538661A (zh) 四层结构树脂基复合材料及其制备方法
CN115557785B (zh) 一种低电场、高能量密度BaTiO3复合陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20181113

RJ01 Rejection of invention patent application after publication