CN110452481B - 一种综合性能优异的0-3型压电复合薄膜 - Google Patents

一种综合性能优异的0-3型压电复合薄膜 Download PDF

Info

Publication number
CN110452481B
CN110452481B CN201910763630.7A CN201910763630A CN110452481B CN 110452481 B CN110452481 B CN 110452481B CN 201910763630 A CN201910763630 A CN 201910763630A CN 110452481 B CN110452481 B CN 110452481B
Authority
CN
China
Prior art keywords
ball
milling
parts
average particle
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910763630.7A
Other languages
English (en)
Other versions
CN110452481A (zh
Inventor
胡治法
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Longchang New Material Technology Co ltd
Original Assignee
Shandong Longchang Plastic Industry Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Longchang Plastic Industry Co ltd filed Critical Shandong Longchang Plastic Industry Co ltd
Priority to CN201910763630.7A priority Critical patent/CN110452481B/zh
Publication of CN110452481A publication Critical patent/CN110452481A/zh
Application granted granted Critical
Publication of CN110452481B publication Critical patent/CN110452481B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2401/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2401/08Cellulose derivatives
    • C08J2401/10Esters of organic acids
    • C08J2401/12Cellulose acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2429/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2429/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2429/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/085Copper
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明涉及0‑3型压电复合薄膜制备技术领域,且公开了一种综合性能优异的0‑3型压电复合薄膜,包括以下重量份数配比的原料:40~50份的平均粒径3um的锆钛酸铅(PZT)陶瓷颗粒、40~50份的平均粒径38um的聚偏氟乙烯(PVDF)粉、1~2份的平均粒径6.5um的微米铜(Cu)粉、8~9份微米级的聚乙烯醇(PVA1799)粉或/和乙酸纤维素粉;其制备包括:先通过球磨混合的方法使上述原料混合均匀,再将分散均匀的复合体系在温度为200℃、压力为150MPa的钢制模具中保持热压,得到0‑3型压电复合材料薄膜。本发明解决了目前现有的0‑3型压电复合薄膜,由于其主要基体PVDF的成膜性能很差,不适合制备大面积薄膜器件,难以制备得到综合性能优异的大面积0‑3型压电复合薄膜的技术问题。

Description

一种综合性能优异的0-3型压电复合薄膜
技术领域
本发明涉及0-3型压电复合薄膜制备技术领域,具体为一种综合性能优异的0-3型压电复合薄膜。
背景技术
压电材料是实现机械能(包括声能)与电能之间转换的重要功能材料,其特别是在信息的检测、转换、处理和储存等传感器领域占有非常重要的地位。压电复合材料是将压电陶瓷和其他基体材料按一定的连通方式复合而成的一类新型压电功能材料,其中,0-3型压电复合材料表示压电陶瓷颗粒(0维)均匀分布在3维连通的聚合物中形成的复合体系。而0-3型压电复合材料以成型加工容易(只需将压电陶瓷粉末和聚合物混合在一起,通过聚合物加工方法就可以得到成品)、柔韧性好、容易制得大面积传感器、综合压电性能好等优点而倍受青睐。
要得到综合性能优异的0-3型压电复合材料,关键是复合材料的极化。诸多错综复杂的影响因素制约着压电复合材料的充分极化。因此,在设计和制备压电复合材料时总是遇到很多矛盾和困难。其中较为突出的问题是:难以制得综合性能很好的大面积压电薄膜。目前电学综合性能最好的压电复合材料一般是通过热压工艺制备,而热压方法制备的压电薄膜面积受到限制,而且不适合复合材料的现场制备(如结构器件的安全监控传感器等)。0-3型压电复合材料的主要基体PVDF的成膜性能很差,不适合制备大面积薄膜器件。用流延法和轧膜法可以得到面积稍大的压电薄膜材料,但同样不适合有些构件的现场实施。选用其它聚合物,用喷涂或涂覆的方法有望解决大面积压电薄膜制备的问题。但这类复合材料的致密度较低,而且聚合物本身的介电常数不及PVDF及其共聚物,复合材料的极化更加困难。因此,要制得综合性能很好的大面积压电薄膜仍然很困难。
发明内容
(一)解决的技术问题
针对现有技术的不足,本发明提供了一种综合性能优异的0-3型压电复合薄膜,解决了目前现有的0-3型压电复合薄膜,由于其主要基体PVDF的成膜性能很差,不适合制备大面积薄膜器件,难以制备得到综合性能优异的大面积0-3型压电复合薄膜的技术问题。
(二)技术方案
为实现上述目的,本发明提供如下技术方案:
一种综合性能优异的0-3型压电复合薄膜,包括以下重量份数配比的原料:40~50份的平均粒径3um的锆钛酸铅(PZT)陶瓷颗粒、40~50份的平均粒径38um的聚偏氟乙烯(PVDF)粉、1~2份的平均粒径6.5um的微米铜(Cu)粉、8~9份微米级的聚乙烯醇(PVA1799)粉或/和乙酸纤维素粉;
上述0-3型压电复合薄膜的制备方法包括以下步骤:先通过球磨混合的方法使上述原料混合均匀,再将分散均匀的复合体系在温度为200℃、压力为150MPa的钢制模具中保持热压,得到0-3型压电复合材料薄膜。
优选的,所述聚乙烯醇(PVA1799)粉的平均粒径为10um。
优选的,所述乙酸纤维素粉的平均粒径为10um。
优选的,所述0-3型压电复合薄膜还包括以下重量份数配比的原料:1份的平均粒径6.5um的石墨粉。
(三)有益的技术效果
与现有技术相比,本发明具备以下有益的技术效果:
本发明通过将成膜性能极好的聚乙烯醇(PVA1799)粉或/和乙酸纤维素粉、电学性能极优异的微米铜(Cu)粉或/和石墨粉,与基体材料聚偏氟乙烯(PVDF)粉、功能增强相锆钛酸铅(PZT)陶瓷颗粒进行复合,得到压电常数d33为42~46pC/N、介电损耗tanδ为0.016~0.018、介电常数εr为205~211、电导率σ为10-5S/m的综合性能优异、且适合制备大面积薄膜器件的0-3型压电复合薄膜。
具体实施方式
以下实施例与对比例中所使用的原料如下:
锆钛酸铅(Pb(Ti0.48Zr0.52)O3,PZT)陶瓷颗粒,平均粒径3um,压电系数>400pC/N、介电常数>1600、介电损耗<0.005、电导率10-7S/m;
聚偏氟乙烯(PVDF)粉、平均粒径38um;
微米铜(Cu)粉,平均粒径6.5um;
石墨粉,平均粒径6.5um;
聚乙烯醇(PVA1799)粉,平均粒径10um;
乙酸纤维素粉,平均粒径10um。
实施例一:
0-3型压电复合薄膜包括以下重量份数配比的原料:45份的平均粒径3um的锆钛酸铅(PZT)陶瓷颗粒、45份的平均粒径38um的聚偏氟乙烯(PVDF)粉、1.5份的平均粒径6.5um的微米铜(Cu)粉、8.5份的平均粒径10um的聚乙烯醇(PVA1799)粉;
上述0-3型压电复合薄膜的制备方法包括以下步骤:
步骤一:将45份的平均粒径38um的聚偏氟乙烯(PVDF)粉、8.5份的平均粒径10um的聚乙烯醇(PVA1799)粉与100mL无水乙醇一起放置在不锈钢球磨容器内,并置于球磨仪上进行球磨,调整球磨转速为300r/min,每球磨30min间歇5min,球磨时间为2h,得到一次球磨产物;
步骤二:将1.5份的平均粒径6.5um的微米铜(Cu)粉加入到一次球磨产物中,调整球磨转速为400r/min,球磨时间为2h,每球磨30min间歇10min,得到二次球磨产物;
步骤三:将45份的平均粒径3um的锆钛酸铅(PZT)陶瓷颗粒加入到二次球磨产物中,调整球磨转速为500r/min,球磨时间为4h,每球磨30min间歇20min,得到三次球磨产物;
步骤四:将三次球磨产物放置在温度80℃的烘箱内进行干燥,直至复合体系内不含有无水乙醇为止,得到分散均匀的复合体系;
步骤五:将分散均匀的复合体系在温度为200℃、压力为150MPa的钢制模具中保持热压4h,温度降至室温时脱模,得到φ12mm、厚200~300um的0-3型压电复合材料薄膜。
实施例二:
0-3型压电复合薄膜包括以下重量份数配比的原料:50份的平均粒径3um的锆钛酸铅(PZT)陶瓷颗粒、40份的平均粒径38um的聚偏氟乙烯(PVDF)粉、1份的平均粒径6.5um的微米铜(Cu)粉、6份的平均粒径10um的聚乙烯醇(PVA1799)粉、3份的平均粒径10um的乙酸纤维素粉;
上述0-3型压电复合薄膜的制备方法包括以下步骤:
步骤一:将40份的平均粒径38um的聚偏氟乙烯(PVDF)粉、6份的平均粒径10um的聚乙烯醇(PVA1799)粉与100mL无水乙醇一起放置在不锈钢球磨容器内,并置于球磨仪上进行球磨,调整球磨转速为300r/min,每球磨30min间歇5min,球磨时间为2h;
将3份的平均粒径10um的乙酸纤维素粉加入到上述球磨产物中,调整球磨转速为350r/min,每球磨30min间歇5min,球磨时间为2h,得到一次球磨产物;
步骤二:将1份的平均粒径6.5um的微米铜(Cu)粉加入到一次球磨产物中,调整球磨转速为400r/min,球磨时间为2h,每球磨30min间歇10min,得到二次球磨产物;
步骤三:将50份的平均粒径3um的锆钛酸铅(PZT)陶瓷颗粒加入到二次球磨产物中,调整球磨转速为500r/min,球磨时间为4h,每球磨30min间歇20min,得到三次球磨产物;
步骤四:将三次球磨产物放置在温度80℃的烘箱内进行干燥,直至复合体系内不含有无水乙醇为止,得到分散均匀的复合体系;
步骤五:将分散均匀的复合体系在温度为200℃、压力为150MPa的钢制模具中保持热压4h,温度降至室温时脱模,得到φ12mm、厚200~300um的0-3型压电复合材料薄膜。
实施例三:
0-3型压电复合薄膜包括以下重量份数配比的原料:40份的平均粒径3um的锆钛酸铅(PZT)陶瓷颗粒、50份的平均粒径38um的聚偏氟乙烯(PVDF)粉、2份的平均粒径6.5um的微米铜(Cu)粉、8份的平均粒径10um的乙酸纤维素粉;
上述0-3型压电复合薄膜的制备方法包括以下步骤:
步骤一:将50份的平均粒径38um的聚偏氟乙烯(PVDF)粉、8份的平均粒径10um的乙酸纤维素粉与100mL无水乙醇一起放置在不锈钢球磨容器内,并置于球磨仪上进行球磨,调整球磨转速为300r/min,每球磨30min间歇5min,球磨时间为2h,得到一次球磨产物;
步骤二:将2份的平均粒径6.5um的微米铜(Cu)粉加入到一次球磨产物中,调整球磨转速为400r/min,球磨时间为2h,每球磨30min间歇10min,得到二次球磨产物;
步骤三:将40份的平均粒径3um的锆钛酸铅(PZT)陶瓷颗粒加入到二次球磨产物中,调整球磨转速为500r/min,球磨时间为4h,每球磨30min间歇20min,得到三次球磨产物;
步骤四:将三次球磨产物放置在温度80℃的烘箱内进行干燥,直至复合体系内不含有无水乙醇为止,得到分散均匀的复合体系;
步骤五:将分散均匀的复合体系在温度为200℃、压力为150MPa的钢制模具中保持热压4h,温度降至室温时脱模,得到φ12mm、厚200~300um的0-3型压电复合材料薄膜。
实施例四:
0-3型压电复合薄膜包括以下重量份数配比的原料:45份的平均粒径3um的锆钛酸铅(PZT)陶瓷颗粒、45份的平均粒径38um的聚偏氟乙烯(PVDF)粉、1份的平均粒径6.5um的微米铜(Cu)粉、4份的平均粒径10um的聚乙烯醇(PVA1799)粉、4份的平均粒径10um的乙酸纤维素粉、1份的平均粒径6.5um的石墨粉;
上述0-3型压电复合薄膜的制备方法包括以下步骤:
步骤一:将45份的平均粒径38um的聚偏氟乙烯(PVDF)粉、4份的平均粒径10um的聚乙烯醇(PVA1799)粉、4份的平均粒径10um的乙酸纤维素粉与100mL无水乙醇一起放置在不锈钢球磨容器内,并置于球磨仪上进行球磨,调整球磨转速为300r/min,每球磨30min间歇5min,球磨时间为2h,得到一次球磨产物;
步骤二:将1.5份的平均粒径6.5um的微米铜(Cu)粉、1份的平均粒径6.5um的石墨粉加入到一次球磨产物中,调整球磨转速为400r/min,球磨时间为2h,每球磨30min间歇10min,得到二次球磨产物;
步骤三:将45份的平均粒径3um的锆钛酸铅(PZT)陶瓷颗粒加入到二次球磨产物中,调整球磨转速为500r/min,球磨时间为4h,每球磨30min间歇20min,得到三次球磨产物;
步骤四:将三次球磨产物放置在温度80℃的烘箱内进行干燥,直至复合体系内不含有无水乙醇为止,得到分散均匀的复合体系;
步骤五:将分散均匀的复合体系在温度为200℃、压力为150MPa的钢制模具中保持热压4h,温度降至室温时脱模,得到φ12mm、厚200~300um的0-3型压电复合材料薄膜。
性能测试:
采用精密阻抗分析仪对实施例中的0-3型压电复合材料薄膜进行电容和介电损耗(tanδ)测试,并计算出介电常数εr,采用准静态测量仪测量实施例中的0-3型压电复合材料薄膜的压电常数d33,采用电导率测试仪测量实施例中的0-3型压电复合材料薄膜的电导率σ,测试结果见表1。
表1
Figure BDA0002171176770000071

Claims (1)

1.一种综合性能优异的0-3型压电复合薄膜的制备方法,其特征在于, 包括以下步骤:
步骤一:将45份的平均粒径38um的聚偏氟乙烯(PVDF)粉、8.5份的平均粒径10um的聚乙烯醇粉与100mL无水乙醇一起放置在不锈钢球磨容器内,并置于球磨仪上进行球磨,调整球磨转速为300r/min,每球磨30min间歇5min,球磨时间为2h,得到一次球磨产物;
步骤二:将1.5份的平均粒径6.5um的微米铜(Cu)粉加入到一次球磨产物中,调整球磨转速为400r/min,球磨时间为2h,每球磨30min间歇10min,得到二次球磨产物;
步骤三:将45份的平均粒径3um的锆钛酸铅(PZT)陶瓷颗粒加入到二次球磨产物中,调整球磨转速为500r/min,球磨时间为4h,每球磨30min间歇20min,得到三次球磨产物;
步骤四:将三次球磨产物放置在温度80℃的烘箱内进行干燥,直至复合体系内不含有无水乙醇为止,得到分散均匀的复合体系;
步骤五:将分散均匀的复合体系在温度为200℃、压力为150MPa的钢制模具中保持热压4h,温度降至室温时脱模,得到φ12mm、厚200~300um的0-3型压电复合材料薄膜。
CN201910763630.7A 2019-08-19 2019-08-19 一种综合性能优异的0-3型压电复合薄膜 Active CN110452481B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910763630.7A CN110452481B (zh) 2019-08-19 2019-08-19 一种综合性能优异的0-3型压电复合薄膜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910763630.7A CN110452481B (zh) 2019-08-19 2019-08-19 一种综合性能优异的0-3型压电复合薄膜

Publications (2)

Publication Number Publication Date
CN110452481A CN110452481A (zh) 2019-11-15
CN110452481B true CN110452481B (zh) 2021-11-02

Family

ID=68487465

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910763630.7A Active CN110452481B (zh) 2019-08-19 2019-08-19 一种综合性能优异的0-3型压电复合薄膜

Country Status (1)

Country Link
CN (1) CN110452481B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105449095A (zh) * 2015-12-31 2016-03-30 长安大学 一种路用压电复合材料及其制备方法
CN106751242A (zh) * 2016-11-21 2017-05-31 中南大学 一种陶瓷/聚合物复合材料、制备方法及应用
CN107857960A (zh) * 2017-11-14 2018-03-30 北京航空航天大学 一种基于石墨烯改性的压电复合薄膜及其制备方法和应用
CN108794941A (zh) * 2018-07-03 2018-11-13 西南交通大学 一种高介电常数无机/有机复合材料薄膜及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008007551A1 (fr) * 2006-07-10 2008-01-17 Konica Minolta Medical & Graphic, Inc. Procédé de formation de films de résine synthétique piézoélectriques

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105449095A (zh) * 2015-12-31 2016-03-30 长安大学 一种路用压电复合材料及其制备方法
CN106751242A (zh) * 2016-11-21 2017-05-31 中南大学 一种陶瓷/聚合物复合材料、制备方法及应用
CN107857960A (zh) * 2017-11-14 2018-03-30 北京航空航天大学 一种基于石墨烯改性的压电复合薄膜及其制备方法和应用
CN108794941A (zh) * 2018-07-03 2018-11-13 西南交通大学 一种高介电常数无机/有机复合材料薄膜及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
聚合物/压电陶瓷复合材料研究进展;董丽杰等;《国外建材科技》;20040830(第04期);第69-71页 *

Also Published As

Publication number Publication date
CN110452481A (zh) 2019-11-15

Similar Documents

Publication Publication Date Title
CN110452481B (zh) 一种综合性能优异的0-3型压电复合薄膜
CN101219892A (zh) 制备钛酸铋取向陶瓷的固相烧结工艺方法
CN109503157B (zh) 一种高致密度高压电常数的压电陶瓷
CN102299254B (zh) 一种流延法制备大尺寸厚膜压电复合材料的方法
JP2001106580A (ja) セラミックスラリー及びこれを用いたグリーンシート
CN110386775B (zh) 一种压电性能优异的0-3型压电复合材料
CN106518071A (zh) 一种高居里温度,高温度稳定性的压电陶瓷材料及其制备方法和应用
CN114133243A (zh) 一种高介电常数高压电应变发射型压电陶瓷材料及制备方法
CN110444659B (zh) 一种具有优异极化性能的0-3型压电复合材料
CN116768626B (zh) 一种PbNb2O6基压电陶瓷材料及其制备方法
CN113563073B (zh) 一种高稳定的无铅压电陶瓷及其制备方法
CN110981480A (zh) 一种高Tr-t和Tc的铅基&lt;001&gt;C织构压电陶瓷材料及其制备方法
CN113716958B (zh) 一种压电陶瓷材料及高机电转换效率的换能器
CN107056281B (zh) 一种高应变钛酸铋钠基陶瓷及其制备方法
CN115321980A (zh) 一种铌酸钾钠(knn)基无铅压电陶瓷的制备方法
CN111960820B (zh) 一种压电晶体材料及其制备方法
CN101531489B (zh) 纳米碳黑/纳米锆钛酸铅/水泥压电复合材料及其制备方法
CN111606707A (zh) 一种容温稳定性压电陶瓷材料以及制备方法
CN102610740B (zh) 螺旋并联高性能压电复合材料的制备方法
CN101817674A (zh) 一种低介电常数低损耗微波介质陶瓷及其制备方法
KR20100067865A (ko) 유기물을 함유하는 센서용 압전 후막 및 이의 제조방법
CN109704757B (zh) 兼具低场与高场压电性能的无铅压电陶瓷及其制备方法
CN111908915B (zh) 一种锆钛酸镧铅基压电陶瓷及其制备方法与应用
CN111348913B (zh) 高带宽压电陶瓷及其制备方法
CN114605150A (zh) 一种高密度、低损耗及高介电常数压电陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TA01 Transfer of patent application right

Effective date of registration: 20211020

Address after: 272100 Liangshan Economic Development Zone, Jining City, Shandong Province (No. 216, Gongming Road)

Applicant after: SHANDONG LONGCHANG PLASTIC INDUSTRY Co.,Ltd.

Address before: 310016 No. 37, hugang Road, Jianggan District, Hangzhou, Zhejiang

Applicant before: Hu Zhifa

TA01 Transfer of patent application right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A 0-3 piezoelectric composite film with excellent comprehensive properties

Effective date of registration: 20220421

Granted publication date: 20211102

Pledgee: Industrial and Commercial Bank of China Limited Liangshan sub branch

Pledgor: SHANDONG LONGCHANG PLASTIC INDUSTRY Co.,Ltd.

Registration number: Y2022980004548

PE01 Entry into force of the registration of the contract for pledge of patent right
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: 272600 Liangshan Economic Development Zone, Jining City, Shandong Province (216 Gongming Road)

Patentee after: Shandong Longchang New Material Technology Co.,Ltd.

Address before: 272100 Liangshan Economic Development Zone, Jining City, Shandong Province (No. 216, Gongming Road)

Patentee before: SHANDONG LONGCHANG PLASTIC INDUSTRY Co.,Ltd.

PC01 Cancellation of the registration of the contract for pledge of patent right
PC01 Cancellation of the registration of the contract for pledge of patent right

Granted publication date: 20211102

Pledgee: Industrial and Commercial Bank of China Limited Liangshan sub branch

Pledgor: SHANDONG LONGCHANG PLASTIC INDUSTRY Co.,Ltd.

Registration number: Y2022980004548

PE01 Entry into force of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A type 0-3 piezoelectric composite thin film with excellent comprehensive performance

Granted publication date: 20211102

Pledgee: Shandong Liangshan Rural Commercial Bank Co.,Ltd.

Pledgor: Shandong Longchang New Material Technology Co.,Ltd.

Registration number: Y2024980010096