CN108753834B - ddx27基因缺失斑马鱼突变体的制备方法 - Google Patents

ddx27基因缺失斑马鱼突变体的制备方法 Download PDF

Info

Publication number
CN108753834B
CN108753834B CN201810525964.6A CN201810525964A CN108753834B CN 108753834 B CN108753834 B CN 108753834B CN 201810525964 A CN201810525964 A CN 201810525964A CN 108753834 B CN108753834 B CN 108753834B
Authority
CN
China
Prior art keywords
ddx27
zebra fish
gene
grna
mutant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810525964.6A
Other languages
English (en)
Other versions
CN108753834A (zh
Inventor
张庆华
时灿
岳倩文
祖尧
李伟明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Ocean University
Original Assignee
Shanghai Ocean University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Ocean University filed Critical Shanghai Ocean University
Priority to CN201810525964.6A priority Critical patent/CN108753834B/zh
Publication of CN108753834A publication Critical patent/CN108753834A/zh
Priority to US16/421,460 priority patent/US11406090B2/en
Application granted granted Critical
Publication of CN108753834B publication Critical patent/CN108753834B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0276Knock-out vertebrates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/461Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from fish
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1137Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y306/00Hydrolases acting on acid anhydrides (3.6)
    • C12Y306/04Hydrolases acting on acid anhydrides (3.6) acting on acid anhydrides; involved in cellular and subcellular movement (3.6.4)
    • C12Y306/04013RNA helicase (3.6.4.13)
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2207/00Modified animals
    • A01K2207/15Humanized animals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)
    • A01K2217/054Animals comprising random inserted nucleic acids (transgenic) inducing loss of function
    • A01K2217/056Animals comprising random inserted nucleic acids (transgenic) inducing loss of function due to mutation of coding region of the transgene (dominant negative)
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/075Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/40Fish
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/0331Animal model for proliferative diseases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Environmental Sciences (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Animal Husbandry (AREA)
  • Veterinary Medicine (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Mycology (AREA)
  • Medicinal Chemistry (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Virology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种斑马鱼ddx27基因缺失突变体的制备方法;包括如下步骤:确定ddx27基因敲除的靶点在斑马鱼ddx27基因第6个外显子上,设计gRNA序列;以pUC19‑‑gRNA scaffold质粒为模板,使用引物T7‑ddx27‑sfd、tracr rev进行PCR扩增;PCR产物纯化、体外转录获得gRNA;将gRNA与Cas9蛋白导入斑马鱼中,培养获得稳定遗传的ddx27基因突变体。另外,本发明还公开了ddx27基因缺失斑马鱼突变体的表型,对于研究其生物学功能有重要作用。

Description

ddx27基因缺失斑马鱼突变体的制备方法
技术领域
本发明属于分子生物学领域,具体涉及一种利用CRISPR/Cas9基因编辑技术,获得ddx27基因缺失斑马鱼突变体的具体方法。
背景技术
CRISPR/Cas系统属于细菌和古细菌的适应性免疫防御机制。它是在生物不断进化的过程中产生,用来保护自身基因组免受外源核酸的干扰。1987年大阪大学(OsakaUniversity)的研究人员在Escherichia coli K12的碱性磷酸酶基因附近发现了成簇的规律间隔的短回文重复序列(Clustered regularly interspaced short palindromicrepeat,CRISPR)和CRISPR相关基因(CRISPR-associated genes,Cas gene)。CRISPR RNA(crRNA)以碱基互补的形式引导Cas蛋白识别入侵的外源基因组,并对其DNA进行剪切。根据Cas蛋白的序列和结构将CRISPR/Cas系统分为I型、II型和III型。I和II型CRISPR-Cas系统可以降解外源DNA,而III型CRISPR-Cas系统不仅可以降解外源DNA,还可以降解外源RNA。另外,I和III型CRISPR-Cas系统介导的外源核酸的降解需要多种Cas蛋白共同参与,而II型CRISPR-Cas系统则只需要一个单一的Cas9蛋白,它的这一特点,使得II型Cas9迅速在生物学领域得到了广泛的应用。II型CRISPR/Cas系统即CRISPR/Cas9系统,已被发展成为一套理想的程序化的基因编辑工具。Cas9介导的基因编辑依赖两个连续的步骤:首先,Cas9核酸内切酶在crRNA的介导下对基因组DNA进行剪切;然后,DNA的DSB会被细胞内天然的DNA修复系统进行修复。
相比于传统的基因编辑技术,CRISPR/Cas9具有更高效率,更方便操作,具有以下优点:
1.只需要合成一个gRNA即可实现对基因的特异性修饰,Cas蛋白不具有特异性,
2.编码gRNA的序列不超过150bp,便于构建,
3.较短的gRNA序列也避免了超长编码载体对机体造成的不良影响。
已有研究显示DExD/H-box家族作为RNA解旋酶超家族成员之一参与RNA代谢的各个方面。它们存在于利用RNA解旋酶或核糖核蛋白(ribonucleoprotein,RNP)酶的大多数生物体中。在细胞内该酶能水解核苷三磷酸(nucleotide triphosphate,NTP),与其他蛋白组成复合体发挥作用。DExD/H-box家族在几乎所有涉及RNA的细胞进程中发挥重要作用,如基因转录、mRNA前体剪接、mRNA输出、核糖体生成、翻译起始、细胞器基因表达、RNA降解等,影响RNA的生成及RNA的多态性,但是这些酶在体内的性质以及具体的功能研究仍较少描述。
已有报道多集中于临床肿瘤病例分析,DDX27高表达于癌变组织,促进细胞增殖以及集落形成,由此可作为潜在的治疗药物靶点。本发明利用斑马鱼这一模式生物,通过CRISPR/Cas9技术对其基因组进行基因编辑,实现目的基因的定位敲除,从而获得ddx27基因突变体,这将为后续的分子机制研究以及疾病建模方面的应用提供基础支持。
发明内容
本发明的目的在于提供一种ddx27基因缺失斑马鱼突变体的制备方法;本发明设计了新的gRNA靶点序列,设计在ddx27第六个外显子上,gRNA靶点序列为:GGACAGATTCATGTCCTGGA,从而对ddx27基因进行了敲除。
本发明的目的是通过以下技术方案来实现的:
本发明涉及一种通过CRISPR/Cas9技术制备斑马鱼ddx27基因缺失突变体的方法,包括如下步骤:
S1、确定ddx27基因敲除的靶点在斑马鱼ddx27基因第6个外显子上设计gRNA序列;
S2、设计合成gRNA的上游引物T7-ddx27-sfd、下游引物tracr rev;
S3、以pUC19-gRNA scaffold质粒为模板,使用引物T7-ddx27-sfd、tracr rev进行PCR扩增;
S4、对步骤S3的PCR产物进行体外转录,转化获得gRNA;
S5、将gRNA与Cas9蛋白导入斑马鱼中;
S6、培养获得稳定遗传的斑马鱼ddx27基因突变体。
优选的,步骤S1中,所述靶点序列为GGACAGATTCATGTCCTGGA(SEQ ID NO.1)。
优选的,步骤S2中,上游引物F1(T7+Target site+
Figure BDA0001674544250000021
),即引物T7-ddx27-sfd的序列为:
TAATACGACTCACTATAGGACAGATTCATGTCCTGGA
Figure BDA0001674544250000022
Figure BDA0001674544250000031
(SEQID NO.2);
下游引物R1(trans reverse),即引物tracr rev的序列为:
AAAAAAAGCACCGACTCGGTGCCAC(SEQ ID NO.3)
优选的,步骤S3中,所述pUC19-gRNA scaffold质粒的序列为GTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTTTT(SEQ IDNO.7)。
优选的,步骤S4中,所述gRNA的序列为TAATACGACTCACTATAGGCATCTGCATGAATACACAGTTTTAGAGCTAGAAATAGCGGACAGATTCATGTCCTGGACGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTTTT(SEQ ID NO.6)。
优选的,步骤S5中,将gRNA与Cas9蛋白导入斑马鱼具体为:将gRNA与Cas9蛋白混合,显微注射到斑马鱼一细胞期胚胎中;其中,gRNA终浓度为80-100ng/μL,Cas9蛋白终浓度为800ng/μL;总体积V=1μL。
优选的,步骤S6具体包括如下步骤:
A1、分别取导入gRNA与Cas9蛋白的斑马鱼以及野生型未注射的斑马鱼胚胎进行ddx27基因敲除检测,确定ddx27基因敲除阳性F0养至成鱼;
A2、将ddx27基因敲除阳性F0成鱼与野生型斑马鱼外交进行可遗传性及有效突变检测,筛选可遗传的有效突变F1进行喂养至成鱼;经基因型鉴定获得ddx27F1突变体斑马鱼;
A3、将相同突变的ddx27F1突变体斑马鱼内交,获得ddx27F2突变体斑马鱼;
A4、鉴定为F2代中ddx27基因敲除的纯合子即所述稳定遗传的斑马鱼ddx27基因突变体。
优选的,步骤A1中,ddx27基因敲除检测采用的引物序列包括:
上游引物ddx27-F:GAAAGGAAAGAGGAAAATGG(SEQ ID NO.4);
下游引物ddx27-R:TTCGTTGTTTGATTCCTATT(SEQ ID NO.5)。
更优选的,步骤S6包括如下步骤:
4.检测亲鱼待敲除的基因是否为纯合子:
4.1在靶点周围设计引物,使其距离靶位点两侧都大于100bp,且引物距离靶点的距离之差的绝对值大于100bp;
4.2选择一对健康的WT斑马鱼作为亲本,剪尾巴进行PCR,将PCR产物直接送去测序;
4.3要求实验材料(待注射的成鱼)对靶点序列为纯合子(分析峰图)。如果测序结果显示靶点序列为杂合子,最好重新选择实验材料。
5.显微注射:将gRNA与Cas9蛋白导入斑马鱼中,混合注射体系,使终浓度为:gRNA:80-100ng/μL;cas9蛋白:800ng/μL;总体积V=1μL。
6.注射当天晚上,需将死卵挑出,同时换一半新水,之后每天早晚换水一次,受精48h,T7E1酶检测敲除成功F0斑马鱼进行饲养。
7.3-4个月斑马鱼性成熟后,将突变的F0斑马鱼与野生型的斑马鱼杂交,得到一定概率的杂合子,收集胚胎提取基因组,使用检测引物进行PCR后,TA克隆送测序确定基因型,确定可遗传且为有效突变的F1斑马鱼进行饲养。
8.经过3-4个月后性成熟后,F1突变体斑马鱼成年的雄鱼与雌鱼再次剪尾巴,进行基因型鉴定筛选,将突变体斑马鱼再次交配,从而得到纯合ddx27基因缺失突变体斑马鱼。
与现有技术相比,本发明具有如下有益效果:
1)首次利用CRISPR/Cas9技术设计一段特异的打靶位点,实现斑马鱼中ddx27基因的特异敲除。ddx27基因共编码776个氨基酸,而缺失27bp的突变体编码233个氨基酸,缺失14bp、5bp的突变体均编码238个氨基酸。
2)ddx27基因突变可稳定遗传,便于后续ddx27基因功能机制的深入研究。
3)ddx27-/-不同突变类型的突变体斑马鱼均出现纯合致死现象,约6-7dpf全部死亡。
4)ddx27-/-突变体斑马鱼表型严重,在3dpf时观察到小头,小眼,心包水肿等明显的发育迟缓、畸形的现象。
附图说明
图1为ddx27基因F0敲除检测;其中,(a)ddx27F0斑马鱼胚胎PCR产物凝胶电泳结果;(b)T7E1内切酶酶切鉴定凝胶电泳结果;(c)PCR产物测序峰图结果;
图2为ddx27F0germline transmission检测结果;其中,(a)、(b)T7E1内切酶酶切鉴定凝胶电泳结果;(c)PCR产物测序峰图结果;
图3为F1-ddx27成年斑马鱼基因型检测结果;其中,(a)部分T7E1内切酶酶切鉴定凝胶电泳结果;(b)PCR产物连接转化挑选单克隆测序序列比对结果;
图4为ddx27不同缺失类型突变体表型统计结果图(经卡方检验P>0.05,差异不显著,符合孟德尔遗传定律);其中,(a)ddx27-27bp表型比例统计图,(b)ddx27-14bp表型比例统计图,(c)ddx27-5bp表型比例统计图;
图5为ddx27不同缺失类型突变体&野生型表型对照图(3dpf);其中,(a)ddx27-27bp突变体&野生型表型对照图(3dpf),(b)ddx27-14bp突变体&野生型表型对照图(3dpf),(c)ddx27-5bp突变体&野生型表型对照图(3dpf),(d)ddx27-27bp突变体&野生型10尾表型对照图(3dpf),(e)ddx27-14bp突变体&野生型10尾表型对照图(3dpf),(f)ddx27-5bp突变体&野生型10尾表型对照图(3dpf);
图6为ddx27(-27bp)F2斑马鱼基因型检测凝胶电泳结果;
图7为ddx27(-14bp)F2斑马鱼基因型检测凝胶电泳结果;
图8为ddx27(-5bp)F2斑马鱼基因型检测凝胶电泳结果。
具体实施方式
下面结合实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干调整和改进。这些都属于本发明的保护范围。
实施例
1材料及设备
1.1实验用鱼
本实验中所用的斑马鱼均为AB品系,购置于中国科学院上海生命科学研究院生物化学与细胞生物学研究所斑马鱼平台。
1.2质粒
pUC19-gRNAscaffold质粒来源于文献:Chang N,Sun C,Gao L,Zhu D,Xu X,ZhuX,Xiong JW,Xi JJ.Genome editing with RNA-guided Cas9nuclease in zebrafishembryos,Cell Res,2013,23(4):465-472。
在gRNA产物合成中用到的pUC19-gRNAscaffold质粒模板序列为:
GTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTTTT(SEQ ID NO.7)。
1.3主要试剂
DNAClean&Contentrator-5(ZYMO RESEARCH,D4004),普通DNA纯化试剂盒(TIANGEN,DP204-03),
Figure BDA0001674544250000051
T7in vitro Transcription Kit(Ambion,AM1314),乙醇(无水乙醇)(国药集团化学试剂有限公司,10009218),GenCrispr NLS-Cas9-NLS(金斯瑞,Z03389-25),Premix TaqTM(Ex TaqTMVersion 2.0plus dye)(TAKARA,RR902),DNAMarker I(TIANGEN,MD101-02),T7endonuclease 1(NEW ENGLAND
Figure BDA0001674544250000061
Inc.,M0302L),快速质粒小提试剂盒(TIANGEN,DP105),DH5a感受态细胞(天根生化科技有限公司,CB101-03),2BEasyTaq PCR SuperMix(+dye)(TAKARA,AS111-12),LB Broth(上海生工,D915KA6602),LB Broth agar(上海生工,D911KA6566),pMDTM19-T Vector Cloning Kit(TAKARA,6013)。
1.4主要仪器
PCR仪(品牌:BIO-RAD,型号:c1000TouchTM Thermal Cycler),小离心机(品牌:eppendorf,型号:Centrifuge 5424),震荡混匀仪(品牌:VORTEX-GENIE,型号:G560E),紫外分光光度计(品牌:Thermo Scientific,型号:Nanodrop 2000C),电泳仪(品牌:BIO-RAD,型号:PowerPac Basic),照胶仪(品牌:Bio-Rad,型号:Gel Doc EZ Imager),电子天平(品牌:METTLER TOLEDO,型号:AL104),玻璃毛细管(品牌:WPI,型号:TW100F-4),Milli-Q Direct8超纯水系统(品牌:Millipore,型号:Milli-Q Direct 8),垂直拉针仪(品牌:NARISHIGE,型号:PC-10),恒温摇床(品牌:Innova,型号:40R),磨针器(品牌:NARISHIGE,型号:EG-400),微量注射泵(品牌:WARNER,型号:PLI-100A),恒温水浴锅(品牌:精宏,型号:H1401438,DK-8D),4℃冰箱(品牌:Haier,型号:HYC-610),-40℃低温冰箱(品牌:Haier,型号:DW-40L508),-80℃超低温冰箱(品牌:Pana-sonic,型号:MDF-U53V),高压蒸汽灭菌锅(品牌:SANYO,型号:MLS-3780)。
2实验方法
2.1 gRNA合成
(1)靶点设计
a、下载序列:在Ensembl数据库查找并下载斑马鱼ddx27的基因序列。
b、靶点设计:利用http://zifit.partners.org/ZiFiT/ChoiceMenu.aspx网站在ddx27基因ATG之后的外显子序列上设计靶点(表1)。ddx27设计靶点在第六个外显子上。
c、靶点特异性检测:在NCBI网站将设计的靶点序列通过blast比对,验证靶位点特异性。
d、亲本检测:将用于基因敲除的WT斑马鱼剪尾并用碱裂解法获得基因组DNA,进行PCR扩增靶点附近的一段序列。
e、酶切检测:用T7E1内切酶酶切检测WT斑马鱼,看T7E1酶能否将扩增的片段切开,若切不开,则可用于后续敲除检测;若被切开,则需要根据扩增序列信息选择特异性的酶进行酶切检测。
f、测序鉴定:将PCR产物送测序,峰图及序列比对,确认亲本为纯合子,不存在自然突变,从而保证后续制备的突变体为基因敲除后造成的。
表1 ddx27靶位点序列
Figure BDA0001674544250000071
(2)设计检测引物:设计的引物应保证距离靶点两侧大于100bp,并且上下游引物到靶点的距离与下游引物到靶点的距离应相差大于100bp,至少50bp。引物扩增应具备特异性,扩增片段约500bp。引物在上海生工生物工程股份有限公司合成(表2)。
表2实验所用引物信息
Figure BDA0001674544250000072
(3)gRNA产物合成:以pUC19-gRNA scaffold质粒为模板,使用引物T7-ddx27-sfd、tracr rev和2×EasyTaq PCR Super Mix(+dye)扩增片段并用试剂盒纯化。
(4)体外转录:
反应体系:
表3
Figure BDA0001674544250000073
Figure BDA0001674544250000081
注意:最后添加10×Transcription Buffer和T7Enzyme mix
混匀并短暂离心后,37℃孵育80min;之后向体系中加入1μL TURBO DNase并混匀,短暂离心后37℃孵育15min。
(5)纯化gRNA:
a、向20μL体外转录体系中加入2.5μL 4M的LiCl和100μL体无水乙醇,混匀并短暂离心后放于-80℃冰箱至少1h。
b、到时间后从冰箱取出,4℃,12000rmp,离心15min。弃上清后用70%乙醇清洗沉淀。4℃,8000rmp,离心5min。弃上清后将离心管放于通风橱中使乙醇挥发干净。
c、根据沉淀大小加入适量DEPC水溶解gRNA沉淀。
d、用Nanodrop检测浓度和OD值并用电泳检测。
所述gRNA的序列为TAATACGACTCACTATAGGCATCTGCATGAATACACAGTTTTAGAGCTAGAAATAGCGGACAGATTCATGTCCTGGACGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTTTT(SEQ IDNO.6)。
2.2显微注射
将gRNA与Cas9蛋白(购买于GenCrispr NLS-Cas9-NLS(金斯瑞,Z03389-25))混合,利用显微注射仪器将混合后的物质注射到斑马鱼一细胞期胚胎中,每次注射都留一批未注射的同批次胚胎作为对照组。混合注射终浓度:gRNA为100ng/μL,Cas9蛋白为800ng/μL。
2.3检测敲除是否成功及敲除效率(T7E1酶切检测)
a、提取鱼卵基因组
每组5枚卵,加35μL 50mM NaOH,95℃孵育20min,中间取出振荡,短暂离心一次。之后加3.5μL 1M的Tris·HCl(pH≈8.0),剧烈振荡混匀后离心。
b、PCR扩增目的片段
根据靶点附近设计的引物扩增目的片段。
PCR反应体系:
表4
H<sub>2</sub>O to 25μL
12.5μL
F 0.5μL
R 0.5μL
模板 10ng
PCR反应条件:
98℃预变性2sec;98℃变性10sec,60.3℃退火30sec,72℃延伸1min,共32个循环;72℃再延伸5min;4℃保存。
2%琼脂糖凝胶120V电泳25min。
c、T7E1内切酶酶切检测
表5
H<sub>2</sub>O to 10μL
PCR产物 5μL
Buffer 1.1μL
95℃孵育5min,冷却至室温,加0.25μL T7E1酶,37℃孵育45min。
d、电泳检测
电泳后利用凝胶电泳成像仪对电泳的琼脂糖凝胶成像,观察目的条带,判断敲除是否成功。
2.4 ddx27纯合突变体斑马鱼基因型鉴定
不同的缺失类型进行基因型筛选鉴定。
3实验结果
3.1 ddx27突变体的构建
3.1.1 ddx27F0基因敲除检测结果
T7E1酶切结果显示ddx27基因敲除成功。测序峰图显示在靶点处出现套峰,证明敲除成功(图1)。
3.1.2 ddx27F0germline transmission检测结果
取6尾ddx27F0基因检测敲除成功的成鱼与野生型斑马鱼外交,得到的F1胚胎5枚一管,取3-4管进行T7E1酶切鉴定,酶切结果显示,有2尾斑马鱼将突变传递给后代(图2)。
3.1.3 ddx27F1杂合突变体斑马鱼基因型鉴定
剪尾检测72尾外交获得的斑马鱼ddx27基因,经T7E1检测,获得22条阳性斑马鱼,进行TA克隆,确定发生有效突变。
发生有效突变的22尾斑马鱼中-27bp的突变体筛选到5尾;-14bp的突变体筛选到13尾;-5bp的突变体筛选到4尾(图3)。
3.1.4 ddx27F2突变体斑马鱼表型观察拍照
(1)将ddx27不同缺失类型杂合突变体内交(incross),产卵后收集培养用于早期胚胎发育观察,在3d时观察到小头,小眼,心包水肿等明显的发育迟缓、畸形的现象。每种突变类型取3对不同杂合突变体为亲本用于产卵,统计异常表型以及其sibling数目,并进行卡方检验可知,差异不显著,符合孟德尔遗传定律(图4)。
(2)为进一步确定ddx27突变体表型,故取3d大ddx27不同缺失类型突变体&野生型进行观察拍照,并用于后续基因型鉴定(图5)。
3.1.5 ddx27F2纯合突变体斑马鱼基因型鉴定
(1)单枚胚胎检测ddx27+/-(-27bp)内交所产3d大小的F2斑马鱼,经电泳检测,通过条带位置进行基因型判断,其中6尾阳性杂合子斑马鱼,4尾野生型斑马鱼,并且表型异常组均为纯合子,与图5(d)观察相一致(图6)。
(2)单枚胚胎检测ddx27+/-(-14bp)内交所产3d大的F2斑马鱼,经电泳检测,通过条带位置进行基因型判断,表型异常组均为纯合子,与图5(e)观察相一致(图7)。
(3)单枚胚胎检测ddx27+/-(-5bp)内交所产3d大的F2斑马鱼,经电泳检测,通过条带位置进行基因型判断,表型异常组均为纯合子,与图5(f)观察相一致(图8)。
Figure IDA0001712341080000011
Figure IDA0001712341080000021

Claims (3)

1.一种斑马鱼ddx27基因缺失突变体的制备方法,其特征在于,所述方法包括如下步骤:
S1、确定ddx27基因敲除的靶点在斑马鱼ddx27基因第6个外显子上设计gRNA序列;所述靶点序列为如SEQ ID NO.1所示的序列;所述gRNA的序列为如SEQ ID NO.6所示的序列;
S2、设计合成gRNA的上游引物T7-ddx27-sfd、下游引物tracrrev;
S3、以pUC19-gRNAscaffold质粒为模板,使用引物T7-ddx27-sfd、tracrrev进行PCR扩增;所述引物T7-ddx27-sfd的序列为如SEQ ID NO.2所示的序列;所述引物tracr rev的序列为如SEQ ID NO.3所示的序列;
S4、对步骤S3的PCR产物进行体外转录,转化获得gRNA;
S5、将gRNA与Cas9蛋白导入斑马鱼中;
S6、培养获得稳定遗传的斑马鱼ddx27基因突变体;具体包括如下步骤:
A1、分别取导入gRNA与Cas9蛋白的斑马鱼以及野生型未注射的斑马鱼胚胎进行ddx27基因敲除效率的检测,确定ddx27基因敲除阳性的F0养至成鱼;
A2、将ddx27基因敲除阳性F0成鱼与野生型斑马鱼外交,进行可遗传性及有效突变检测,筛选可遗传的有效突变F1进行喂养至成鱼;经基因型鉴定获得ddx27F1突变体斑马鱼;
A3、将相同突变的ddx27F1突变体斑马鱼内交,获得ddx27F2突变体斑马鱼;
A4、鉴定为F2代中ddx27基因敲除的纯合子即所述稳定遗传的斑马鱼ddx27基因突变体;
获得的ddx27-/-突变体斑马鱼具有发育迟缓、畸形的明显表型;所述发育迟缓、畸形包括小头、小眼、心包水肿。
2.根据权利要求1所述的斑马鱼ddx27基因突变体的制备方法,其特征在于,步骤S5中,将gRNA与Cas9蛋白导入斑马鱼具体为:将gRNA与Cas9蛋白混合,显微注射到斑马鱼一细胞期胚胎中;其中,gRNA终浓度为80-100ng/μL,Cas9蛋白终浓度为800ng/μL;总体积V=1μL。
3.根据权利要求1所述的斑马鱼ddx27基因突变体的制备方法,其特征在于,步骤A1中,ddx27基因敲除检测采用的引物序列包括如SEQ ID NO.4所示的序列的上游引物ddx27-F和如SEQ ID NO.5所示的序列的下游引物ddx27-R。
CN201810525964.6A 2018-05-28 2018-05-28 ddx27基因缺失斑马鱼突变体的制备方法 Active CN108753834B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201810525964.6A CN108753834B (zh) 2018-05-28 2018-05-28 ddx27基因缺失斑马鱼突变体的制备方法
US16/421,460 US11406090B2 (en) 2018-05-28 2019-05-23 Method of preparing ddx27-deletion zebrafish mutants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810525964.6A CN108753834B (zh) 2018-05-28 2018-05-28 ddx27基因缺失斑马鱼突变体的制备方法

Publications (2)

Publication Number Publication Date
CN108753834A CN108753834A (zh) 2018-11-06
CN108753834B true CN108753834B (zh) 2021-11-23

Family

ID=64003037

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810525964.6A Active CN108753834B (zh) 2018-05-28 2018-05-28 ddx27基因缺失斑马鱼突变体的制备方法

Country Status (2)

Country Link
US (1) US11406090B2 (zh)
CN (1) CN108753834B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111926017B (zh) * 2020-08-27 2023-08-11 南开大学 一种csf1ra基因缺失斑马鱼突变体的制备及其应用
CN113278654B (zh) * 2021-07-07 2022-05-27 华东师范大学 一种肝脏特异性积累dha的鱼类模型构建方法及其应用
CN114480497B (zh) * 2022-02-28 2023-09-15 湖南师范大学 一种ep400基因敲除斑马鱼心力衰竭模型的构建及其应用的方法
CN114600837B (zh) * 2022-04-15 2023-05-02 润康生物医药(苏州)有限公司 一种粒细胞缺乏症动物模型及其构建方法以及ikzf1和cmyb在构建模型中的应用
CN118109512B (zh) * 2024-04-29 2024-06-28 细胞生态海河实验室 tpi1a基因缺失斑马鱼突变体的制备方法及磷酸丙糖异构酶缺乏症斑马鱼疾病模型的构建方法

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1795379A (zh) * 2002-11-21 2006-06-28 惠氏公司 用于诊断肾细胞癌(rcc)和其他实体瘤的方法
CN1852974A (zh) * 2003-06-09 2006-10-25 密歇根大学董事会 用于治疗和诊断癌症的组合物和方法
WO2006132983A2 (en) * 2005-06-03 2006-12-14 The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Differential expression of molecules associated with vascular disease risk
WO2008104543A3 (en) * 2007-02-26 2008-11-06 Inst Nat Sante Rech Med Method for predicting the occurrence of metastasis in breast cancer patients
US7452670B2 (en) * 2003-12-04 2008-11-18 University Of Washington Methods of identifying agents that diminish cellular toxicity associated with an α-synuclein polypeptide of Parkinson's disease in yeast
CN101541977A (zh) * 2006-09-19 2009-09-23 诺瓦提斯公司 用于raf抑制剂的靶向调节、效力、诊断和/或预后的生物标志物
WO2013153130A1 (en) * 2012-04-10 2013-10-17 Vib Vzw Novel markers for detecting microsatellite instability in cancer and determining synthetic lethality with inhibition of the dna base excision repair pathway
CN105274144A (zh) * 2015-09-14 2016-01-27 徐又佳 通过CRISPR/Cas9技术得到敲除铁调素基因斑马鱼的制备方法
CN105647969A (zh) * 2016-02-16 2016-06-08 湖南师范大学 一种基因敲除选育stat1a基因缺失型斑马鱼的方法
CN105886534A (zh) * 2016-04-29 2016-08-24 苏州溯源精微生物科技有限公司 一种抑制肿瘤转移的方法
CN106191112A (zh) * 2016-07-27 2016-12-07 湖南师范大学 一种基因敲除选育wnt16基因缺失型斑马鱼的方法
CN106191110A (zh) * 2016-07-15 2016-12-07 湖南师范大学 一种wnt16基因缺失型斑马鱼
CN106232833A (zh) * 2014-01-30 2016-12-14 加利福尼亚大学董事会 用于非侵入性诊断的甲基化单体型分析(monod)
CN106282241A (zh) * 2016-08-05 2017-01-04 无锡市第二人民医院 通过CRISPR/Cas9得到敲除bmp2a基因的斑马鱼的方法
CN107058320A (zh) * 2017-04-12 2017-08-18 南开大学 Il7r基因缺失斑马鱼突变体的制备及其应用
EP2455878B1 (en) * 2006-12-27 2017-11-15 Abion Inc. Data processing, analysis method of gene expression data to identify endogenous reference genes
WO2018073393A2 (en) * 2016-10-19 2018-04-26 Cellectis Tal-effector nuclease (talen) -modified allogenic cells suitable for therapy
CN107988246A (zh) * 2018-01-05 2018-05-04 汕头大学医学院 一种基因敲除载体及其斑马鱼胶质瘤模型
CN107988268A (zh) * 2017-12-18 2018-05-04 湖南师范大学 一种基因敲除选育tcf25基因缺失型斑马鱼的方法
CN108018316A (zh) * 2017-12-20 2018-05-11 湖南师范大学 一种基因敲除选育rmnd5b基因缺失型斑马鱼的方法
CN108048486A (zh) * 2017-12-18 2018-05-18 湖南师范大学 一种基因敲除选育fhl1b基因缺失型斑马鱼的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060199204A1 (en) * 2001-10-05 2006-09-07 U.S. Epa Genetic testing for male factor infertility
CN102925377B (zh) * 2011-11-28 2014-11-05 上海海洋大学 一种地衣芽孢杆菌、筛选方法及用途
DK3103046T3 (da) * 2014-02-06 2020-06-02 Immunexpress Pty Ltd Biomarkør-signaturfremgangsmåde og apparater og kits deraf
CN103937701B (zh) * 2014-03-07 2017-01-25 上海海洋大学 一种短小芽孢杆菌shou002及其应用
US20160083791A1 (en) * 2014-09-18 2016-03-24 Pathadvantage Associated System and method for detecting abnormalities in cervical cells
CN105594664B (zh) * 2016-02-16 2018-10-02 湖南师范大学 一种基因敲除选育stat1a基因缺失型斑马鱼的方法
KR102597698B1 (ko) * 2018-05-28 2023-11-03 한국생명공학연구원 p-바디에 기반한 세포 내 단백질 간의 상호작용 분석 방법

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1795379A (zh) * 2002-11-21 2006-06-28 惠氏公司 用于诊断肾细胞癌(rcc)和其他实体瘤的方法
CN1852974A (zh) * 2003-06-09 2006-10-25 密歇根大学董事会 用于治疗和诊断癌症的组合物和方法
US7452670B2 (en) * 2003-12-04 2008-11-18 University Of Washington Methods of identifying agents that diminish cellular toxicity associated with an α-synuclein polypeptide of Parkinson's disease in yeast
WO2006132983A2 (en) * 2005-06-03 2006-12-14 The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Differential expression of molecules associated with vascular disease risk
CN101541977A (zh) * 2006-09-19 2009-09-23 诺瓦提斯公司 用于raf抑制剂的靶向调节、效力、诊断和/或预后的生物标志物
EP2455878B1 (en) * 2006-12-27 2017-11-15 Abion Inc. Data processing, analysis method of gene expression data to identify endogenous reference genes
WO2008104543A3 (en) * 2007-02-26 2008-11-06 Inst Nat Sante Rech Med Method for predicting the occurrence of metastasis in breast cancer patients
WO2013153130A1 (en) * 2012-04-10 2013-10-17 Vib Vzw Novel markers for detecting microsatellite instability in cancer and determining synthetic lethality with inhibition of the dna base excision repair pathway
CN104379765A (zh) * 2012-04-10 2015-02-25 非营利性组织佛兰芒综合大学生物技术研究所 用于检测癌症中的微卫星不稳定性和测定与dna碱基切除修复途径抑制的合成致死性的新标记
CN106232833A (zh) * 2014-01-30 2016-12-14 加利福尼亚大学董事会 用于非侵入性诊断的甲基化单体型分析(monod)
CN105274144A (zh) * 2015-09-14 2016-01-27 徐又佳 通过CRISPR/Cas9技术得到敲除铁调素基因斑马鱼的制备方法
CN105647969A (zh) * 2016-02-16 2016-06-08 湖南师范大学 一种基因敲除选育stat1a基因缺失型斑马鱼的方法
CN105886534A (zh) * 2016-04-29 2016-08-24 苏州溯源精微生物科技有限公司 一种抑制肿瘤转移的方法
CN106191110A (zh) * 2016-07-15 2016-12-07 湖南师范大学 一种wnt16基因缺失型斑马鱼
CN106191112A (zh) * 2016-07-27 2016-12-07 湖南师范大学 一种基因敲除选育wnt16基因缺失型斑马鱼的方法
CN106282241A (zh) * 2016-08-05 2017-01-04 无锡市第二人民医院 通过CRISPR/Cas9得到敲除bmp2a基因的斑马鱼的方法
WO2018073393A2 (en) * 2016-10-19 2018-04-26 Cellectis Tal-effector nuclease (talen) -modified allogenic cells suitable for therapy
CN107058320A (zh) * 2017-04-12 2017-08-18 南开大学 Il7r基因缺失斑马鱼突变体的制备及其应用
CN107988268A (zh) * 2017-12-18 2018-05-04 湖南师范大学 一种基因敲除选育tcf25基因缺失型斑马鱼的方法
CN108048486A (zh) * 2017-12-18 2018-05-18 湖南师范大学 一种基因敲除选育fhl1b基因缺失型斑马鱼的方法
CN108018316A (zh) * 2017-12-20 2018-05-11 湖南师范大学 一种基因敲除选育rmnd5b基因缺失型斑马鱼的方法
CN107988246A (zh) * 2018-01-05 2018-05-04 汕头大学医学院 一种基因敲除载体及其斑马鱼胶质瘤模型

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
CRISPR/Cas9技术在斑马鱼基因修饰中的应用;李佳 等;《生命科学》;20150115;第27卷(第1期);第26-29页 *
CRISPR/CAs9系统介导的早期斑马鱼IncRNA的沉默;田净净 等;《2015中国遗传学会大会论文摘要汇编》;20150814;第223页 *
Danio rerio DEAD (Asp-Glu-Ala-Asp) box polypeptide 27 (ddx27), mRNA;NCBI;《GenBank Database》;20170703;Accession No.NM_001002869.1 *
Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system;Li-En Jao 等;《PNAS》;20130820;第110卷(第34期);第13904–13909页 *
Genome editing with RNA-guided Cas9 nuclease in Zebrafish embryos;Nannan Chang 等;《Cell Research》;20130326;第23卷(第4期);摘要,材料与方法 *
Genome-wide specificity of DNA binding,gene regulation, and chromatin remodeling by TALE- and CRISPR/Cas9-based transcriptional activators;Lauren R. Polstein 等;《Genome Research》;20150529;第25卷(第8期);第1158-1169页 *
Multiple genome modifications by the CRISPR/Cas9 system in zebrafish;Satoshi Ota 等;《Genes to Cells》;20140522;第19卷(第7期);第555-564页 *
副溶血弧菌诱导的Notch分子参与天然免疫应答作用的初步研究;董雪红;《中国优秀硕士学位论文全文数据库(电子期刊)农业科技辑》;20160215(第02期);2.实验方法,第2.4节制备F0斑马鱼与靶点突变效率检测 *

Also Published As

Publication number Publication date
US11406090B2 (en) 2022-08-09
US20200053990A1 (en) 2020-02-20
CN108753834A (zh) 2018-11-06

Similar Documents

Publication Publication Date Title
CN108753834B (zh) ddx27基因缺失斑马鱼突变体的制备方法
CN108707628B (zh) 斑马鱼notch2基因突变体的制备方法
CN107475300B (zh) Ifit3-eKO1基因敲除小鼠动物模型的构建方法和应用
CN104651399B (zh) 一种利用CRISPR/Cas系统在猪胚胎细胞中实现基因敲除的方法
CN110551759B (zh) 一种提高转基因细胞重组效率的组合物及方法
CN108707629A (zh) 斑马鱼notch1b基因突变体的制备方法
CN111926017B (zh) 一种csf1ra基因缺失斑马鱼突变体的制备及其应用
JP6958917B2 (ja) 遺伝子ノックイン細胞の作製方法
US20220136041A1 (en) Off-Target Single Nucleotide Variants Caused by Single-Base Editing and High-Specificity Off-Target-Free Single-Base Gene Editing Tool
WO2018045727A1 (zh) 粘多糖贮积症ii型动物模型的构建方法及应用
CN111154758A (zh) 敲除斑马鱼slc26a4基因的方法
CN105274141A (zh) 一种用于原始生殖细胞靶向突变的转基因载体及制备方法和用途
Li et al. A detailed procedure for CRISPR/Cas9-mediated gene editing in tilapia
CN113736787A (zh) 靶向小鼠Atp7b基因的gRNA及构建Wilson疾病小鼠模型的方法
CN116083492A (zh) csde1基因缺失斑马鱼突变体的制备及斑马鱼造血干细胞发育缺陷模型的构建方法
CN111549070B (zh) 对x染色体多拷贝基因进行编辑实现动物性别控制的方法
CN115976103B (zh) 一种双壳贝类生长调控基因的功能验证方法
CN114934073B (zh) hoxa1a基因敲除斑马鱼突变体的构建方法和应用
CN108753833B (zh) 斑马鱼notch3基因突变体的制备方法
CN115029352A (zh) 一种基因敲除选育adgrg1基因缺失型斑马鱼的方法
CN114480497A (zh) 一种ep400基因敲除斑马鱼心力衰竭模型的构建及其应用的方法
CN113249409A (zh) 一种bmi1基因缺失斑马鱼
CN113897361A (zh) 一种eef1b2基因敲除斑马鱼癫痫模型及其构建方法和应用
CN112695034A (zh) ApoE基因缺失斑马鱼的制备
CN112680479A (zh) Cyp1b1基因缺失斑马鱼的制备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant