CN108728328A - 集成单细胞捕获的微流控细胞分选芯片 - Google Patents

集成单细胞捕获的微流控细胞分选芯片 Download PDF

Info

Publication number
CN108728328A
CN108728328A CN201810537146.8A CN201810537146A CN108728328A CN 108728328 A CN108728328 A CN 108728328A CN 201810537146 A CN201810537146 A CN 201810537146A CN 108728328 A CN108728328 A CN 108728328A
Authority
CN
China
Prior art keywords
micro
unicellular
cell
trapping layer
capture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810537146.8A
Other languages
English (en)
Other versions
CN108728328B (zh
Inventor
谭秋林
孙东
吴菲
吉耀辉
吕文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North University of China
Original Assignee
North University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North University of China filed Critical North University of China
Priority to CN201810537146.8A priority Critical patent/CN108728328B/zh
Publication of CN108728328A publication Critical patent/CN108728328A/zh
Application granted granted Critical
Publication of CN108728328B publication Critical patent/CN108728328B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/04Cell isolation or sorting
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/16Microfluidic devices; Capillary tubes

Abstract

本发明集成单细胞捕获的微流控细胞分选芯片,属于微流控芯片领域;提供了能够用在白血病检测诊断而且不破坏白血病细胞活性的微流控芯片;技术方案为:包括基底和细胞捕获器,基底上溅射有电极对,细胞捕获器上设有一个样品入口和两个样品出口,细胞捕获器包括上捕获层和下捕获层,上捕获层和下捕获层对准键合后形成细胞捕获阵列和微流通道,细胞捕获阵列包括多个同形的单细胞捕获结构,单细胞捕获结构包括U形柱和圆柱,样品入口贯穿上捕获层后与微流通道的首端相连,微流通道经过电极对后分两路,每路与一个细胞捕获阵列的前端相连,与细胞捕获阵列后端相连的微流通道与贯穿上捕获层的样品出口相连;本发明可用于细胞分选领域。

Description

集成单细胞捕获的微流控细胞分选芯片
技术领域
本发明集成单细胞捕获的微流控细胞分选芯片,属于微流控芯片技术领域。
背景技术
细胞分离是现代生物学的重要组成部分,也是细胞研究中的关键步骤之一,在疾病诊断和单细胞分析中是非常重要的。目前,粒子分离的方法分为主动和被动分离,现阶段的分离技术有磁激发细胞分离技术、荧光激发细胞分离技术、离心分离技术和介电电泳分离技术。在这些方法中,介电电泳免标记分离的细胞可以进一步培养后续的生物分析,还具有低成本、高效、非侵入等优点,可以分离不同类型的粒子,如DNA,蛋白质,病毒和细菌等,还成功的分离了高通量并精准筛选能够获得大量的目标细胞,从而应用于细胞生物学、生物医学、组织工程学、药代动力学、组合化学和司法认定等方面的研究。
介电电泳是微粒处于非均匀电场中由于计划现象而产生运动的一种现象。近年来,介电电泳微流控芯片研究已从最初对样品的简单富集操作,扩展到了诸多方面。介电电泳微流控芯片一般采用 MEMS 技术加工制作,整个操作过程都比较容易调控和实现集成化、自动化。将介电电泳技术与流体力、电场力、激光镊子等模式集成是研究的新方向,而微流控芯片介电电泳分析系统中的微电极结构是决定效能的关键因素之一,目标微粒和悬浮液的介电常数、电场梯度大小是影响介电电泳力的主要因素,其中电极形状决定电场梯度的方向和大小,因此,电极形状的选择对微流控芯片的设计就非常重要了,而设计出分离性能高、结构合理的微电极结构就成了人们关注的重点。
THP-1细胞和OCI细胞是两种人急性髓细胞性白血病细胞,它们直径相近,其细胞直径都为15~20μm,传统上采用介电泳方法分离,但是该方法会对细胞的活性造成影响。
发明内容
本发明集成单细胞捕获的微流控细胞分选芯片,克服了现有技术成本高、成品率低的不足,提供了一种能够用在白血病检测诊断而且不破坏白血病细胞活性的微流控芯片。
为了解决上述技术问题,本发明采用的技术方案为:一种集成单细胞捕获的微流控细胞分选芯片,包括基底和细胞捕获器,基底上溅射有电极对,细胞捕获器上设有一个样品入口和两个样品出口,细胞捕获器包括上捕获层和下捕获层,上捕获层和下捕获层对准键合后形成细胞捕获阵列和微流通道,细胞捕获阵列包括多个同形的单细胞捕获结构,每个单细胞捕获结构包括U形柱和圆柱,U形柱与上捕获层相连,圆柱与下捕获层相连,样品入口贯穿上捕获层后与微流通道的首端相连,微流通道经过电极对后分两路,每路与一个细胞捕获阵列的前端相连,与细胞捕获阵列后端相连的微流通道与贯穿上捕获层的样品出口相连。
进一步,所述电极对中包括多对梯形微电极和插指微电极,梯形微电极的长度为120 ~480μm,宽度为20~80μm,高度为120~480μm,相邻梯形微电极之间的间隔是20~80μm。
进一步,所述梯形微电极和插指微电极的对数为十对。
进一步,所述基底所用的材料为玻璃。
进一步,所述样品入口的直径为100~460μm,所述样品出口包括第一样品出口和第二样品出口,第一样品出口的直径为60~280μm,第二样品出口的直径为80~320μm。
进一步,相邻两个所述单细胞捕获结构的前后间距为60~100μm,所述U形柱和所述圆柱的上下间距为30~80μm,所述U形柱的弯角处直径为30~ 80μm,开口处的宽度为60~100μm,所述U形柱的U形口的宽度为8 ~25μm,所述圆柱的端面直径为40 ~100μm。
进一步,所述细胞捕获器所用的材料为PDMS。
进一步,所述样品为THP-1细胞和OCI细胞的混合细胞悬液。
本发明与现有技术相比具有以下有益效果。
1.本发明将介电泳的非侵入、免标记与动力学原理低成本的优点结合,利用细胞受到的介电泳力大小或者方向不同而实现分离,利用微捕获结构来捕获单细胞。本发明中的单细胞捕获的结构,不仅效率高、成本低,还可以一次性得到大量的单细胞。
2.本发明利用流体动力学原理来实现单细胞捕获,选用PDMS制作双层捕获结构,降低了制作成本,同时增加了芯片的成品率。
3.本发明微流控芯片通过实验测试实现了在一个微流控芯片上集成细胞分离和单细胞捕获两种功能,简化了硬件设施,使微流控芯片使用更加方便。
4.本发明用过氧等离子气体处理后键合的微流控芯片,使芯片更加牢固,可以更好的防止漏水问题。
5.本发明实现了两种直径相近的白血病细胞OCI和THP-1的连续分离,并对THP-1细胞实现了单细胞捕获。
附图说明
图1为本发明实施例的整体结构示意图;
图2为本发明实施例的分体结构示意图;
图3为本发明实施例的侧视图;
图4为本发明实施例的俯视图;
图5为本发明实施例中捕获结构的结构示意图;
图6为本发明实施例中的电极对的结构示意图;
图7为为本发明实施例中上捕获层和下捕获层的结构示意图;
图8为使用本发明进行细胞分离的工作示意图。
图中,1-基底,2-细胞捕获器,3-电极对,4-微流通道,5-细胞捕获阵列,6-样品入口,7-第一样品出口,8-第二样品出口,9- U形柱,10-圆柱。
具体实施方式
下面结合附图对本发明做进一步的说明。
如图1-图7所示,本发明一种集成单细胞捕获的微流控细胞分选芯片,包括基底1和细胞捕获器2,基底1上溅射有电极对3,细胞捕获器2上设有一个样品入口6和两个样品出口7,8,细胞捕获器2包括上捕获层和下捕获层,上捕获层和下捕获层对准键合后形成细胞捕获阵列5和微流通道4,细胞捕获阵列5包括多个同形的单细胞捕获结构,每个单细胞捕获结构包括U形柱9和圆柱10,U形柱9与上捕获层相连,圆柱9与下捕获层相连,样品入口6贯穿上捕获层后与微流通道4的首端相连,微流通道4经过电极对2后分两路,每路与一个细胞捕获阵列5的前端相连,与细胞捕获阵列5后端相连的微流通道4与贯穿上捕获层的样品出口7,8相连。基底1所用的材料为玻璃。
电极对3中包括十对梯形微电极和插指微电极,梯形微电极的长度为200μm,宽度为40μm,高度为200μm,相邻梯形微电极之间的间隔是40μm。
样品入口6的直径为100μm,样品出口7,8包括第一样品出口7和第二样品出口8,第一样品出口7的直径为100μm,第二样品出口8的直径为120μm。
相邻两个单细胞捕获结构的前后间距为80μm,U形柱9和圆柱10的上下间距为50μm, U形柱的弯角处直径为45μm,开口处的宽度为70μm,U形柱9的U形口的宽度为15μm,圆柱10的端面直径为60μm。
细胞捕获器2所用的材料为PDMS。样品为THP-1细胞和OCI细胞的混合细胞悬液。
芯片的制作方法
以下制作方法是为了帮助本领域技术人员理解本发明的制造方法,而不是对本发明的材料、尺寸和制作方法做出限定。
微流控芯片的微电极以玻璃为基底,利用溅射法制作微电极。在玻璃片上溅射金属铂之前先溅射一层金属钛,可以使金属铂与玻璃基底更牢靠不易脱落。金属溅射的工艺流程,可以分为清洗、匀胶、前烘、曝光、后烘、显影、溅射钛、溅射铂和乙醇剥离。
(1)清洗:将玻璃片先放入丙酮溶液中超声清洗5min,随后放入乙醇溶液中超声震荡清洗5min,最后用去离子水超声清洗5min,用氮气将其吹干,在设定温度为100℃的加热板上加热1min。
(2)匀胶:设定匀胶机转速为500r/min的低速10s,2500r/min的高速30s,在玻璃片表面旋涂一层厚度为2μm的正胶(RZJ304)。
(3)前烘:设置温度为100℃的加热板,将匀好正胶的玻璃片加热1min。
(4)曝光:将掩膜版与光刻正胶表面距离设置为100μm、曝光剂量为43mJ/cm2,把匀有正胶的ITO导电玻璃放入光刻机中来完成曝光工艺。
(5)后烘:将加热板的温度设置为100℃,把曝光过后的玻璃片放在加热板上加热1min。
(6)显影:把玻璃片放在正胶显影液(RZX-3038)中显影,显影时间为35s,之后用去离子水洗净,氮气吹干。
(7)溅射钛:将靶材金属钛和玻璃片放入高分辨率磁控离子溅射镀膜仪中,溅射10nm厚的的钛。
(8)溅射铂:将靶材换成金属铂,在溅射完钛的玻璃片上溅射100nm的金属铂。
(9)乙醇剥离:将溅射完成的玻璃片,放入乙醇溶液中超声清洗30min,取出,并用去离子水清洗,氮气吹干。
本芯片具有单细胞捕获结构的微流通道是利用高聚物材料聚二甲基硅氧烷(PDMS)制作完成的。一般采用模塑法来加工微流通道和单细胞捕获结构,用光刻法制作出以硅片为基底的阳模具,浇注配比搅拌好的液态高分子材料,最后固化剥离。主要制作工艺步骤为匀胶、前烘、曝光、后烘、匀胶、前烘、曝光、后烘、显影、浇注固化和剥离。
(1)清洗:把硅片放入稀硫酸和双氧水的溶液中超声清洗5min,再放入去离子水中超声清洗5min,用氮气吹干,备用。
(2)匀胶:将光刻负胶(SU8-2007)用低速500r/min旋涂10s,高速3000r/min旋涂30s,旋涂在硅片表面负胶的厚度约为10μm。
(3)前烘:设置加热板的温度为65℃,将匀过负胶的硅片水平放在加热板上加热1min后,将加热板的温度升高至95℃,加热3min。
(4)曝光:把先前制作好的菲林掩膜版放入光刻机中,将上捕获层结构光刻在硅片负胶表面。
(5)后烘:同之前的前烘一样,在65℃的加热板上加热1min,之后在95℃的加热板上加热3min,此时,光刻的上捕获层结构和对准标记能够显现并观察出来。
(6)匀胶:用胶带纸将对准标记粘住,选用低速500r/min旋涂10s、高速6000r/min旋涂30s,在之前的负胶(SU8-2007)上旋涂一层厚度约为30μm负胶(SU8-2050)。
(7)前烘:将匀过负胶(SU8-2050)后的硅片四周胶带纸拭去,露出对准标记,将加热板温度设置为65℃加热2min,之后将温度升高至95℃,继续加热5min。
(8)曝光:将绘制有微流通道和下捕获层结构图案的掩膜版放入光刻机内,将硅片上的对准标记与掩膜版上的对准标记对齐,光刻微流通道和下捕获层结构。
(9)后烘:设置加热板设置为65℃,加热光刻后的硅片2min,然后将加热板升至95℃并加热5min,为了防止由于温度的骤然升降将使光刻负胶表面产生皱褶或者裂缝,要将硅片自然冷却至室温。
(10)显影:配制SU8显影液将后烘完成的硅片放置其中显影5min,留下微流通道和单细胞捕获结构,之后用去离子水洗净,氮气吹干,备用。
(11)浇注固化:把PDMS预聚物与固化剂按照10:1的比例搅拌均匀,静置5min后抽真空,当气泡完全消失后得到未完全固化的液态PDMS聚合物。随后将其浇注于含有单细胞捕获结构和微流通道的硅片上,抽真空10min,用来除去未完全固化的液态PDMS聚合物中的气泡。最后放置于加热板上以温度90℃加热1小时,便可完成PDMS的固化工作。
(12)剥离:将已经固化成型的PDMS从硅片上剥离出来,与所制作的微流控芯片微电极大小进行对比,用刀片将PMDS划成合适大小,若与微电极键合可以将电极焊盘露出来;最后还需要在微流通道的入口和出口处完成打孔,备用。
(13)将具有微电极那面的玻璃与具有微流通道那面的PDMS材料朝上,一起放入等离子键合机(PDC-32G-2)内进行30s表面改性处理。用过氧等离子气体处理过的PDMS材料表面和玻璃片表面若在空气中暴露太久,表面出现的极性基团将会消失,因此对准过程需要迅速完成,若是使用显微镜手动来进行对准,很可能会因对准操作过程耗时过长极性基团消失。本发明的微流通道因为尺寸较窄,需要精确对准,所以需要借助光刻机来完成对准键合,用透明胶带将有微电极的玻璃基底固定在光刻机显微镜的载物台上,然后将 PDMS 材料制作的微流通道粘贴在光刻机械平台的上方,通过调整旋钮控制光刻机的机械平台进行方向调节,使 PDMS 材料制作的微流通道与玻璃基底进行对准 。
(14)对准之后,调节机械平台使 PDMS 材料制作的微流通道与玻璃基底键合在一起,实现初步键合。之后将实现初步键合的微流控芯片放在90℃的加热板上加热5 min,完成键合的最后一步。
芯片的工作过程
采用以下方法将本发明应用于人体白血病细胞的分选和捕获。此方法为了便于本领域技术人员理解本发明的功能,并不是对本发明的适用范围做出限定。
如图8所示,THP-1细胞和OCI细胞是人急性髓细胞性白血病细胞。
(1)Hoechst荧光染色剂染THP-1细胞的细胞核,激发蓝色荧光;Cfda-se荧光染色剂染OCI细胞的细胞核,激发绿色荧光。从样品入口6注入含有这两种细胞的混合细胞悬液。
(2)从电极对3施加电压幅值为20V、频率为5MHz的交流信号,在1.5μL/min的流速情况下,THP-1细胞受正介电泳力较大,一部分向第一样品出口7偏转,一部分仍向第二样品出口8流出;分离提纯后的THP-1细胞流入捕获结构区域,在斯托克斯拖曳力作用下被捕获。OCI细胞在此条件下也受正介电泳力的影响,但是没有THP-1细胞受正介电泳力的影响大,OCI细胞绝大部分都从第二样品出口8流出,由第一样品出口7收集到的THP-1细胞分离纯度高达94.89%。
尽管已经参照其示例性实施例具体显示和描述了本发明,但是本领域的技术人员应该理解,在不脱离权利要求所限定的本发明的精神和范围的情况下,可以对其进行形式和细节上的各种改变。

Claims (8)

1.一种集成单细胞捕获的微流控细胞分选芯片,其特征在于:包括基底(1)和细胞捕获器(2),基底(1)上溅射有电极对(3),细胞捕获器(2)上设有一个样品入口(6)和两个样品出口(7,8),细胞捕获器(2)包括上捕获层和下捕获层,上捕获层和下捕获层对准键合后形成细胞捕获阵列(5)和微流通道(4),细胞捕获阵列(5)包括多个同形的单细胞捕获结构,每个单细胞捕获结构包括U形柱(9)和圆柱(10),U形柱(9)与上捕获层相连,圆柱(9)与下捕获层相连,样品入口(6)贯穿上捕获层后与微流通道(4)的首端相连,微流通道(4)经过电极对(2)后分两路,每路与一个细胞捕获阵列(5)的前端相连,与细胞捕获阵列(5)后端相连的微流通道(4)与贯穿上捕获层的样品出口(7,8)相连。
2.根据权利要求1所述的集成单细胞捕获的微流控细胞分选芯片,其特征在于:所述电极对(3)中包括多对梯形微电极和插指微电极,梯形微电极的长度为120 ~480μm,宽度为20~80μm,高度为120~480μm,相邻梯形微电极之间的间隔是20~80μm。
3.根据权利要求2所述的集成单细胞捕获的微流控细胞分选芯片,其特征在于:所述梯形微电极和插指微电极的对数为十对。
4.根据权利要求1所述的集成单细胞捕获的微流控细胞分选芯片,其特征在于:所述基底(1)所用的材料为玻璃。
5.根据权利要求1所述的集成单细胞捕获的微流控细胞分选芯片,其特征在于:所述样品入口(6)的直径为100~460μm,所述样品出口(7,8)包括第一样品出口(7)和第二样品出口(8),第一样品出口(7)的直径为60~280μm,第二样品出口(8)的直径为80~320μm。
6.根据权利要求1所述的集成单细胞捕获的微流控细胞分选芯片,其特征在于:相邻两个所述单细胞捕获结构的前后间距为60~100μm,所述U形柱(9)和所述圆柱(10)的上下间距为30~80μm,所述U形柱(9)的弯角处直径为30~ 80μm,开口处的宽度为60~100μm,所述U形柱(9)的U形口的宽度为8 ~25μm,所述圆柱(10)的端面直径为40 ~100μm。
7.根据权利要求1所述的集成单细胞捕获的微流控细胞分选芯片,其特征在于:所述细胞捕获器(2)所用的材料为PDMS。
8.根据权利要求1-7任一所述的集成单细胞捕获的微流控细胞分选芯片,其特征在于:所述样品为THP-1细胞和OCI细胞的混合细胞悬液。
CN201810537146.8A 2018-05-30 2018-05-30 集成单细胞捕获的微流控细胞分选芯片 Active CN108728328B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810537146.8A CN108728328B (zh) 2018-05-30 2018-05-30 集成单细胞捕获的微流控细胞分选芯片

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810537146.8A CN108728328B (zh) 2018-05-30 2018-05-30 集成单细胞捕获的微流控细胞分选芯片

Publications (2)

Publication Number Publication Date
CN108728328A true CN108728328A (zh) 2018-11-02
CN108728328B CN108728328B (zh) 2021-11-16

Family

ID=63935843

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810537146.8A Active CN108728328B (zh) 2018-05-30 2018-05-30 集成单细胞捕获的微流控细胞分选芯片

Country Status (1)

Country Link
CN (1) CN108728328B (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109289953A (zh) * 2018-11-14 2019-02-01 哈尔滨工业大学 微尺度颗粒分离芯片及利用该芯片分离微尺度颗粒的方法
CN110190036A (zh) * 2019-06-10 2019-08-30 华天慧创科技(西安)有限公司 一种泛光照明模组的晶圆级封装结构及封装方法
CN110331096A (zh) * 2019-07-19 2019-10-15 东北大学 模拟肿瘤微环境的微流控芯片及肿瘤微环境的构建方法
CN110394204A (zh) * 2019-08-21 2019-11-01 苏州大学 一种包含液态金属电极的微流控芯片及其制备方法
CN111349541A (zh) * 2018-12-24 2020-06-30 国家纳米科学中心 用于单细胞捕获和筛选的微流控芯片及其应用
CN111413257A (zh) * 2020-01-21 2020-07-14 中国科学院电子学研究所 细胞核电学性能检测装置及方法
CN111500440A (zh) * 2020-04-26 2020-08-07 中国科学院广州生物医药与健康研究院 一种单细胞分选装置和单细胞分选方法
CN113996360A (zh) * 2021-11-05 2022-02-01 中山大学 捕获循环肿瘤细胞的超材料微流控芯片及其制备方法
CN115857287A (zh) * 2023-02-20 2023-03-28 中北大学 一种石墨烯微结构的制备方法
CN115895864A (zh) * 2022-11-30 2023-04-04 重庆大学 一种基于平面电极的微流控芯片检测系统
CN116121031A (zh) * 2022-12-23 2023-05-16 重庆大学 用于单细胞筛选的多级化微流控芯片及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003100804A1 (en) * 2002-05-23 2003-12-04 Digit Wireless, Llc Keypads and key switches
CN101285036A (zh) * 2008-05-16 2008-10-15 深圳先进技术研究院 一种自动化细胞培养微流控芯片装置及其方法
CN101548004A (zh) * 2005-08-19 2009-09-30 加利福尼亚大学董事会 用于诊断学和细胞分析的微流体方法
CN102728423A (zh) * 2012-06-21 2012-10-17 西北农林科技大学 一种气动阵列化细胞捕获与释放芯片及其操作方法
CN102879377A (zh) * 2012-10-29 2013-01-16 重庆科技学院 一种白血病早期检测的微流控芯片
CN104677877A (zh) * 2013-11-26 2015-06-03 中国科学院青岛生物能源与过程研究所 一种捕获采集细胞/颗粒拉曼光谱的微流控芯片及方法
CN104745468A (zh) * 2015-04-20 2015-07-01 齐鲁工业大学 基于微流控芯片的微尺寸目标混合动电操控方法
JP2017093359A (ja) * 2015-11-25 2017-06-01 一般財団法人生産技術研究奨励会 マイクロチャンバーアレイ装置およびそれを用いた検査対象物の解析方法
CN107988070A (zh) * 2017-06-13 2018-05-04 北京呈诺医学科技有限公司 一种微量细胞电转微流控芯片、电转分选仪及应用
CN111548912A (zh) * 2020-06-28 2020-08-18 安徽工业大学 一种用于捕获、孵育循环肿瘤细胞的整合型微流控芯片

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003100804A1 (en) * 2002-05-23 2003-12-04 Digit Wireless, Llc Keypads and key switches
CN101548004A (zh) * 2005-08-19 2009-09-30 加利福尼亚大学董事会 用于诊断学和细胞分析的微流体方法
CN101285036A (zh) * 2008-05-16 2008-10-15 深圳先进技术研究院 一种自动化细胞培养微流控芯片装置及其方法
CN102728423A (zh) * 2012-06-21 2012-10-17 西北农林科技大学 一种气动阵列化细胞捕获与释放芯片及其操作方法
CN102879377A (zh) * 2012-10-29 2013-01-16 重庆科技学院 一种白血病早期检测的微流控芯片
CN104677877A (zh) * 2013-11-26 2015-06-03 中国科学院青岛生物能源与过程研究所 一种捕获采集细胞/颗粒拉曼光谱的微流控芯片及方法
CN104745468A (zh) * 2015-04-20 2015-07-01 齐鲁工业大学 基于微流控芯片的微尺寸目标混合动电操控方法
JP2017093359A (ja) * 2015-11-25 2017-06-01 一般財団法人生産技術研究奨励会 マイクロチャンバーアレイ装置およびそれを用いた検査対象物の解析方法
CN107988070A (zh) * 2017-06-13 2018-05-04 北京呈诺医学科技有限公司 一种微量细胞电转微流控芯片、电转分选仪及应用
CN111548912A (zh) * 2020-06-28 2020-08-18 安徽工业大学 一种用于捕获、孵育循环肿瘤细胞的整合型微流控芯片

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
中国药学会: "《生物医药与人类健康》", 31 January 2016, 中国科学技术出版社 *
吴菲 等: "《基于介电电泳的粒子分离微流控芯片实验》", 《微纳电子技术》 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109289953A (zh) * 2018-11-14 2019-02-01 哈尔滨工业大学 微尺度颗粒分离芯片及利用该芯片分离微尺度颗粒的方法
CN109289953B (zh) * 2018-11-14 2020-11-27 哈尔滨工业大学 微尺度颗粒分离芯片及利用该芯片分离微尺度颗粒的方法
CN111349541A (zh) * 2018-12-24 2020-06-30 国家纳米科学中心 用于单细胞捕获和筛选的微流控芯片及其应用
CN110190036B (zh) * 2019-06-10 2021-11-30 华天慧创科技(西安)有限公司 一种泛光照明模组的晶圆级封装结构及封装方法
CN110190036A (zh) * 2019-06-10 2019-08-30 华天慧创科技(西安)有限公司 一种泛光照明模组的晶圆级封装结构及封装方法
CN110331096A (zh) * 2019-07-19 2019-10-15 东北大学 模拟肿瘤微环境的微流控芯片及肿瘤微环境的构建方法
CN110394204A (zh) * 2019-08-21 2019-11-01 苏州大学 一种包含液态金属电极的微流控芯片及其制备方法
CN110394204B (zh) * 2019-08-21 2023-09-19 苏州大学 一种包含液态金属电极的微流控芯片及其制备方法
CN111413257A (zh) * 2020-01-21 2020-07-14 中国科学院电子学研究所 细胞核电学性能检测装置及方法
CN111500440A (zh) * 2020-04-26 2020-08-07 中国科学院广州生物医药与健康研究院 一种单细胞分选装置和单细胞分选方法
CN113996360A (zh) * 2021-11-05 2022-02-01 中山大学 捕获循环肿瘤细胞的超材料微流控芯片及其制备方法
CN113996360B (zh) * 2021-11-05 2023-02-21 中山大学 捕获循环肿瘤细胞的超材料微流控芯片及其制备方法
CN115895864A (zh) * 2022-11-30 2023-04-04 重庆大学 一种基于平面电极的微流控芯片检测系统
CN116121031A (zh) * 2022-12-23 2023-05-16 重庆大学 用于单细胞筛选的多级化微流控芯片及其制备方法
CN116121031B (zh) * 2022-12-23 2024-03-12 重庆大学 用于单细胞筛选的多级化微流控芯片及其制备方法
CN115857287A (zh) * 2023-02-20 2023-03-28 中北大学 一种石墨烯微结构的制备方法

Also Published As

Publication number Publication date
CN108728328B (zh) 2021-11-16

Similar Documents

Publication Publication Date Title
CN108728328A (zh) 集成单细胞捕获的微流控细胞分选芯片
CN108977343B (zh) 基于介电泳原理的用于细胞分离与捕获的微流控芯片
EP2270130B1 (en) Cell fusion device, and method for cell fusion using the same
CN109536590A (zh) 一种基于微孔阵列芯片的单细胞基因检测方法
CN106824318B (zh) 一种基于诱导电荷电渗和介电泳的微尺度颗粒分离芯片及其制备方法与应用
CN106925358B (zh) 一种能实现细胞中心位置聚焦和检测的微流控芯片
CN104096608A (zh) 一种分离式微米级粒子自动组装、分选器件及其制作方法
CN110314715B (zh) 基于聚焦式表面声波和微液滴技术的粒子富集微流控芯片
CN112094742B (zh) 细胞电穿孔转染与活细胞分选同步实现的微流控芯片
CN107118938A (zh) 流体增强介电泳单细胞排列与控制芯片及其制作方法
WO2008018390A1 (fr) Procédé de formation d'un motif de cellules
CN115007231A (zh) 一种用于细胞-微珠捕获配对的微流控芯片
CN114774275A (zh) 基于旋转电场下双极性电极的三维细胞球生成芯片及应用
CN211216724U (zh) 一种包含可形变液态金属电极的微流控芯片
CN108529555A (zh) 一种与循环肿瘤细胞尺寸匹配的微纳复合结构表面、制备方法及其应用
CN217140437U (zh) 一种高稳定性的液滴分选系统及包含该系统的微流控芯片
CN114870917A (zh) 用于识别不同细胞的微流控芯片及其制备方法和检测平台
CN112973986B (zh) 一种离心装置
CN114965430A (zh) 用于循环肿瘤细胞捕获和分析的基底制备方法及应用
Pan et al. Cell membrane damage and cargo delivery in nano-electroporation
CN110394204B (zh) 一种包含液态金属电极的微流控芯片及其制备方法
Al-Ali et al. A microfluidic platform with castellated electrodes to separate cancer cells from blood cells
CN113996360B (zh) 捕获循环肿瘤细胞的超材料微流控芯片及其制备方法
CN115739217B (zh) 一种高保真液态金属三维微电极的制备方法
CN117420185A (zh) 一种肿瘤细胞高灵敏检测芯片、制备方法及使用方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant