CN108717904A - 一种可用于电化学储能的电化学还原石墨烯量子点/聚吡咯复合材料的制备方法 - Google Patents

一种可用于电化学储能的电化学还原石墨烯量子点/聚吡咯复合材料的制备方法 Download PDF

Info

Publication number
CN108717904A
CN108717904A CN201810530821.4A CN201810530821A CN108717904A CN 108717904 A CN108717904 A CN 108717904A CN 201810530821 A CN201810530821 A CN 201810530821A CN 108717904 A CN108717904 A CN 108717904A
Authority
CN
China
Prior art keywords
polypyrrole
quantum dot
graphene quantum
electrode
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810530821.4A
Other languages
English (en)
Inventor
孔泳
李蕊君
杨越
王丙虎
谭文胜
吴大同
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou University
Original Assignee
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou University filed Critical Changzhou University
Priority to CN201810530821.4A priority Critical patent/CN108717904A/zh
Publication of CN108717904A publication Critical patent/CN108717904A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明涉及一种可用于电化学储能的电化学还原石墨烯量子点/聚吡咯复合材料的制备方法。包括以下步骤:聚吡咯的制备、石墨烯量子点/聚吡咯的制备、电化学还原石墨烯量子点/聚吡咯的制备、电化学还原石墨烯量子点/聚吡咯的电化学性能测试。本发明的有益效果是电化学还原石墨烯量子点/聚吡咯制备方法简便,结构规整,具有优异的电化学性能。

Description

一种可用于电化学储能的电化学还原石墨烯量子点/聚吡咯 复合材料的制备方法
技术领域
本发明涉及一种可用于电化学储能的电化学还原石墨烯量子点/聚吡咯复合材料的制备方法,属于电化学和材料合成领域。
技术背景
为了满足现代社会和生态环境的需求,能量储存设备的发展尤为迫切。锂离子电池和超级电容器是两类主要的电化学储存设备。它们已经受到了全世界科研工作者的关注。相对于锂离子电池来说,超级电容器具有高的功率密度、快速的充放电过程、较长的循环寿命和环境友好性、安全性。超级电容器也叫电化学电容器,按照储电机理可以分为双电层电容器和赝电容器。碳材料是常用的超级电容器材料。金属氧化物/氢氧化物、导电高分子是常用的赝电容电极材料。
导电高分子聚吡咯是一种具有内在导电性的物质。它们具有像金属/半导体等独特的电化学性质并且容易合成、成本低、高的电能储存能力。因此被认为是一种有潜力的超级电容器电极材料。但是导电高分子在充放电过程中结构易形变,导致其倍率性能和循环稳定性能较差。因此,通常将聚吡咯与导电性较好的碳材料复合来制备复合材料来提高其力学性能。但是,由于碳材料尺寸较大,碳材料与导电高分子材料结合程度不均,导致其性能提高程度有限。因此,寻找尺寸恰当的碳材料显得尤为重要。
石墨烯量子点是一种尺寸小于100nm的新型零维碳纳米材料,石墨烯量子点的材料特征主要来源于石墨烯,可以被认为石墨烯非常小的一部分。石墨烯量子点具有良好的发光性能、无毒性、耐光漂白和良好的生物相容性。由于石墨烯量子点表面含有大量含氧官能团,使其导电性不好。近年来,越来越多的方法被用于还原石墨烯量子点来提高其导电性。如水热合成法、化学还原法等。但这些还原方法操作繁琐、耗时较长。电化学还原石墨烯量子点的方法还没有被报道。由于还原石墨烯量子点尺寸较小,导电性较好,因此是理想的与聚吡咯结合均一的碳材料。
本实验通过简单的方法制备出聚吡咯纳米球,控制吡咯单体及氧化剂的含量来控制聚吡咯纳米球的大小,进而探究不同尺寸的聚吡咯纳米球对电容性能的影响。然后通过电化学法还原石墨烯量子点/聚吡咯制备了电化学还原石墨烯量子点/聚吡咯复合材料。实验证明电化学还原石墨烯量子点能够很均匀的分散在聚吡咯微球的表面,并且能够使聚吡咯的导电性能及力学性能增加,从而极大的增大了其比电容,是超级电容器的理想电极材料。
发明内容
本发明的目的是在于提供一种可用于电化学储能的电化学还原石墨烯量子点/聚吡咯复合材料的制备方法。本发明提供了一种新型的储能材料的制备方法,将聚吡咯/石墨烯量子点复合材料通过电化学还原的方法制备得到电化学还原石墨烯量子点/聚吡咯复合材料。
本发明所述一种可用于电化学储能的电化学还原石墨烯量子点/聚吡咯复合材料的制备方法,包括以下步骤:
a、聚吡咯的制备:取0.2mL吡咯单体分散于10mL 0.1mol/L的硫酸溶液中,取0.68g氧化剂溶于5mL去离子水加水稀释至10mL,然后将氧化剂的水溶液滴加到吡咯单体的硫酸溶液中,室温下磁力搅拌5h,最后将得到的产物聚吡咯离心,洗涤,在-54℃下冷冻干燥;
b、石墨烯量子点/聚吡咯的制备:将步骤a中所得聚吡咯超声分散于石墨烯量子点的水溶液中,静置一段时间,然后将分散液离心,洗涤,在-54℃下冷冻干燥;
c、电化学还原石墨烯量子点/聚吡咯修饰电极的制备及电化学性能测试:将步骤b中所得的石墨烯量子点/聚吡咯制成2mg/mL的分散液,用移液枪移取10μL滴涂于玻碳电极的表面并用红外灯烘干,然后通过三电极体系并以石墨烯量子点/聚吡咯修饰玻碳电极为工作电极,饱和甘汞电极为辅助电极,铂片电极为对电极,在pH=7的电解液中通过循环伏安法对石墨烯量子点/聚吡咯进行还原得到电化学还原石墨烯量子点/聚吡咯修饰电极;最后以1mol/L的H2SO4为电解液,以电化学还原石墨烯量子点/聚吡咯修饰电极为工作电极,运用同样的三电极体系对电化学还原石墨烯量子点/聚吡咯进行恒电流充放电测试和循环寿命测试。
进一步,所述步骤a中的氧化剂为过硫酸铵。
进一步,所述步骤b中石墨烯量子点水溶液的浓度为2mg/mL,静置时间为24h。
进一步,所述步骤c中pH=7的电解液为磷酸盐缓冲溶液,循环伏安法扫描的电位区间为-1.4~0V。
本发明的有益效果是:这种电化学还原石墨烯量子点/聚吡咯复合材料制备方法简便,结构规整,具有优异的电化学性能。
附图说明
下面结合附图对本发明进一步说明。
图1为实施例一中制备的电化学还原石墨烯量子点/聚吡咯的透射电镜图;
图2为实施例一中制备的电化学还原石墨烯量子点/聚吡咯、对比例一中制备的电化学还原石墨烯量子点和对比例二中制备的聚吡咯在电流密度为1A/g时的恒电流充放电图;
图3为实施例一中制备的电化学还原石墨烯量子点/聚吡咯、对比例一中制备的电化学还原石墨烯量子点和对比例二中制备的聚吡咯在电流密度10A/g时恒电流充放电循环寿命图。
具体实施方式
现在结合具体实施例对本发明做进一步说明,以下实施例旨在说明本发明而不是对本发明的进一步限定。
实施例一:
一种可用于电化学储能的电化学还原石墨烯量子点/聚吡咯复合材料的制备方法,包括以下步骤:
(1)取0.2mL吡咯单体分散于10mL 0.1mol/L的硫酸溶液中,取0.68g过硫酸铵溶于5mL去离子水加水稀释至10mL,然后将过硫酸铵的水溶液滴加到吡咯单体的硫酸溶液中,室温下磁力搅拌5h,最后将得到的产物聚吡咯离心,洗涤,在-54℃下冷冻干燥。
(2)将步骤(1)中所得聚吡咯超声分散于2mg/mL石墨烯量子点的水溶液中,静置24h,然后将分散液离心,洗涤,在-54℃下冷冻干燥。
(3)将步骤(2)中所得的石墨烯量子点/聚吡咯制成2mg/mL的分散液,用移液枪移取10μL滴涂于玻碳电极的表面并用红外灯烘干,然后通过三电极体系并以石墨烯量子点/聚吡咯修饰玻碳电极为工作电极,饱和甘汞电极为辅助电极,铂片电极为对电极,pH=7的磷酸盐缓冲溶液为电解液,通过循环伏安法在电位区间为-1.4~0V时对石墨烯量子点/聚吡咯进行还原得到电化学还原石墨烯量子点/聚吡咯修饰电极。如图1所示,电化学还原石墨烯量子点/聚吡咯具有规则的形貌。最后以1mol/L的H2SO4为电解液,以电化学还原石墨烯量子点/聚吡咯修饰电极为工作电极,运用同样的三电极体系对电化学还原石墨烯量子点/聚吡咯进行恒电流充放电测试和循环寿命测试。如图2,电化学还原石墨烯量子点/聚吡咯的恒电流充放电测试可以看出,其在电流密度为1A/g时比电容为418F/g。如图3,电化学还原石墨烯量子点/聚吡咯的恒电流充放电测试可以看出,在10A/g的电流密度下,进行1000次循环充放电后,其电容保持率为86.0%,显示了其良好的循环稳定性。
对比例一:
一种可用于电化学储能的电化学还原石墨烯量子点的制备方法,包括以下步骤:
制取2mg/mL的石墨烯量子点的溶液,用移液枪移取10μL滴涂于玻碳电极的表面并用红外灯烘干,然后通过三电极体系并以石墨烯量子点修饰玻碳电极为工作电极,饱和甘汞电极为辅助电极,铂片电极为对电极,pH=7的磷酸盐缓冲溶液为电解液,通过循环伏安法在电位区间为-1.4~0V时对石墨烯量子点进行还原得到电化学还原石墨烯量子点修饰电极。最后以1mol/L的H2SO4为电解液,以电化学还原石墨烯量子点修饰电极为工作电极,运用同样的三电极体系对电化学还原石墨烯量子点进行恒电流充放电测试和循环寿命测试。如图2,电化学还原石墨烯量子点的恒电流充放电测试可以看出,其在电流密度为1A/g时比电容为123F/g。如图3,电化学还原石墨烯量子点的恒电流充放电测试可以看出,在10A/g的电流密度下,进行1000次循环充放电后,其电容保持率为98.8%,显示了其优异的循环稳定性。对比例二:
一种可用于电化学储能的聚吡咯的制备方法,包括以下步骤:
(1)取0.2mL吡咯单体分散于10mL 0.1mol/L的硫酸溶液中,取0.68g过硫酸铵溶于5mL去离子水加水稀释至10mL,然后将过硫酸铵的水溶液滴加到吡咯单体的硫酸溶液中,室温下磁力搅拌5h,最后将得到的产物聚吡咯离心,洗涤,在-54℃下冷冻干燥。
(2)将步骤(1)中所得的聚吡咯制成2mg/mL的分散液,用移液枪移取10μL滴涂于玻碳电极的表面并用红外灯烘干,然后通过三电极体系并以聚吡咯修饰玻碳电极为工作电极,饱和甘汞电极为辅助电极,铂片电极为对电极,1mol/L的H2SO4为电解液,对聚吡咯进行恒电流充放电测试和循环寿命测试。如图2,电化学还原石墨烯量子点/聚吡咯的恒电流充放电测试可以看出,其在电流密度为1A/g时比电容为258F/g。如图3,电化学还原石墨烯量子点/聚吡咯的恒电流充放电测试可以看出,在10A/g的电流密度下,进行1000次循环充放电后,其电容保持率为68.1%。

Claims (4)

1.一种可用于电化学储能的电化学还原石墨烯量子点/聚吡咯复合材料的制备方法,其特征在于:步骤如下:
a、聚吡咯的制备:取0.2mL吡咯单体分散于10mL 0.1mol/L的硫酸溶液中,取0.68g氧化剂溶于5mL去离子水加水稀释至10mL,然后将氧化剂的水溶液滴加到吡咯单体的硫酸溶液中,室温下磁力搅拌5h,最后将得到的产物聚吡咯离心,洗涤,在-54℃下冷冻干燥;
b、石墨烯量子点/聚吡咯的制备:将步骤a中所得聚吡咯超声分散于石墨烯量子点的水溶液中,静置一段时间,然后将分散液离心,洗涤,在-54℃下冷冻干燥;
c、电化学还原石墨烯量子点/聚吡咯修饰电极的制备及电化学性能测试:将步骤b中所得的石墨烯量子点/聚吡咯制成2mg/mL的分散液,用移液枪移取10μL滴涂于玻碳电极的表面并用红外灯烘干,然后通过三电极体系并以石墨烯量子点/聚吡咯修饰玻碳电极为工作电极,饱和甘汞电极为辅助电极,铂片电极为对电极,在pH=7的电解液中通过循环伏安法对石墨烯量子点/聚吡咯进行还原得到电化学还原石墨烯量子点/聚吡咯修饰电极,最后以1mol/L的H2SO4为电解液,以电化学还原石墨烯量子点/聚吡咯修饰电极为工作电极,运用同样的三电极体系对电化学还原石墨烯量子点/聚吡咯进行恒电流充放电测试和循环寿命测试。
2.根据权利要求1所述一种可用于电化学储能的电化学还原石墨烯量子点/聚吡咯复合材料的制备方法,其特征是:所述步骤a中的氧化剂为过硫酸铵。
3.根据权利要求1所述一种可用于电化学储能的电化学还原石墨烯量子点/聚吡咯复合材料的制备方法,其特征是:所述步骤b中石墨烯量子点水溶液的浓度为2mg/mL,静置时间为24h。
4.根据权利要求1所述一种可用于电化学储能的电化学还原石墨烯量子点/聚吡咯复合材料的制备方法,其特征是:所述步骤c中pH=7的电解液为磷酸盐缓冲溶液,循环伏安法扫描的电位区间为-1.4~0V。
CN201810530821.4A 2018-05-25 2018-05-25 一种可用于电化学储能的电化学还原石墨烯量子点/聚吡咯复合材料的制备方法 Pending CN108717904A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810530821.4A CN108717904A (zh) 2018-05-25 2018-05-25 一种可用于电化学储能的电化学还原石墨烯量子点/聚吡咯复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810530821.4A CN108717904A (zh) 2018-05-25 2018-05-25 一种可用于电化学储能的电化学还原石墨烯量子点/聚吡咯复合材料的制备方法

Publications (1)

Publication Number Publication Date
CN108717904A true CN108717904A (zh) 2018-10-30

Family

ID=63912597

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810530821.4A Pending CN108717904A (zh) 2018-05-25 2018-05-25 一种可用于电化学储能的电化学还原石墨烯量子点/聚吡咯复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN108717904A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109453808A (zh) * 2018-11-15 2019-03-12 南昌航空大学 一种三维多级孔洞的石墨烯/聚吡咯复合材料的制备方法及其应用
CN110305321A (zh) * 2019-06-28 2019-10-08 浙江大学 一种聚吡咯量子点及钠硫电池隔膜的制备方法
CN114085523A (zh) * 2021-10-13 2022-02-25 深圳市先进石墨烯科技有限公司 复合材料及其制备方法、应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102496481A (zh) * 2011-12-23 2012-06-13 北京航空航天大学 一种石墨烯/聚吡咯纳米管复合材料以及一种以其为电极的超级电容器及其制备方法
CN103258656A (zh) * 2013-04-25 2013-08-21 华中科技大学 一种基于泡沫镍的超级电容器电极的制备方法及其产品
CN103738941A (zh) * 2013-11-14 2014-04-23 盐城增材科技有限公司 一种石墨烯量子点的制备方法
CN104193991A (zh) * 2014-09-03 2014-12-10 湖南理工学院 一种石墨烯量子点聚苯胺复合材料及其制备方法
KR20160095423A (ko) * 2015-02-03 2016-08-11 한국과학기술연구원 비휘발성 메모리 장치 및 이의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102496481A (zh) * 2011-12-23 2012-06-13 北京航空航天大学 一种石墨烯/聚吡咯纳米管复合材料以及一种以其为电极的超级电容器及其制备方法
CN103258656A (zh) * 2013-04-25 2013-08-21 华中科技大学 一种基于泡沫镍的超级电容器电极的制备方法及其产品
CN103738941A (zh) * 2013-11-14 2014-04-23 盐城增材科技有限公司 一种石墨烯量子点的制备方法
CN104193991A (zh) * 2014-09-03 2014-12-10 湖南理工学院 一种石墨烯量子点聚苯胺复合材料及其制备方法
KR20160095423A (ko) * 2015-02-03 2016-08-11 한국과학기술연구원 비휘발성 메모리 장치 및 이의 제조 방법

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109453808A (zh) * 2018-11-15 2019-03-12 南昌航空大学 一种三维多级孔洞的石墨烯/聚吡咯复合材料的制备方法及其应用
CN109453808B (zh) * 2018-11-15 2022-02-08 南昌航空大学 一种三维多级孔洞的石墨烯/聚吡咯复合材料的应用
CN110305321A (zh) * 2019-06-28 2019-10-08 浙江大学 一种聚吡咯量子点及钠硫电池隔膜的制备方法
CN114085523A (zh) * 2021-10-13 2022-02-25 深圳市先进石墨烯科技有限公司 复合材料及其制备方法、应用
CN114085523B (zh) * 2021-10-13 2023-09-29 深圳贝特瑞钠电新材料科技有限公司 复合材料及其制备方法、应用

Similar Documents

Publication Publication Date Title
Liu et al. Self-assembled S, N co-doped reduced graphene oxide/MXene aerogel for both symmetric liquid-and all-solid-state supercapacitors
Chen et al. Hierarchical polypyrrole based composites for high performance asymmetric supercapacitors
Sharma et al. Multiwall carbon nanotube supported poly (3, 4-ethylenedioxythiophene)/manganese oxide nano-composite electrode for super-capacitors
Wu et al. Electrochemical capacitance of polypyrrole nanowire prepared by using cetyltrimethylammonium bromide (CTAB) as soft template
Yang et al. Effects of PPy, GO and PPy/GO composites on the negative plate and on the high-rate partial-state-of-charge performance of lead-acid batteries
CN108682561A (zh) 一种超级电容器电极材料及制备方法
An et al. Green and all-carbon asymmetric supercapacitor based on polyaniline nanotubes and anthraquinone functionalized porous nitrogen-doped carbon nanotubes with high energy storage performance
CN108717904A (zh) 一种可用于电化学储能的电化学还原石墨烯量子点/聚吡咯复合材料的制备方法
Ran et al. Preparation of hierarchical polyaniline nanotubes based on self‐assembly and its electrochemical capacitance
CN102930991B (zh) 电化学一步法制备石墨烯/聚苯胺导电复合材料的方法
KR20200068839A (ko) 구겨진 그래핀을 포함하는 슈퍼커패시터용 전극의 제조방법 및 이에 의해 제조된 슈퍼커패시터용 전극
CN106067385A (zh) 用作超级电容器的二氧化锰/导电聚合物纳米网络结构电极材料的制备方法
CN104851594B (zh) 铝电解‑电化学混合电容器及制备方法
CN107221458A (zh) 镍配合物为前躯体的掺碳氧化镍复合电极材料及其制备方法
CN104928713B (zh) 导电聚合物包覆的镍基产氢电极的制备方法及其用途
CN108682564B (zh) 一种用于超级电容器的Ni-C复合材料及其制备方法
CN108063059B (zh) 一种羧基化氧化石墨烯改性双导电聚合物电极材料
CN1925076A (zh) 高功率电化学电极
Li et al. Fe 3 O 4/functional exfoliation graphene on carbon paper nanocomposites for supercapacitor electrode
Bai et al. High stability supercapacitors based on MXene/Spherical g-PPy composite electrodes
Li et al. A facile strategy to in situ synthesize metal oxide/conductive polymer hybrid electrodes for supercapacitors
CN106409528B (zh) 一种ZnFe2O4纳米颗粒/炭纤维复合超级电容器电极材料及其制备方法
CN105070533B (zh) 一种由纳米树状聚苯胺构成的超级电容器电极及其制备方法
CN114974930B (zh) 一种1-氨基蒽醌改性还原氧化石墨烯复合材料的制备及应用
CN115036502B (zh) 基于ZnCo2O4/中空碳纳米环制备钠离子电池负极材料的方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20181030

WD01 Invention patent application deemed withdrawn after publication