CN108714224A - 一种pH响应型19F磁共振成像纳米探针及其制备方法 - Google Patents

一种pH响应型19F磁共振成像纳米探针及其制备方法 Download PDF

Info

Publication number
CN108714224A
CN108714224A CN201810452245.6A CN201810452245A CN108714224A CN 108714224 A CN108714224 A CN 108714224A CN 201810452245 A CN201810452245 A CN 201810452245A CN 108714224 A CN108714224 A CN 108714224A
Authority
CN
China
Prior art keywords
magnetic resonance
nano
probes
resonance imaging
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810452245.6A
Other languages
English (en)
Other versions
CN108714224B (zh
Inventor
汪乐余
郭唱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN201810452245.6A priority Critical patent/CN108714224B/zh
Publication of CN108714224A publication Critical patent/CN108714224A/zh
Application granted granted Critical
Publication of CN108714224B publication Critical patent/CN108714224B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/041Heterocyclic compounds
    • A61K51/044Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins
    • A61K51/0453Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/06Macromolecular compounds, carriers being organic macromolecular compounds, i.e. organic oligomeric, polymeric, dendrimeric molecules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/12Preparations containing radioactive substances for use in therapy or testing in vivo characterised by a special physical form, e.g. emulsion, microcapsules, liposomes, characterized by a special physical form, e.g. emulsions, dispersions, microcapsules
    • A61K51/1241Preparations containing radioactive substances for use in therapy or testing in vivo characterised by a special physical form, e.g. emulsion, microcapsules, liposomes, characterized by a special physical form, e.g. emulsions, dispersions, microcapsules particles, powders, lyophilizates, adsorbates, e.g. polymers or resins for adsorption or ion-exchange resins
    • A61K51/1244Preparations containing radioactive substances for use in therapy or testing in vivo characterised by a special physical form, e.g. emulsion, microcapsules, liposomes, characterized by a special physical form, e.g. emulsions, dispersions, microcapsules particles, powders, lyophilizates, adsorbates, e.g. polymers or resins for adsorption or ion-exchange resins microparticles or nanoparticles, e.g. polymeric nanoparticles
    • A61K51/1251Preparations containing radioactive substances for use in therapy or testing in vivo characterised by a special physical form, e.g. emulsion, microcapsules, liposomes, characterized by a special physical form, e.g. emulsions, dispersions, microcapsules particles, powders, lyophilizates, adsorbates, e.g. polymers or resins for adsorption or ion-exchange resins microparticles or nanoparticles, e.g. polymeric nanoparticles micro- or nanospheres, micro- or nanobeads, micro- or nanocapsules

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Optics & Photonics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Nanotechnology (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

本发明公开了一种pH响应型19F磁共振成像纳米探针及其制备方法。本发明通过含氟咪唑部分取代ZIF‑8中的2‑甲基咪唑,成功将氟元素引入纳米颗粒内部,之后在纳米颗粒外层进行亲水修饰,提高颗粒的稳定性。本发明得到的纳米探针,粒径分布均匀,生物相容性好,亲水性强。该探针在pH>7的溶液中可长期稳定,无19F NMR信号,随着pH降低19FNMR信号逐渐增强,表现出明显的pH依赖的19F NMR信号变化性,该信号强度很适合进行肿瘤19F磁共振成像。该探针可用于生物传感器、细胞成像、医学诊断等生物医学领域。

Description

一种pH响应型19F磁共振成像纳米探针及其制备方法
技术领域
本发明属于纳米材料技术领域,特别涉及一种pH响应型19F磁共振成像纳米探针及其制备方法。
背景技术
近年来,纳米技术的兴起为疾病的早期诊断和影像引导手术等方面带来了新的机遇。由于磁共振成像(MRI)的非侵害性,和在不使用放射性的条件下提供生物深层组织有效信息,使其在活体诊断中被广泛应用。迄今为止,1H MRI已被广泛应用于临床诊断。然而,由于水分子在体内无处不在,导致其存在强烈的背景干扰,这种情况下所得到的成像效果非常差,从而影响了诊断结果的判断。因此,经常用造影剂来区分从周围组织的成像区域的信号。然而大部分造影剂中所含有的钆元素,会在脑部沉积造成安全隐患。相比1H MRI,F元素只以固体盐的形式存在于如牙齿和骨中,19F MRI几乎没有背景干扰。其信号有400ppm左右的化学位移范围,对化学键和微环境的变化非常灵敏。
然而,目前19F MRI还没有能够得到1H MRI那样在临床中的广泛使用。因为大部分含氟有机分子,如4-三氟甲基咪唑,水溶性差,直接注射到体内生物毒性大,无法直接应用于生物成像。ZIF-8作为新兴药物运输载体,可以负载水溶性较差的小分子,但负载量过低,所负载含氟有机分子的数量不足以用来进行19F MRI。发展的亲水性强,稳定性好,高氟原子负载的纳米探针是19F MRI发展中急需解决的问题。
发明内容
本发明通过含氟咪唑部分取代ZIF-8中的2-甲基咪唑,成功将大量氟原子引入纳米颗粒内部,之后在纳米颗粒外层包覆功能化多聚氨基酸与硅烷PEG,得到粒径分布均匀,生物相容性好,亲水性强的纳米探针。并且,酸性pH是实体瘤微环境的重要特征,其数值范围大概在6.0-7.0,与此同时,正常组织和血管的pH则是7.4左右。这一特征性pH常被用来选择性触发一些纳米载体以增强肿瘤成像效果。该探针在pH>7的溶液中可长期稳定,无19FNMR信号,随着pH降低19FNMR信号逐渐增强,表现出明显的pH依赖的19F NMR信号变化性,该信号强度很适合进行肿瘤19F磁共振成像。该探针可用于生物传感器、细胞成像、医学诊断等生物医学领域。
本发明所述的一种pH响应型19F磁共振成像纳米探针,其特征在于,通过含氟咪唑部分取代ZIF-8中的2-甲基咪唑,将氟原子引入纳米颗粒内部,之后在纳米颗粒外层包覆多聚氨基酸与硅烷PEG。
优选的,所述pH响应型19F磁共振成像纳米探针在pH值>7的溶液中稳定无19F NMR信号,随着pH降低19F NMR信号逐渐增强,表现出明显的pH依赖的19F NMR信号变化性。
本发明所述的一种pH响应型19F磁共振成像纳米探针的制备方法,其特征在于,具体步骤如下:
a)将0.5-3.5mL浓度为10-30mM的含氟咪唑甲醇溶液与0.5-3.5mL浓度为10-30mM的2-甲基咪唑甲醇溶液混合均匀,加入10-100μL氨水,搅拌均匀;
b)将0.5-5mL浓度为10-30mM的含有锌离子的甲醇溶液加入步骤a)得到的溶液,在反应温度0-30℃内搅拌0.5-5小时,离心洗涤,在纳米颗粒外层进行亲水修饰最终得到pH响应型19F磁共振成像纳米探针。所述反应温度为0-30℃,不同温度下可以得到的不同尺寸的纳米颗粒。
优选的,所述的锌离子的甲醇溶液为六水合硝酸锌的甲醇溶液。
优选的,所述的含氟咪唑为4-三氟甲基咪唑。
优选的,步骤b)中的所述反应温度是5℃、10℃、15℃或20℃中的任意一个。
优选的,在纳米颗粒外层进行的修饰是在纳米颗粒外层包覆多聚氨基酸与硅烷PEG。
有益效果:
本发明通过含氟咪唑部分取代ZIF-8中的2-甲基咪唑,成功将大量氟原子引入纳米颗粒内部,之后在纳米颗粒外层包覆功能化多聚氨基酸与硅烷PEG,得到,粒径分布均匀,生物相容性好,亲水性强的纳米探针。利用咪唑氮与金属结点在碱性条件下形成配位键,酸性条件下配位键断开的原理,该探针在pH>7的溶液中可长期稳定,无19F NMR信号,当体系pH<7,且随着pH降低19FNMR信号逐渐增强,表现出明显的pH依赖的19F NMR信号变化性,该信号强度很适合进行肿瘤19F磁共振成像。该探针可用于生物传感器、细胞成像、医学诊断等生物医学领域。
附图说明
图1是不同反应温度下制得的pH刺激响应的19F磁共振成像探针的成像图。
图2是pH刺激响应的19F磁共振成像探针在不同pH值条件下19F NMR谱图。
图3是纳米探针在水溶液中的稳定性柱状图。
图4是纳米探针在不同pH条件下19F MRI。
具体实施方式
为使本领域的技术人员更好地理解本发明的技术方案,下面结合附图对本发明提供的pH响应型19F磁共振成像纳米探针及其制备方法进行详细描述。
实施例1
a.将2.5mL浓度为25mM的4-三氟甲基咪唑甲醇溶液与2.5mL浓度为25mM的2-甲基咪唑甲醇溶液混合均匀,加入50μL氨水,搅拌均匀。
b.将5mL浓度为25mM的含有锌离子的甲醇溶液加入步骤a得到的溶液,5℃下,搅拌0.5h,得到纳米颗粒;
c.离心洗涤2次,最后将产物稳定分散在0.5ml甲醇中,加入2mg硅烷PEG,5mg PSI与0.5mL氯仿。将其加入10mL浓度为0.1M的氢氧化钠水溶液中,混合均匀得到纳米颗粒乳液,然后除去氯仿,即得pH响应型19F磁共振成像纳米探针。
实施例2
a.将2.5mL浓度为25mM的4-三氟甲基咪唑甲醇溶液与2.5mL浓度为25mM的2-甲基咪唑甲醇溶液混合均匀,加入50μL氨水,搅拌均匀。
b.将5mL浓度为25mM的含有锌离子的甲醇溶液加入步骤a得到的溶液,5℃下,搅拌0.5h,得到纳米颗粒;
c.离心洗涤2次,最后将产物稳定分散在0.5ml甲醇中,加入2mg硅烷PEG,5mg PSI与0.5mL氯仿。将其加入10mL浓度为0.1M的氢氧化钠水溶液中,混合均匀得到纳米颗粒乳液,然后除去氯仿,即得pH响应型19F磁共振成像纳米探针。
实施例3
a.将2.5mL浓度为25mM的4-三氟甲基咪唑甲醇溶液与2.5mL浓度为25mM的2-甲基咪唑甲醇溶液混合均匀,加入50μL氨水,搅拌均匀。
b.将2.5mL浓度为25mM的含有锌离子的甲醇溶液加入步骤a得到的溶液,20℃下,搅拌0.5h,得到纳米颗粒;
c.离心洗涤2次,最后将产物稳定分散在0.5ml甲醇中,加入2mg硅烷PEG,5mg PSI与0.5mL氯仿。将其加入10mL浓度为0.1M的氢氧化钠水溶液中,混合均匀得到纳米颗粒乳液,然后除去氯仿,即得pH响应型19F磁共振成像纳米探针。
实施例4
a.将2.5mL浓度为25mM的4-三氟甲基咪唑甲醇溶液与2.5mL浓度为25mM的2-甲基咪唑甲醇溶液混合均匀,加入50μL氨水,搅拌均匀。
b.将5mL浓度为25mM的含有锌离子的甲醇溶液加入步骤a得到的溶液,5℃下,搅拌2h,得到纳米颗粒;
c.离心洗涤2次,最后将产物稳定分散在0.5ml甲醇中,加入2mg硅烷PEG,5mg PSI与0.5mL氯仿。将其加入10mL浓度为0.1M的氢氧化钠水溶液中,混合均匀得到纳米颗粒乳液,然后除去氯仿,即得pH响应型19F磁共振成像纳米探针。
实施例5
a.将2.5mL浓度为25mM的4-三氟甲基咪唑甲醇溶液与2.5mL浓度为25mM的2-甲基咪唑甲醇溶液混合均匀,加入50μL氨水,搅拌均匀。
b.将5mL浓度为25mM的含有锌离子的甲醇溶液加入步骤a得到的溶液,5℃下,搅拌2h,得到纳米颗粒;
c.离心洗涤2次,最后将产物稳定分散在0.5ml甲醇中,加入6mg硅烷PEG,5mg PSI与0.5mL氯仿。将其加入10mL浓度为0.05M的氢氧化钠水溶液中,混合均匀得到纳米颗粒乳液,然后除去氯仿,即得pH响应型19F磁共振成像纳米探针。
实施例6
a.将3.5mL浓度为25mM的4-三氟甲基咪唑甲醇溶液与3.5mL浓度为25mM的2-甲基咪唑甲醇溶液混合均匀,加入50μL氨水,搅拌均匀。
b.将5mL浓度为25mM的含有锌离子的甲醇溶液加入步骤a得到的溶液,5℃下,搅拌2h,得到纳米颗粒;
c.离心洗涤2次,最后将产物稳定分散在0.5ml甲醇中,加入6mg硅烷PEG,5mg PSI与0.5mL氯仿。将其加入10mL浓度为0.1M的氢氧化钠水溶液中,混合均匀得到纳米颗粒乳液,然后除去氯仿,即得pH响应型19F磁共振成像纳米探针。
以上例子结合附图本发明的实施方式做了说明。尽管只对本发明的一些具体实施方式和技术要点做出了描述,但是本发明并不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明的宗旨前提下做出各种变化。因此,所展示的例子与实施方式被视为示意性的而非限制性的,在不脱离如所附各权利要求所定义的本发明精神及范围的情况下,本发明可能涵盖各种的修改与替换。

Claims (7)

1.一种pH响应型19F磁共振成像纳米探针,其特征在于,通过含氟咪唑部分取代ZIF-8中的2-甲基咪唑部分,将氟原子引入纳米颗粒内部,之后在纳米颗粒外层包覆多聚氨基酸与硅烷PEG。
2.根据权利要求1所述的pH响应型19F磁共振成像纳米探针,其特征在于,所述pH响应型19F磁共振成像纳米探针在pH值>7的溶液中稳定无19F NMR信号,随着pH降低19F NMR信号逐渐增强,表现出明显的pH依赖的19F NMR信号变化性。
3.一种pH响应型19F磁共振成像纳米探针的制备方法,其特征在于,具体步骤如下:
a)将0.5-3.5mL浓度为10-30mM的含氟咪唑甲醇溶液与0.5-3.5mL浓度为10-30mM的2-甲基咪唑甲醇溶液混合均匀,加入10-100μL氨水,搅拌均匀;
b)将0.5-5mL浓度为10-30mM的含有锌离子的甲醇溶液加入步骤a)得到的溶液,在反应温度0-30℃内搅拌0.5-5小时,离心洗涤,在纳米颗粒外层进行亲水修饰最终得到pH响应型19F磁共振成像纳米探针。
4.根据权利要求3所述的pH响应型19F磁共振成像纳米探针的制备方法,其特征在于,所述的锌离子的甲醇溶液为六水合硝酸锌的甲醇溶液。
5.根据权利要求4所述的pH响应型19F磁共振成像纳米探针的制备方法,其特征在于,所述的含氟咪唑为4-三氟甲基咪唑。
6.根据权利要求3至5中任意一条所述的pH响应型19F磁共振成像纳米探针的制备方法,其特征在于,步骤b)中的所述反应温度是5℃、10℃、15℃或20℃中的任意一个。
7.根据权利要求6所述的pH响应型19F磁共振成像纳米探针的制备方法,其特征在于,在纳米颗粒外层进行的修饰是在纳米颗粒外层包覆多聚氨基酸与硅烷PEG。
CN201810452245.6A 2018-05-12 2018-05-12 一种pH响应型19F磁共振成像纳米探针及其制备方法 Active CN108714224B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810452245.6A CN108714224B (zh) 2018-05-12 2018-05-12 一种pH响应型19F磁共振成像纳米探针及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810452245.6A CN108714224B (zh) 2018-05-12 2018-05-12 一种pH响应型19F磁共振成像纳米探针及其制备方法

Publications (2)

Publication Number Publication Date
CN108714224A true CN108714224A (zh) 2018-10-30
CN108714224B CN108714224B (zh) 2020-06-16

Family

ID=63899765

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810452245.6A Active CN108714224B (zh) 2018-05-12 2018-05-12 一种pH响应型19F磁共振成像纳米探针及其制备方法

Country Status (1)

Country Link
CN (1) CN108714224B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109884023A (zh) * 2019-05-08 2019-06-14 烟台大学 锌离子检测方法及锌离子检测用发光纳米探针的制备方法
CN113876967A (zh) * 2021-09-26 2022-01-04 北京化工大学 一种交替型含氟聚合物氟磁共振成像探针的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103044464A (zh) * 2012-12-19 2013-04-17 中国科学院大连化学物理研究所 一种增加金属有机骨架稳定性的方法
CN105770916A (zh) * 2016-01-08 2016-07-20 北京化工大学 一种应用于19f磁共振成像以及光热治疗的纳米探针及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103044464A (zh) * 2012-12-19 2013-04-17 中国科学院大连化学物理研究所 一种增加金属有机骨架稳定性的方法
CN105770916A (zh) * 2016-01-08 2016-07-20 北京化工大学 一种应用于19f磁共振成像以及光热治疗的纳米探针及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HAOQUAN ZHENG ET AL.,: "One-pot Synthesis of Metal−Organic Frameworks with Encapsulated Target Molecules and Their Applications for Controlled Drug Delivery", 《J. AM. CHEM. SOC.》 *
MOTOI OISHI ET AL.: "On-Off Regulation of 19F Magnetic Resonance Signals Based on pH-Sensitive PEGylated Nanogels for Potential Tumor-Specific Smart 19F MRI Probes", 《BIOCONJUGATE CHEM.》 *
XIAONAN HUANG ET AL.: "Multi-Chromatic pH-Activatable 19F-MRI Nanoprobes with Binary ON/OFF pH Transitions and Chemical-Shift Barcodes", 《ANGEW. CHEM. INT. ED.》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109884023A (zh) * 2019-05-08 2019-06-14 烟台大学 锌离子检测方法及锌离子检测用发光纳米探针的制备方法
CN109884023B (zh) * 2019-05-08 2019-07-30 烟台大学 锌离子检测方法及锌离子检测用发光纳米探针的制备方法
CN113876967A (zh) * 2021-09-26 2022-01-04 北京化工大学 一种交替型含氟聚合物氟磁共振成像探针的制备方法
CN113876967B (zh) * 2021-09-26 2023-02-28 北京化工大学 一种交替型含氟聚合物氟磁共振成像探针的制备方法

Also Published As

Publication number Publication date
CN108714224B (zh) 2020-06-16

Similar Documents

Publication Publication Date Title
Carril et al. Gold‐Coated Iron Oxide Glyconanoparticles for MRI, CT, and US Multimodal Imaging
Sharma et al. Gold-speckled multimodal nanoparticles for noninvasive bioimaging
CN104436221B (zh) 基于氧化石墨烯材料的造影剂及其制备方法
CN108714224A (zh) 一种pH响应型19F磁共振成像纳米探针及其制备方法
CN104826139A (zh) 一种rgd多肽靶向的超小四氧化三铁mri阳性纳米探针的制备方法
US11241296B2 (en) Imaging fiducial markers and methods
CN103239737A (zh) 荧光造影剂及其制备方法
CN104548142A (zh) 一种透明质酸修饰的超顺磁性氧化铁/金复合纳米探针的制备方法
Tarighatnia et al. Tips and tricks in molecular imaging: a practical approach
CN106668877A (zh) 一种新型的纳米颗粒的mr成像造影剂及其制备方法
CN108514642A (zh) 一种树状大分子稳定的超小四氧化三铁/金纳米花的制备方法
CN109395101A (zh) 靶向血脑屏障和脑胶质瘤的磁共振对比剂的制备方法
CN105797174B (zh) 一种基于纳米氧化石墨烯的磁共振成像造影剂及其制备方法
CN104815341A (zh) 靶向聚合物胶束磁性纳米粒及制备和应用
CN107441512B (zh) 一种顺磁性一氧化锰纳米颗粒的制备方法及其应用
CN106963951A (zh) 氧化石墨烯/钨酸锰/聚乙二醇纳米杂化材料及其制备
CN107349435B (zh) 一种精氨酸稳定的中空泡状硅酸锰纳米粒的制备方法、产品及应用
CN108827877A (zh) 一种比率型纳米光声检测探针及其制备方法与应用
CN109925517A (zh) pH响应型磁性纳米粒子组装体及其制备方法和应用
CN112168983B (zh) 一种诊疗一体的中空碳纳米复合材料及其制备方法和应用
CN106729778A (zh) 一种分子影像纳米颗粒探针及其制备与应用
CN113069559A (zh) 一种稀土基纳米磁共振造影剂的制备及应用
Kiessling et al. How to choose the right imaging modality
CN108498808A (zh) 一种表面功能化的锰掺杂硫化铜纳米粒子及其制备方法和应用
CN105920621A (zh) 一种基于金纳米粒子的靶向肿瘤乏氧ct成像纳米探针及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant