CN113069559A - 一种稀土基纳米磁共振造影剂的制备及应用 - Google Patents

一种稀土基纳米磁共振造影剂的制备及应用 Download PDF

Info

Publication number
CN113069559A
CN113069559A CN202110402999.2A CN202110402999A CN113069559A CN 113069559 A CN113069559 A CN 113069559A CN 202110402999 A CN202110402999 A CN 202110402999A CN 113069559 A CN113069559 A CN 113069559A
Authority
CN
China
Prior art keywords
contrast agent
magnetic resonance
rare earth
stirring
pei
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110402999.2A
Other languages
English (en)
Inventor
徐晨
孙婕
朱成容
于忠鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun University of Technology
Original Assignee
Changchun University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun University of Technology filed Critical Changchun University of Technology
Priority to CN202110402999.2A priority Critical patent/CN113069559A/zh
Publication of CN113069559A publication Critical patent/CN113069559A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • A61K49/12Macromolecular compounds
    • A61K49/126Linear polymers, e.g. dextran, inulin, PEG
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Epidemiology (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

本发明涉及一种包覆亲水性配体的稀土基无机纳米粒子磁共振造影剂及其制备方法和应用。本发明的磁共振造影剂具有如下优点:成像效果好,生物相容性良好,且制备方法简单,使用安全,性质稳定,可应用于磁共振分子影像研究。

Description

一种稀土基纳米磁共振造影剂的制备及应用
技术领域
本发明设计一种聚乙烯亚胺修饰的稀土基纳米磁共振造影剂及其制备方法,属于纳米材料技术领域。
背景技术
目前分子影像学技术发展迅速,技术逐渐成熟完善,已被作为生物医学领域临床诊断和基础研究中必不可少的检测工具。分子影像学的成像技术主要包括核医学成像、超声成像、磁共振成像(简称MRI)、光学成像、X射线断层扫描成像(简称CT)等方法。
磁共振成像是一种非侵入性的成像方法,属于生物自旋成像技术,其所提供的信息不同于其他的成像方法。图像的灰阶所反映的是MR信号的强弱或弛豫原子核的相位和能级时间的长短,相比于CT、超声、核医学等医学影像检查技术,MRI具有许多突出优点,如无需变换体位便可实现任意层面的扫描;空间和组织分辨率和对比度较高,且无骨质伪影;无电离辐射和放射性;能反映被检测组织水质子周围环境并获取有关生理生化信息;可实现多核多参数成像,能够更好地对心脏、大血管形态和功能的诊断。目前已成为临床常规影像诊断方法和手段之一。
但是磁共振成像的分辨率在某些情况下还不能满足临床需要,所以在多数磁共振检查中需要使用磁共振造影剂以达到增强造影的效果。磁共振造影剂根据其作用的原理可以分为2种,即纵向弛豫(T1)造影剂和横向弛豫(T2)造影剂。T1造影剂以钆类有机化合物为主要研究对象,而T2造影剂是以铁类物质为核心。小分子钆类造影剂能够缩短水中质子的T1时间,使得T1加权成像的亮度变大。临床上常用的磁共振造影剂为钆螯合物,传统的钆造影剂缺乏靶向性、半衰期较短、弛豫效能较低且大量使用可导致毒副作用等缺点。目前,已有较多文献报道将钆造影剂制备成纳米制剂后能够具有靶向性,延长血中滞留时间,提高弛豫效能,减少总剂量从而降低毒副作用等优点。
因此,迫切需要研制一种形貌尺寸可控,弛豫效能高,具有良好的MRI成像效果且生物相容性良好的新型纳米造影剂,应用于磁共振分子影像研究。
发明内容
本发明的目的在于提供一种新型稀土基纳米磁共振造影剂及其制备方法,以解决现有问题。
为实现上述目的,本发明提供如下技术方案:
一种新型稀土基纳米磁共振造影剂,该造影剂为PEI-NaGdF4纳米粒子。
一种新型稀土基纳米磁共振造影剂的制备方法,该制备方法包括以下步骤:
合成PEI-NaGdF4纳米粒子
①室温下,将1.5g PEI在搅拌下加入到20 mL乙二醇中,至完全溶解。
②0.372g的GdCl3·6H2O加入到上述溶液中,搅拌溶解。
③0.058g的NaCl加入到上述溶液中,搅拌10~30min。
④0.15g NH4F溶解于10 mL乙二醇中完全溶解,将此溶液加入到③中,搅拌10~30min。
⑤将混合溶液倒入反应釜内胆中,拧紧反应釜,放置于鼓风干燥箱中160~190℃,反应16~24小时。
⑥反应结束后冷却至室温,将反应后的液体和固体转移至离心管中,3000~15000rpm,5~20min,丢弃上清液,留下管底固体。然后加入去离子水,超声分散固体,再离心(3000~15000 rpm,5~20min),如此反复3~5次,最后放置于干燥箱干燥(50~80℃)。
本发明中纳米粒子的尺寸为80nm~150nm,并且纳米离子表面修饰亲水性聚合物聚乙烯亚胺(PEI),使其有更好的亲水性及生物相容性。
与现有技术本发明的有益效果:
本发明合成表面修饰聚乙烯亚胺的稀土基纳米粒子,其具有较好的亲水性及生物相容性,适宜的尺寸,分散性和稳定性好,良好的MRI成像效果等优点;
本发明可作为造影剂应用于MRI成像;
本发明制备方法操作简单,使用安全方便。附图说明
图1是本发明一种新型稀土基纳米造影剂PEI修饰的NaGdF4纳米粒子的透射电子显微镜图;
图2是本发明实施例不同剂量造影剂分散于生理盐水中的T1加权磁共振成像图;
图3为本发明实施例造影剂进入小鼠体内的磁共振成像结构图。
具体实施方式
下面通过具体实施例和其附图,对本发明做进一步说明。
实施例1:
一种新型造影剂,该造影剂为PEI-NaGdF4纳米粒子。
制备方法,该制备方法中主要的实验仪器及实验材料包括:
六水合氯化钆(GdCl3·6H2O,>99.99%)、氟化铵(NH4F,>99.99%),聚乙烯亚胺(PEI,>99.99%),乙二醇,氯化钠(NaCl,>99.99%),购自上海阿拉丁生化科技股份有限公司。
磁共振成像系统(飞利浦,InteraAchieva 1.5T,荷兰飞利浦公司)
合成PEI-NaGdF4纳米粒子
①室温下,将1.5g PEI在搅拌下加入到20 mL乙二醇中,至完全溶解。
②0.372g的GdCl3·6H2O加入到上述溶液中,搅拌溶解。
③0.058g的NaCl加入到上述溶液中,搅拌30min。
④0.15g NH4F溶解于10 mL乙二醇中完全溶解,将此溶液加入到③中,搅拌30min。
⑤将混合溶液倒入反应釜内胆中,拧紧反应釜,放置于鼓风干燥箱中190℃,反应24小时。
⑥反应结束后冷却至室温,将反应后的液体和固体转移至离心管中,12000rpm,10min,丢弃上清液,留下管底固体。然后加入去离子水,超声分散固体,再离心(12000 rpm,10min),如此反复3次,最后放置于干燥箱干燥(60℃)。
通过透射电镜表征该实施例所获的PEI修饰的NaGdF4纳米粒子造影剂的形貌和粒径(见图1)。纳米粒子的尺寸为100nm左右。
实施例2
使用1.5T的MRI测试仪测试实施例1所获的PEI修饰的NaGdF4纳米粒子造影剂的T1加权成像,包括:
将不同浓度 (0、12.5、25、50、100g/mL) PEI修饰的 NaGdF4纳米粒子分散于生理盐水中,置于一系列1.5 mL的样品管中,使用MRI测试仪进行测定。测试后,通过在不同浓度下的T1加权成像(图2)可以看出,随着浓度的增加,造影剂成像图有变亮的趋势,表明该实施例PEI修饰的NaGdF4纳米粒子造影剂的造影效果逐渐增强。
实施例3
利用实施例1所获的PEI修饰的NaGdF4纳米粒子造影剂进行小鼠体内磁共振成像研究,步骤如下:
选取4-6周龄健康小鼠作为实验动物进行活体磁共振成像研究。
①将10%(w/v)水合氯醛对小鼠进行腹腔注射麻醉(给药量为0.05mL/10g小鼠)。
②将50g/mL的PEI修饰的NaGdF4纳米造影剂按0.5mL/100g小鼠进行尾静脉注射,在注射10min后对小鼠进行磁共振扫描,结果见图3。
采用磁共振成像系统(飞利浦,InteraAchieva 1.5T,荷兰飞利浦公司)扫描,3英寸表面线圈,轴位T1FSE,SE序列,TR=620ms,TE=20.7s,FOV=200×200,层厚=3.0 mm,无间隔。先行平扫,然后于注射后10 min进行小鼠磁共振扫描,对比观察注射造影剂前后的成像情况。
测试该实施例在活体内的成像效果可以看出注射PEI修饰的NaGdF4造影剂后,小鼠的肝脏部位图像变亮,T1-MR 信号增强(见图3)。
本发明的磁共振造影剂具有注射剂量低、成像效果好等特点,进一步表明PEI修饰的NaGdF4造影剂于 T1-MR 成像方面有着潜在应用价值。
另外,以上内容仅为本发明的优选实施例,并不作为本发明限制,对于本领域的技术人员来说,本发明可以有更改和变化。凡在本发明的创造构思之内,所作的修改、改进等,均应包括在本发明的保护范围之内。

Claims (6)

1.一种稀土基纳米磁共振造影剂,其特征在于:包覆亲水性配体的稀土基无机纳米粒子。
2.根据权利要求1所述的稀土纳米颗粒,其特征在于:所述稀土基无机纳米粒子为NaGdF4
3.根据权利要求1所述的稀土纳米颗粒,其特征在于:所述亲水性聚合物为聚乙烯亚胺(PEI)。
4.一种权利要求1-3中所述的稀土纳米颗粒的制备方法,其特征在于以下步骤:室温下,将1.5g PEI在搅拌下加入到20 mL乙二醇中,完全溶解后加入0.372g的GdCl3·6H2O,搅拌溶解,再加入0.058g的NaCl,搅拌10~30min,得到完全溶解的混合溶液,将0.15g NH4F溶解于10 mL乙二醇中后加入到上述混合溶液中,搅拌10~30min,最后将混合溶液倒入反应釜内胆中,拧紧反应釜,放置于鼓风干燥箱中160~190℃,反应16~24小时,反应结束后冷却至室温,将反应后的液体和固体转移至离心管中,3000~15000rpm,5~20min,丢弃上清液,留下管底固体,然后加入去离子水,超声分散固体,再离心(3000~15000 rpm,5~20min),如此反复3~5次,最后放置于干燥箱干燥(50~80℃)。
5.根据权利要求4所述的制备方法,其特征在于:所述采用的洗涤方式为离心洗涤,洗涤次数为3~5次。
6.一种稀土基纳米磁共振造影剂应用,其特征在于:该造影剂在MRI中的应用。
CN202110402999.2A 2021-04-15 2021-04-15 一种稀土基纳米磁共振造影剂的制备及应用 Pending CN113069559A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110402999.2A CN113069559A (zh) 2021-04-15 2021-04-15 一种稀土基纳米磁共振造影剂的制备及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110402999.2A CN113069559A (zh) 2021-04-15 2021-04-15 一种稀土基纳米磁共振造影剂的制备及应用

Publications (1)

Publication Number Publication Date
CN113069559A true CN113069559A (zh) 2021-07-06

Family

ID=76617694

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110402999.2A Pending CN113069559A (zh) 2021-04-15 2021-04-15 一种稀土基纳米磁共振造影剂的制备及应用

Country Status (1)

Country Link
CN (1) CN113069559A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113679854A (zh) * 2021-09-03 2021-11-23 苏州大学 一种磁共振造影剂及其制备和应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113679854A (zh) * 2021-09-03 2021-11-23 苏州大学 一种磁共振造影剂及其制备和应用
CN113679854B (zh) * 2021-09-03 2022-08-09 苏州大学 一种磁共振造影剂及其制备和应用

Similar Documents

Publication Publication Date Title
Srinivas et al. 19F MRI for quantitative in vivo cell tracking
US10987435B2 (en) Ultrafine nanoparticles comprising a functionalized polyorganosiloxane matrix and including metal complexes; method for obtaining same and uses thereof in medical imaging and/or therapy
AU657789B2 (en) Fullerene compositions for magnetic resonance spectroscopy and imaging
US20070025918A1 (en) Magnetic resonance imaging (MRI) agents: water soluble carbon-13 enriched fullerene and carbon nanotubes for use with dynamic nuclear polarization
CN104436220B (zh) 一种壳聚糖磁性纳米微球的制备方法及其用途
CN106883840B (zh) 一种荧光/ct/mri多模态成像量子点探针及其应用
CN104069516B (zh) 一种超顺磁性纳米颗粒及其制备方法和用途
CN107281504A (zh) 一种基于第二代聚酰胺‑胺树状大分子的spect/ct双模态成像造影剂的制备方法
US20180161461A1 (en) Rare Earth Oxide Particles and Use Thereof in Particular In Imaging
Ma et al. Three-dimensional angiography fused with CT/MRI for multimodal imaging of nanoparticles based on Ba 4 Yb 3 F 17: Lu 3+, Gd 3+
CN1249070C (zh) 顺磁性金属-酞菁配位化合物和使用其的造影剂
CN103275722B (zh) 一种磁光双模态成像探针稀土纳米微粒及其制法和用途
CN109078196A (zh) 一种骨髓间充质干细胞介导的纳米水凝胶及其制备和应用
CN113069559A (zh) 一种稀土基纳米磁共振造影剂的制备及应用
CN105797174B (zh) 一种基于纳米氧化石墨烯的磁共振成像造影剂及其制备方法
Pudakalakatti et al. Hyperpolarized MRI with silicon micro and nanoparticles: Principles and applications
CN100563719C (zh) 超声磁共振联合造影剂及其制备方法
CN109125744B (zh) 一种具有mri与ct双模态成像功能的钆掺杂氧化铪纳米颗粒的制备方法
CN103405792B (zh) Pei包裹的双模态造影剂四氧化三铁-氢氧化钆磁性纳米颗粒的制备
CN103341183A (zh) 纳米氧化钨wo2.9在ct造影剂材料中的应用
CN107349435B (zh) 一种精氨酸稳定的中空泡状硅酸锰纳米粒的制备方法、产品及应用
Liu et al. A high-performance imaging probe with NIR luminescence and synergistically enhanced T 1–T 2 relaxivity for in vivo hepatic tumor targeting and multimodal imaging
CN105327365B (zh) 一种磁光双模态成像纳米探针及其应用
Hu et al. Emulsifier-free emulsion polymerized poly (MMA-HEMA-Eu (AA) 3 Phen)/Fe 3 O 4 magnetic fluorescent bifunctional nanospheres for magnetic resonance and optical imaging
US9786048B2 (en) System and method using precious-metal nanoparticle contrast agent for microwave medical imaging

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication