CN1086628A - 多层陶瓷电容器 - Google Patents

多层陶瓷电容器 Download PDF

Info

Publication number
CN1086628A
CN1086628A CN93118650A CN93118650A CN1086628A CN 1086628 A CN1086628 A CN 1086628A CN 93118650 A CN93118650 A CN 93118650A CN 93118650 A CN93118650 A CN 93118650A CN 1086628 A CN1086628 A CN 1086628A
Authority
CN
China
Prior art keywords
slaine
temperature
capacitor
metal
metal powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN93118650A
Other languages
English (en)
Other versions
CN1043447C (zh
Inventor
浅田荣一
永岛和郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shoei Chemical Inc
Original Assignee
Shoei Chemical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18008845&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN1086628(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Shoei Chemical Inc filed Critical Shoei Chemical Inc
Publication of CN1086628A publication Critical patent/CN1086628A/zh
Application granted granted Critical
Publication of CN1043447C publication Critical patent/CN1043447C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/008Selection of materials
    • H01G4/0085Fried electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/30Making metallic powder or suspensions thereof using chemical processes with decomposition of metal compounds, e.g. by pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Capacitors (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

一种多层陶瓷电容器,它具有由实质上为单晶的 金属粉组成的内电极。这种金属粉的制造方法是:将 含有至少一种金属盐的溶液喷雾成雾滴,加热这些雾 滴至高于这种金属盐的分解温度,同时也高于这种金 属的熔点的温度;当金属盐在低于这种金属熔点的温 度形成氧化物时,将雾滴加热至高于这种氧化物分解 温度的温度。这种多层陶瓷电容器在陶瓷材料中无 裂纹产生。

Description

本发明涉及一种用于电子领域的多层陶瓷电容器。
目前为止,通过在未淬火的陶瓷片上形成每个都含有金属粉导体的内电极,层压这些组合片,并且烧结这些层压的片,来制备多层陶瓷电容器。由于它要在高达1000℃或高于1000℃的温度下烧结,所以使用一种贵金属如钯(Pd)或银(Ag)、镍(Ni)、铜(Cu)等作内电极的导电粉。然而,这种金属导电粉带来这样一个问题:金属粉在烧结时氧化反应引起体积膨胀,因而使陶瓷材料出现裂纹。例如,象在日本专利公开936/1981中描述的那样,Pd粉在低于一般陶瓷烧结温度的约500℃就开始氧化反应并膨胀,约800℃时,氧化反应速率达到最大值,然后在850℃迅速还原,恢复至起始的Pd。特别地,细Pd粉具有高的氧化反应活性,几乎完全被氧化引起重量增加约15%。由于陶瓷材料在600-700℃那么低的温度下尚没有充分烧结,它强度较差,内电极的氧化和还原反应很容易导致诸如象裂纹和分层那样的结构缺陷。
多层陶瓷片层数的增加加剧了裂纹的产生,这是由于这个增加是与陶瓷层厚度的降低和电极数目的增加相伴的。
为防止裂纹的产生,已做了各种努力,如调整金属粉的颗粒大小,对粉末进行氧化处理或表面处理,加入添加剂等等。但是,近年来对体积小、容量高的电容器的迫切需要导致陶瓷层和内电极层的厚度减小和在它的空间内层压层数增加,这样使得难于改进上述的缺陷,特别是传统方法产生的裂纹。
本发明提供一种高容量的多层陶瓷电容器,并且在陶瓷材料中不产生裂纹。
本发明涉及:
(1).一种多层陶瓷电容器,它具有由实质上为单晶的金属粉导体组成的内电极。将含有至少一种金属盐的溶液喷雾成雾滴,加热这些雾滴至高于这种金属盐的分解温度、同时也高于这种金属的熔点的温度,以此来制备上述金属粉,
(2).第(1)条中所述的电容器,其中当金属盐在不高于这种金属熔点的温度形成氧化物时,将雾滴加热至高于这种氧化物分解温度的温度,以得到用作导体、实质上为单晶的金属粉,
(3).第(1)或(2)条中所述的电容器,其中金属盐为至少两种金属盐的混合物,而导体是合金形成的导体,
(4).(1)到(3)任意一条中所述的电容器,其中金属盐是从钯盐、银盐、镍盐和铜盐中选择出的至少一种盐,和
(5).(1)到(4)任意一条中所述的电容器,其中金属盐是从钯、银、镍和铜的硝酸盐中选择出的至少一种盐。
唯一的附图是表示根据本发明的实施例中和比较例中体积增大率与温度之间关系的图表,其中曲线A表示根据本发明的实施例中的重量增加,曲线B表示比较例中的重量增加。
本发明的导体使用的金属粉包括Pd、Ag、Ni和Cu,它们以前已被用作电容器内电极的导电成分。本发明所说的金属粉包括单体金属粉、金属合金粉以及它们的混合物。
日本专利公开31522/1988描述了用于本发明的实质上为单晶的金属粉的制造工艺。金属盐可以是任何一类能够通过热解沉淀出目标金属的金属盐,例如正在讨论的每个金属的硝酸盐、硫酸盐、氯化物、铵盐、磷酸盐、羧酸盐、醇化物和树脂酸盐。一种或多种这些金属盐溶于水,如醇、酮、醚的有机溶剂或这些溶剂的混合物,成为金属盐溶液。单一金属粉用单一金属盐的溶液制备,合金粉用至少两种合金金属的盐溶液制备。混合粉可由至少两种非合金金属制备。用喷雾器将金属的盐溶液喷雾成雾滴,然后加热这些雾滴至高于金属盐的分解温度,同时也高于这个金属的熔点的温度,以此来制备具有光滑表面的球状单晶金属粉。当金属盐在低于金属的熔点就形成氧化物时,雾滴加热的温度要高于这个氧化物的分解温度。
本发明人详细研究了导体、特别是Pd粉的氧化反应现象。目前已被用作内电极的Pd主要通过化学还原制备。即使这些Pd粉由大小为1μm的单分散的精细球状微粒组成,它仍是约30nm的晶格组成的多晶微粒的内部结构。对于这种多晶微粒,氧气不仅通过微粒表面而且也以非常高的扩散速度通过晶界扩散进去。因而,可以认为,当在升温速度为10℃/min的烧结过程中,Pd粉被加热时,它在800℃时几乎完全被氧化,大大膨胀,因而产生裂纹。除了Pd,导电金属还有象Ag、Ni和Cu也同样发生这样的氧化膨胀。
本发明的内电极导体使用的金属粉由实质上为单晶的微粒构成,与先前的多晶微粒不同。因而,其特征在于,它没有氧气的晶介扩散,只出现通过微粒表面的体扩散,因而使氧化引起的膨胀最少。在内电极中使用这种单晶微粒,可以减小多层电容器在烧结过程中的体积膨胀,例如,在电容器的平面方向,转换为线性膨胀率,Pd的最大值为0.2%。这个数值是传统的电容器能达到最小膨胀率0.6%的1/3或更小。可以认为,膨胀率的减少抑制了裂纹的产生,即使陶瓷变薄或更多地分层,裂纹的产生仍降低到最小程度。
当为了减小电容器的尺寸而使内电极层变薄时,为了确保适宜的导电性,必须使用微粒大小为1μm或更小的精细金属粉。然而,传统方法的电极薄层的变薄有一极限,这是由于微粒尺寸的减小加剧了氧化反应而使裂纹的产生增多,因而不能使用精细金属粉。然而在本发明中,即使在使用如此小的微粒尺寸的金属粉时,裂纹的产生也能降低到最小程度。因此,在传统方法中,微粒尺寸为1μm或更大的Pd粉的使用使电极层的厚度的极限,以涂布重量表示为至少1.5mg/cm2。另一方面,本发明的单晶金属粉的应用,使微粒尺寸为1μm或更小的精细金属粉的使用成为可能,即使电极层的厚度为1mg/cm2或更小,仍可达到适宜的导电性,这样,通过使电极层变薄,可以减小电容器的尺寸。
现根据实施例来描述本发明。
实施例1
1mol/l的硝酸钯水溶液喷雾成精细雾滴,将雾滴引入加热到1650℃炉缸中,经过足以分解含有钯的雾滴和把所得Pd颗粒加热到高于它的熔点的温度的一段停留时间以后,穿过炉缸。用X-光衍射仪和高分辩SEM(扫描电镜)观察,结果表明形成了单分散的Pd微粒,它被证明是微粒尺寸为0.5-1.0μm、实质上为单晶态的精细微粒。使用热分析仪,在升温速度为10℃/min下测定这个金属粉的TG(热失重)曲线。结果见附图中的曲线A,表明最多有4.7%的小的重量增加。
然后,100重量份金属粉和90重量份含有乙基纤维素的载体物混合,这个混合物用三辊轧机制成膏状物,所得膏状物涂布在以钛酸钡为主要成分的未淬火陶瓷片上,随后干燥。60片涂布片叠在一起,在60℃和100kg/cm2下,热压成一未淬火的多层陶瓷电容器块,随后将它在空气中烧结,总的烧结时间为14小时,其中包括在最高温度1350℃时烧结2小时,制得多层陶瓷电容器,得到的电容器完全没有裂纹或分层。
实施例2
以硝酸镍代替硝酸钯,用与实施例1中相同的方法制得未淬火的多层陶瓷电容器块。随后将它在空气中400℃下保持1小时,然后在含有少量氢气的氮气中烧结,总烧结时间为14小时,其中包括在最高温度1350℃时烧结2小时,制得含有Ni内电极的一种多层陶瓷电容器。所得电容器完全没有裂纹或分层。
比较例1
用肼做还原剂,加入到作为原料的含有氯化钯的钯盐的水溶液中,制得微粒尺寸为0.5到0.6μm的单分散的Pd微粒。用X-光衍射仪和高分辩SEM观察微粒,结果证明,它是含有尺寸约为30nm的微晶的多晶微粒。用热分析仪,升温速度为10℃/min下,测定金属粉的TG曲线。结果见附图中的曲线B,表明它有很大的重量增加,最大值为14.6%。
然后,按照实施例中的方法,用这种金属粉制成一多层陶瓷电容器,结果,整个电容都可以发现裂纹,使电容器无法使用。
比较例2
用乙二醇还原乙酸镍制得的金属粉,按实施例2中相同的方法,制成一多层陶瓷电容器。结果,整个电容器都可以发现裂纹。
本发明表现出这样的效果:用特定的导电粉金属制成的一种多层结构的电容器,这样可以抑制由于氧化反应引起的体积膨胀,从而阻止陶瓷材料的裂纹的产生。

Claims (5)

1、一种多层陶瓷电容器,它具有由实质上为单晶的金属粉导体组成的内电极,将含有至少一种金属盐的溶液喷雾成雾滴,加热这些雾滴至高于这种金属盐的分解温度、同时也高于这种金属的熔点的温度,以此来制备上述金属粉。
2、权利要求1所述的电容器,其中当金属盐在不高于这种金属熔点的温度形成氧化物时,将雾滴加热至高于这种氧化物分解温度的温度,以得到用作导体、实质上为单晶的金属粉。
3、权利要求1或2中所述的电容器,其中金属盐为至少两种金属盐的混合物,而导体是合金形成的导体。
4、权利要求1至3任一项中所述的电容器,其中金属盐是选自钯盐、银盐、镍盐和铜盐的至少一种盐。
5、权利要求1至4任一项中所述的电容器,其中金属盐是选自钯、银、镍和铜的硝酸盐的至少一种盐。
CN93118650A 1992-10-09 1993-10-08 多层陶瓷电容器的制造方法 Expired - Lifetime CN1043447C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-310734 1992-10-09
JP310734/92 1992-10-09
JP4310734A JP3042224B2 (ja) 1992-10-09 1992-10-09 積層セラミックコンデンサの製造方法

Publications (2)

Publication Number Publication Date
CN1086628A true CN1086628A (zh) 1994-05-11
CN1043447C CN1043447C (zh) 1999-05-19

Family

ID=18008845

Family Applications (1)

Application Number Title Priority Date Filing Date
CN93118650A Expired - Lifetime CN1043447C (zh) 1992-10-09 1993-10-08 多层陶瓷电容器的制造方法

Country Status (8)

Country Link
US (1) US5420744A (zh)
EP (1) EP0593167B1 (zh)
JP (1) JP3042224B2 (zh)
KR (1) KR970004274B1 (zh)
CN (1) CN1043447C (zh)
DE (1) DE69300962T2 (zh)
MY (1) MY108844A (zh)
TW (1) TW257871B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1087669C (zh) * 1997-10-17 2002-07-17 昭荣化学工业株式会社 镍粉和其制备方法及用途
CN101752081B (zh) * 2008-12-02 2011-12-07 华为技术有限公司 一种陶瓷电容

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19545455C1 (de) * 1995-12-06 1997-01-23 Degussa Verfahren zur Herstellung von Edelmetallpulvern
US6165247A (en) 1997-02-24 2000-12-26 Superior Micropowders, Llc Methods for producing platinum powders
US6159267A (en) * 1997-02-24 2000-12-12 Superior Micropowders Llc Palladium-containing particles, method and apparatus of manufacture, palladium-containing devices made therefrom
US6699304B1 (en) 1997-02-24 2004-03-02 Superior Micropowders, Llc Palladium-containing particles, method and apparatus of manufacture, palladium-containing devices made therefrom
US6679937B1 (en) 1997-02-24 2004-01-20 Cabot Corporation Copper powders methods for producing powders and devices fabricated from same
US6338809B1 (en) 1997-02-24 2002-01-15 Superior Micropowders Llc Aerosol method and apparatus, particulate products, and electronic devices made therefrom
US20050097987A1 (en) * 1998-02-24 2005-05-12 Cabot Corporation Coated copper-containing powders, methods and apparatus for producing such powders, and copper-containing devices fabricated from same
US6106614A (en) * 1998-10-15 2000-08-22 Starmet Corp Method and apparatus for fabricating near spherical semiconductor single crystal particulate and the spherical product produced
DE19912733A1 (de) 1999-03-20 2000-09-21 Degussa Verfahren zur Herstellung von Wasserstoffperoxid durch Direktsynthese
JP3812523B2 (ja) * 2002-09-10 2006-08-23 昭栄化学工業株式会社 金属粉末の製造方法
JP4631342B2 (ja) * 2004-07-28 2011-02-16 株式会社デンソー 積層型圧電体素子の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3663667A (en) * 1970-02-13 1972-05-16 Sylvania Electric Prod Process for producing metal powders
US3763409A (en) * 1972-04-20 1973-10-02 Du Pont Capacitor with copper containing electrode
US3815187A (en) * 1972-07-12 1974-06-11 Union Carbide Corp Process for making ceramic capacitors
GB1461176A (en) * 1974-04-11 1977-01-13 Plessey Inc Method of producing powdered materials
GB2133623A (en) * 1982-12-20 1984-07-25 Engelhard Ind Ltd Ceramic multilayer electrical capacitors
JPS621807A (ja) * 1985-06-26 1987-01-07 Shoei Kagaku Kogyo Kk 金属粉末の製造方法
JPS6331522A (ja) * 1986-07-25 1988-02-10 Kao Corp 吸湿剤
US4778517A (en) * 1987-05-27 1988-10-18 Gte Products Corporation Hydrometallurgical process for producing finely divided copper and copper alloy powders
JPH0676609B2 (ja) * 1988-08-24 1994-09-28 川崎製鉄株式会社 銅微粉の製造方法
JPH0359905A (ja) * 1989-07-28 1991-03-14 Nippon Shokubai Kagaku Kogyo Co Ltd 導電性球状微粒子、その製法およびそれを含む導電性ペースト
JPH0368484A (ja) * 1989-08-08 1991-03-25 Shinji Hasegawa 排水管の清掃工法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1087669C (zh) * 1997-10-17 2002-07-17 昭荣化学工业株式会社 镍粉和其制备方法及用途
CN101752081B (zh) * 2008-12-02 2011-12-07 华为技术有限公司 一种陶瓷电容

Also Published As

Publication number Publication date
JP3042224B2 (ja) 2000-05-15
US5420744A (en) 1995-05-30
CN1043447C (zh) 1999-05-19
JPH06124847A (ja) 1994-05-06
MY108844A (en) 1996-11-30
DE69300962T2 (de) 1996-08-01
KR940010139A (ko) 1994-05-24
EP0593167A1 (en) 1994-04-20
DE69300962D1 (de) 1996-01-18
TW257871B (zh) 1995-09-21
KR970004274B1 (ko) 1997-03-26
EP0593167B1 (en) 1995-12-06

Similar Documents

Publication Publication Date Title
CN1043447C (zh) 多层陶瓷电容器的制造方法
EP1666174B1 (en) Silver powder and method for producing same
EP1785207A1 (en) Nickel powder and manufacturing method thereof
KR20060128997A (ko) 복합형 나노입자 및 그 제조방법
EP2185304B1 (en) Method for the production of a multi-element alloy powder containing silver and at least two non-silver containing elements
JP3277823B2 (ja) 金属粉末の製造方法
CN111872376B (zh) 一种抗氧化性高的银包覆微合金化铜粉制备方法
CN1300381C (zh) 导电用复合铜粉及复合铜导体浆料的制备方法
JP2005298921A (ja) 複合金属超微粒子及びその製造方法
JP4020948B2 (ja) 複合型ナノ粒子の製造方法
CN114592138B (zh) 一种纳米氧化铝颗粒增强铜基复合材料及其制备方法
DE2830376C2 (de) Verfahren zur Herstellung kugelförmiger Teilchen für das Spritzauftragen von Schutzschichten
JPH07118868A (ja) パラジウム被覆球状銀粉の製造方法
JPH07320535A (ja) 新規導電性ペースト組成物
US4836979A (en) Manufacture of composite structures
CN114653942B (zh) 烧结过程中产生还原气氛的复合载体及其制备方法与应用
JP4198603B2 (ja) 複合金属粉体、その製法及び導電性ペースト
JPH06235006A (ja) 積層構造を有する銀粉、フレーク状銀粉、それらの製造方法及び導電ペースト組成物と導電接着剤組成物
JP4276031B2 (ja) チタン化合物被覆ニッケル粉末およびこれを用いた導電ペースト
JP3698098B2 (ja) 導電粉末の製造方法、導電粉末、導電性ペーストおよび積層セラミック電子部品
KR830001482B1 (ko) 전기도체 형성용 니켈합금 페이스트
JP2555645B2 (ja) 銀合金微粉末の製造方法
JPH03215916A (ja) 電極の形成方法およびそれを用いた電子部品
KR820002152B1 (ko) 고온 산화분위기에서 소결되는 고밀도 니켈합금 분말의 제조방법
CN118824607A (zh) 一种低方阻银铜复合多层导电膜材料的制备方法

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CX01 Expiry of patent term

Expiration termination date: 20131008

Granted publication date: 19990519