CN108659807B - 一种智能纳米泡沫驱油剂的制备方法 - Google Patents

一种智能纳米泡沫驱油剂的制备方法 Download PDF

Info

Publication number
CN108659807B
CN108659807B CN201810761015.8A CN201810761015A CN108659807B CN 108659807 B CN108659807 B CN 108659807B CN 201810761015 A CN201810761015 A CN 201810761015A CN 108659807 B CN108659807 B CN 108659807B
Authority
CN
China
Prior art keywords
temperature
nano
oil
intelligent
foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810761015.8A
Other languages
English (en)
Other versions
CN108659807A (zh
Inventor
江希
甄景超
陈庆云
白博峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201810761015.8A priority Critical patent/CN108659807B/zh
Publication of CN108659807A publication Critical patent/CN108659807A/zh
Application granted granted Critical
Publication of CN108659807B publication Critical patent/CN108659807B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • C09K8/588Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids characterised by the use of specific polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F226/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F226/02Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a single or double bond to nitrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • C09K8/584Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids characterised by the use of specific surfactants
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/602Compositions for stimulating production by acting on the underground formation containing surfactants
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/84Compositions based on water or polar solvents
    • C09K8/86Compositions based on water or polar solvents containing organic compounds
    • C09K8/88Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • C09K8/882Compositions based on water or polar solvents containing organic compounds macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/92Compositions for stimulating production by acting on the underground formation characterised by their form or by the form of their components, e.g. encapsulated material
    • C09K8/94Foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/281Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing only one oxygen, e.g. furfuryl (meth)acrylate or 2-methoxyethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/10Nanoparticle-containing well treatment fluids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Lubricants (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本发明公开了一种智能纳米泡沫驱油剂的制备方法,通过将温度敏感型聚合物接枝到具有磁性的纳米粒子表面,制备出具有温度敏感特性及磁响应的复合纳米粒子,且这种纳米颗粒具有稳定泡沫的特性。该驱油剂特点是,驱油剂的亲水亲油性可以调控:地层温度较高时,纳米颗粒表现为亲油性,当泡沫遇到原油后泡沫破裂,这有利于原油从岩层表面剥落,提高采收率。当温度较低时,纳米颗粒表现为亲水性,有利于油水的分离,并且通过外加磁场能够迅速实现纳米颗粒的回收。并且这种具有泡沫驱替液对磁场有响应可以通过外加磁场控制驱替液的流动。

Description

一种智能纳米泡沫驱油剂的制备方法
技术领域
本发明涉及驱油剂,特别涉及一种智能纳米泡沫驱油剂的制备方法。
背景技术
石油是一种重要的不可再生能源,但是在石油开采过程中,经过一次采油和二次采油后,平均采收率很少超过50%,个别情况下曾达到70%-80%,但如果控制不好,甚至可能低于30%。经过一次采油和二次采油后,油藏内仍存留着大量的原油,需要使用物理、化学方法进行开采,即三次采油。从长远发展角度来看,改善三次采油技术是提高原油采收率的根本途径。三次采油的方式有很多,比如:化学驱、气驱、热力驱和微生物驱,而纳米采油技术由于其经济性以及对环境的影响比较小,引起了人们极大的兴趣。
纳米驱油剂在驱油过程中能提高原油采收率,但是采收率依旧不是很高,还有很大提高空间,纳米驱油剂价格相对性价比不高。驱油后得到的油水乳液需要进一步处理,过程繁琐。并且纳米颗粒本身的亲水亲油性难以调控,纳米颗粒的亲水性和亲油性太强驱油效率都不高,并且加入纳米粒子亲油性太强会使得原油中含有过多的纳米粒子,影响原油质量。
发明内容
为了克服上述现有技术的缺点,本发明的目的在于提供一种智能纳米泡沫驱油剂的制备方法,制备出的驱油剂能够实现智能驱替,能够随着温度的变化,改变亲水亲油性和粒径尺寸的大小,进而提高原油的采收率,同时能够重复利用,其性价比较高,对纳米驱油剂驱油效果的提高和进一步推广应用具有重要的意义。
为实现上述目的,本发明采取如下方案:
一种智能纳米泡沫驱油剂的制备方法,包括以下步骤:
第一步,将一定量的磁性纳米粒子与分散剂分散于反应介质中,接着加入温敏聚合物单体和引发剂,升温反应,经过离心干燥后制得智能复合纳米粒子,将此智能复合纳米粒子分散到水中制得分散液;
第二步,将一定量的起泡剂加入上述分散液中,在室温条件下搅拌反应,即制得智能纳米泡沫驱油剂。
所述磁性纳米粒子为含铁磁性氧化物、含钴磁性氧化物、含镍磁性氧化物中的一种或几种。
所述磁性纳米粒子为铁、钴、镍三种元素中任两种的混合磁性氧化物,或为任两种的混合磁性氧化物的混合。
所述反应介质为甲醇、乙醇、异丙醇、正丁醇、N,N-二甲基甲酰胺、丙酮、丁酮、四氢呋喃和水中的一种或几种混合。
所述温敏聚合物单体为N-异丙基丙烯酰胺(NIPAM)、甲基丙烯酸-2-(N,N-二甲氨基)酯(DMAEMA)、甲基丙烯酸甲氧基乙酯(MEMA)中的一种或几种。
所述引发剂为过硫酸钾、过硫酸铵、过硫酸钠、偶氮二异丁腈、偶氮二异庚腈、过氧化氢-硫酸铁、过氧化氢-氯化铁中的一种。
所述起泡剂为十二烷基硫酸钠、十二烷基磺酸钠、十二烷基苯磺酸钠、十二烷基三甲基溴化铵、十二烷基苯基二甲基溴化铵中的一种,所述分散剂为具有分散纳米颗粒效应的表面活性剂,如聚乙烯吡咯烷酮、十二烷基三甲基溴化铵、十二烷基苯磺酸钠等。
以质量份数计,磁性纳米粒子、分散剂、温敏聚合物单体、引发剂、起泡剂的用量之比为(1-10):(0.1-3):(50-200):(1-5):(50-200)。
所述第一步中,升温至60-90℃,反应2-10小时,所述第二步中,搅拌反应3-10小时。
与现有技术相比,本发明的有益效果是:
(1)纳米驱油剂的亲水亲油性能够随温度的变化而变化。当温度在临界温度以下时,由于聚合物内的分子间作用,纳米粒子表现为亲水性,这有助于实现油水的分离;当温度在临界温度以上时,纳米粒子表现为亲油性,当纳米粒子被进入油相时,泡沫更容易破裂,这有助于驱油剂的驱替。
(2)智能纳米粒子的粒径大小也能够随着温度的变化而变化。当温度在临界温度以下时,由于聚合物内的分子间作用力,聚合物为伸展状态,这使得纳米粒的粒径较大。当温度在临界温度以上时,包覆纳米粒子的聚合物为收缩状态,这使得纳米粒子的粒径变小。就粒径而言这使得驱替液能够进入孔径更小的孔道,有利于驱替液的驱替。
(3)智能纳米泡沫驱油剂的流动特性能够通过磁场调控,更加有助于驱替液扩大波及面积。并且可以通过外加磁场的强度控制泡沫的稳定性。
(4)能够实现驱替液的快速回收。当驱替液返回地表时,环境温度降低,纳米粒子表现为亲水性通过外加磁场实现智能纳米粒子的回收。
附图说明
图1是本发明实施例1所得产物的驱油效果图。
具体实施方式
下面结合实例来描述本发明的具体实施方式,但本发明不只局限于以下实施实例。
实施例1:
首先制得纳米级别的四氧化三铁:取一定量的FeCl3·6H2O先溶于水中,往溶液中通氮气30分钟,然后加入适量FeCl2·4H2O,使之完全溶解。而后加入合适的甲基丙烯酸二甲氨乙酯(DMA)。混合物在80℃的条件下反应30分钟。最后将得到的溶液分离,清洗,干燥。得到的产物即为纳米级别的四氧化三铁。
将0.1g Fe3O4分散于200ml去离子水中并加入1g聚乙烯吡咯烷酮。将溶液用氮气吹扫30分钟。而后依次加入1g N-异丙基丙烯酰胺、0.1g过硫酸钾、0.05g对苯乙烯磺酸钠。加热至80℃反应12小时。最后将得到的溶液离心干燥。得到对温度场和磁场响应的纳米颗粒。
将得到的纳米颗粒与1g十二烷基硫酸钠起泡剂一起分散于水中,再通过高速搅拌5小时可得到智能纳米泡沫。
利用这种性能的温敏纳米流体进行岩芯驱油实验,结果如图1所示,最高能将原油的采收率提高至18.24%,并且从驱替后的玻璃片中能够发现,这种温敏材料能够使得吸附在孔道中的原油剥落。
实施例2:
将0.1g磁性纳米粒子MFe2O4(M=Ni,Co,Zn)分散于200ml去离子水中并加入1g十二烷基三甲基溴化铵。将溶液用氮气吹扫30分钟。而后依次加入1g甲基丙烯酸甲氧基乙酯、0.1g过硫酸氨、0.05g乙烯基磺酸钠。加热至80℃反应12小时。最后将得到的溶液离心干燥。得到对温度场和磁场响应的纳米颗粒。
将得到的纳米颗粒与1g十二烷基磺酸钠起泡剂一起分散于水中,再通过高速搅拌5小时可得到智能纳米泡沫。
实施例3:
将0.1g磁性纳米粒子α-Fe2O3分散于200ml去离子水中并加入1g十二烷基苯磺酸钠)。将溶液用氮气吹扫30分钟。而后依次加入1g甲基丙烯酸-2-(N,N-二甲氨基)酯、0.1g过硫酸钠、0.05g苯乙烯磺酸钠。加热至80℃反应12小时。最后将得到的溶液离心干燥。得到对温度场和磁场响应的纳米颗粒。
将得到的纳米颗粒与1g十二烷基苯磺酸钠起泡剂一起分散于水中,再通过高速搅拌5小时可得到智能纳米泡沫。
综上,本发明通过将温度敏感型聚合物接枝到具有磁性的纳米粒子表面,制备出具有温度敏感特性及磁响应的复合纳米粒子,且这种纳米颗粒具有稳定泡沫的特性。该驱油剂特点是,驱油剂的亲水亲油性可以调控:地层温度较高时,纳米颗粒表现为亲油性,当泡沫遇到原油后泡沫破裂,这有利于原油从岩层表面剥落,提高采收率。当温度较低时,纳米颗粒表现为亲水性,有利于油水的分离,并且通过外加磁场能够迅速实现纳米颗粒的回收。并且这种具有泡沫驱替液对磁场有响应可以通过外加磁场控制驱替液的流动。

Claims (9)

1.一种智能纳米泡沫驱油剂的制备方法,其特征在于,包括以下步骤:
第一步,将一定量的磁性纳米粒子与分散剂分散于反应介质中,接着加入温敏聚合物单体和引发剂,升温反应,经过离心干燥后制得智能复合纳米粒子,将此智能复合纳米粒子分散到水中制得分散液,所述温敏聚合物单体为甲基丙烯酸-2-(N,N-二甲氨基)酯(DMAEMA)和/或甲基丙烯酸甲氧基乙酯(MEMA);
第二步,将一定量的起泡剂加入上述分散液中,在室温条件下搅拌反应,即制得智能纳米泡沫驱油剂;
其中,纳米驱油剂的亲水亲油性能够随温度的变化而变化:当温度在临界温度以下时,由于聚合物内的分子间作用,纳米粒子表现为亲水性,从而有助于实现油水的分离;当温度在临界温度以上时,纳米粒子表现为亲油性,当纳米粒子被进入油相时,泡沫更容易破裂,从而有助于驱油剂的驱替;
智能纳米粒子的粒径大小能够随着温度的变化而变化:当温度在临界温度以下时,由于聚合物内的分子间作用力,聚合物为伸展状态,使得纳米粒的粒径较大;当温度在临界温度以上时,包覆纳米粒子的聚合物为收缩状态,使得纳米粒子的粒径变小;
所述智能纳米泡沫驱油剂的流动特性能够通过磁场调控,通过外加磁场的强度能够控制泡沫的稳定性;
当驱替液返回地表时,环境温度降低,纳米粒子表现为亲水性通过外加磁场从而实现智能纳米粒子的回收。
2.根据权利要求1所述智能纳米泡沫驱油剂的制备方法,其特征在于,所述磁性纳米粒子为含铁磁性氧化物、含钴磁性氧化物、含镍磁性氧化物中的一种或几种。
3.根据权利要求1所述智能纳米泡沫驱油剂的制备方法,其特征在于,所述磁性纳米粒子为铁、钴、镍三种元素中任两种的混合磁性氧化物,或为任两种的混合磁性氧化物的混合。
4.根据权利要求1所述智能纳米泡沫驱油剂的制备方法,其特征在于,所述反应介质为甲醇、乙醇、异丙醇、正丁醇、N,N-二甲基甲酰胺、丙酮、丁酮、四氢呋喃和水中的一种或几种混合。
5.根据权利要求1所述智能纳米泡沫驱油剂的制备方法,其特征在于,所述引发剂为过硫酸钾、过硫酸铵、过硫酸钠、偶氮二异丁腈、偶氮二异庚腈、过氧化氢-硫酸铁、过氧化氢-氯化铁中的一种。
6.根据权利要求1所述智能纳米泡沫驱油剂的制备方法,其特征在于,所述起泡剂为十二烷基硫酸钠、十二烷基磺酸钠、十二烷基苯磺酸钠、十二烷基三甲基溴化铵、十二烷基苯基二甲基溴化铵中的一种,所述分散剂为具有分散纳米颗粒效应的表面活性剂。
7.根据权利要求1所述智能纳米泡沫驱油剂的制备方法,其特征在于,所述分散剂为聚乙烯吡咯烷酮、十二烷基三甲基溴化铵、十二烷基苯磺酸钠中的一种。
8.根据权利要求1所述智能纳米泡沫驱油剂的制备方法,其特征在于,以质量份数计,磁性纳米粒子、分散剂、温敏聚合物单体、引发剂、起泡剂的用量之比为(1-10):(0.1-3):(50-200):(1-5):(50-200)。
9.根据权利要求1所述智能纳米泡沫驱油剂的制备方法,其特征在于,所述第一步中,升温至60-90℃,反应2-10小时,所述第二步中,搅拌反应3-10小时。
CN201810761015.8A 2018-07-12 2018-07-12 一种智能纳米泡沫驱油剂的制备方法 Active CN108659807B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810761015.8A CN108659807B (zh) 2018-07-12 2018-07-12 一种智能纳米泡沫驱油剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810761015.8A CN108659807B (zh) 2018-07-12 2018-07-12 一种智能纳米泡沫驱油剂的制备方法

Publications (2)

Publication Number Publication Date
CN108659807A CN108659807A (zh) 2018-10-16
CN108659807B true CN108659807B (zh) 2020-09-01

Family

ID=63774052

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810761015.8A Active CN108659807B (zh) 2018-07-12 2018-07-12 一种智能纳米泡沫驱油剂的制备方法

Country Status (1)

Country Link
CN (1) CN108659807B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110129019B (zh) * 2019-06-11 2021-01-26 西南石油大学 一种用于三次采油的纳米驱油剂及其制备方法
US11597869B2 (en) 2020-06-29 2023-03-07 Saudi Arabian Oil Company Magnetically labeled hybrid nanosurfactants for oil reservoir applications
CN113912780A (zh) * 2020-07-07 2022-01-11 中国石油化工股份有限公司 一种温度响应性的纳米稳泡剂及其制备方法和温敏性起泡剂及其制备方法
CN114075310B (zh) * 2020-08-13 2023-01-17 中国石油化工股份有限公司 一种两相粘度调节剂及其制备方法
CN112210356B (zh) * 2020-09-24 2022-12-16 南京师范大学 磁基黑磷纳米驱油剂及其制备方法
CN112538145A (zh) * 2020-12-23 2021-03-23 西南石油大学 一种智能控释靶向纳米驱油剂微囊的制备方法及应用
CN115595136B (zh) * 2021-06-28 2023-11-14 中国石油化工股份有限公司 一种用于泡沫排水采气的温度响应型起泡剂及其制备方法、应用
CN113881415B (zh) * 2021-11-05 2022-07-26 清华大学 一种纳米颗粒驱油剂及一种提高采收率的方法
CN114350337B (zh) * 2021-12-27 2023-05-26 西安石油大学 智能层状纳米稳泡剂及其制备方法和在泡沫驱油中的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013055213A1 (en) * 2011-10-11 2013-04-18 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Enhanced hydrocarbon recovery
CN103214631A (zh) * 2013-03-22 2013-07-24 中国石油天然气股份有限公司 一种温敏改性二氧化硅纳米微球及其制备方法与应用
WO2013158567A1 (en) * 2012-04-15 2013-10-24 Cesi Chemical, Inc. Surfactant formulations for foam flooding
CN104531118A (zh) * 2014-12-25 2015-04-22 郑州正佳能源环保科技有限公司 一种智能纳米驱油剂的制备方法
CN107162309A (zh) * 2017-07-04 2017-09-15 浙江海洋大学 一种基于温敏性磁纳米材料的乳化石油废水处理装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5262055A (en) * 1992-10-19 1993-11-16 The University Of Utah Implantable and refillable biohybrid artificial pancreas
CN100378190C (zh) * 2005-07-26 2008-04-02 中国科学院理化技术研究所 纳米水溶性微凝胶驱油材料及其制备方法
CN102399345B (zh) * 2010-09-14 2013-12-18 中国科学院理化技术研究所 含有核壳结构凝胶微球的乳液深部调驱剂的制备方法及乳液深部调驱剂
CN102464849B (zh) * 2010-11-17 2013-09-18 中国石油化工股份有限公司 驱油用无机纳米复合聚丙烯酰胺及其制备方法
US20140187451A1 (en) * 2012-12-29 2014-07-03 Yousef Tamsilian Producing Nanostructure of Polymeric Core-Shell to Intelligent Control solubility of Hidrophilic Polymer during Polymer Flooding Process
CN104014808B (zh) * 2014-05-29 2016-02-24 深圳航天科技创新研究院 引晶生长法制备单分散超细镍粉的方法及其微反应系统
CN105199688B (zh) * 2015-09-22 2020-06-02 西南石油大学 一种水基钻井液用智能纳米封堵剂
CN107722307A (zh) * 2017-10-24 2018-02-23 湖北科技学院 一种磁、pH、温度协同刺激响应水凝胶预辐射合成方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013055213A1 (en) * 2011-10-11 2013-04-18 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Enhanced hydrocarbon recovery
WO2013158567A1 (en) * 2012-04-15 2013-10-24 Cesi Chemical, Inc. Surfactant formulations for foam flooding
CN103214631A (zh) * 2013-03-22 2013-07-24 中国石油天然气股份有限公司 一种温敏改性二氧化硅纳米微球及其制备方法与应用
CN104531118A (zh) * 2014-12-25 2015-04-22 郑州正佳能源环保科技有限公司 一种智能纳米驱油剂的制备方法
CN107162309A (zh) * 2017-07-04 2017-09-15 浙江海洋大学 一种基于温敏性磁纳米材料的乳化石油废水处理装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Magnetic polymer beads: Recent trends and developments in synthetic design and applications, Philippova;Philippova;《EUROPEAN POLYMER JOURNAL》;20110430;第47卷(第4期);第542-559页 *
Novel Applications of Nanoparticles for Future Enhanced Oil Recovery;Martin Vad Bennetzen;《International Petroleum Technology Conference, 10-12 December, Kuala Lumpur, Malaysia》;20141231;正文第1页第2-3段,第3页2段,第10页第4段 *

Also Published As

Publication number Publication date
CN108659807A (zh) 2018-10-16

Similar Documents

Publication Publication Date Title
CN108659807B (zh) 一种智能纳米泡沫驱油剂的制备方法
CN105884954B (zh) 一种抗温耐盐胶乳封堵剂及其制备方法
CN104531118B (zh) 一种智能纳米驱油剂的制备方法
CN105586025B (zh) 高温高盐油藏聚合物微球分散体系调驱剂及其制备方法和应用
CN104762071B (zh) 一种水基钻井液用页岩微纳米颗粒封堵剂的制备方法
US8552110B2 (en) Polymerization process for preparing monodispersal organic/inorganic composite nano-microsphere
CN108503744A (zh) 具有核壳结构的丙烯酸酯类乳液及其制备方法和应用
CN112538145A (zh) 一种智能控释靶向纳米驱油剂微囊的制备方法及应用
EP2139932B1 (en) Composite particle and production method thereof
CN110776898A (zh) 一种用于提高致密储层原油采收率的粘弹性纳米磁流体及其制备方法
CN104844753A (zh) 一种磁性纳米功能高分子复合微球的制备方法
CN115819676B (zh) 油藏深部调剖用自组装纳米颗粒及其制备方法和应用
CN113637114A (zh) 一种纳米调驱剂及其制备方法和应用
CN115677923A (zh) 一种新型预交联凝胶颗粒型堵剂及其制备方法和应用
CN101698737B (zh) 一种有机/无机纳米磁性复合材料的制备方法
Li et al. Polystyrene nanofluids for enhanced oil recovery
CN105754111B (zh) 基于聚乙二醇/环糊精复合结构的超支化聚合物驱油剂及其制备方法
CN111793178B (zh) 一种双亲蒙脱土及其制备方法与应用
CN108816162B (zh) 一种Yolk-Shell结构无机聚合物杂化微球的制备方法
CN115109573A (zh) 一种纳米渗吸驱油剂及其制备方法
CN110924894B (zh) 一种非均质低渗油藏的开采方法及调剖剂
CN108929663B (zh) 树脂微球堵剂及其制备方法
Liu et al. Controllable preparation of monodisperse polystyrene microspheres with different sizes by dispersion polymerization
CN114085661B (zh) 一种凝胶颗粒乳状液体系及其提高采收率的方法
CN109575680A (zh) 纳米磁性油墨及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant