CN108640127A - Fe(II)置换MEL型沸石及其制法、包含其的气体吸附剂、及一氧化氮及烃的除去法 - Google Patents

Fe(II)置换MEL型沸石及其制法、包含其的气体吸附剂、及一氧化氮及烃的除去法 Download PDF

Info

Publication number
CN108640127A
CN108640127A CN201810470599.3A CN201810470599A CN108640127A CN 108640127 A CN108640127 A CN 108640127A CN 201810470599 A CN201810470599 A CN 201810470599A CN 108640127 A CN108640127 A CN 108640127A
Authority
CN
China
Prior art keywords
mel
type zeolites
mel type
displacement
zeolite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810470599.3A
Other languages
English (en)
Other versions
CN108640127B (zh
Inventor
小仓贤
板桥庆治
大久保达也
S·P·爱兰格瓦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
University of Tokyo NUC
Original Assignee
Mitsui Mining and Smelting Co Ltd
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd, University of Tokyo NUC filed Critical Mitsui Mining and Smelting Co Ltd
Publication of CN108640127A publication Critical patent/CN108640127A/zh
Application granted granted Critical
Publication of CN108640127B publication Critical patent/CN108640127B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/72Organic compounds not provided for in groups B01D53/48 - B01D53/70, e.g. hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • B01J20/186Chemical treatments in view of modifying the properties of the sieve, e.g. increasing the stability or the activity, also decreasing the activity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28061Surface area, e.g. B.E.T specific surface area being in the range 100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28064Surface area, e.g. B.E.T specific surface area being in the range 500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28071Pore volume, e.g. total pore volume, mesopore volume, micropore volume being less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3071Washing or leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/06Preparation of isomorphous zeolites characterised by measures to replace the aluminium or silicon atoms in the lattice framework by atoms of other elements, i.e. by direct or secondary synthesis
    • C01B39/065Galloaluminosilicates; Group IVB- metalloaluminosilicates; Ferroaluminosilicates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/36Pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C01B39/38Type ZSM-5
    • C01B39/40Type ZSM-5 using at least one organic template directing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • B01D2253/1085Zeolites characterized by a silicon-aluminium ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/112Metals or metal compounds not provided for in B01D2253/104 or B01D2253/106
    • B01D2253/1122Metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/306Surface area, e.g. BET-specific surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/311Porosity, e.g. pore volume
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/20Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

本发明的目的、课题在于提供一种在各种气体的催化除去时有用的Fe(II)置换MEL型沸石及其制造方法、包含其的气体吸附剂、以及一氧化氮及烃的除去方法。本发明的Fe(II)置换MEL型沸石的SiO2/Al2O3比为10以上且30以下、并且是由Fe(II)离子进行离子交换而成。相对于Fe(II)置换MEL型沸石,Fe(II)的载有量较佳为0.001mmol/g~0.4mmol/g。该Fe(II)置换MEL型沸石可以通过以下方法而较佳地制造:将SiO2/Al2O3比为10以上且30以下的MEL型沸石分散在二价铁的水溶性化合物水溶液中,并进行混合搅拌,由此使该MEL型沸石载有Fe(II)离子。

Description

Fe(II)置换MEL型沸石及其制法、包含其的气体吸附剂、及一 氧化氮及烃的除去法
本申请是分案申请,母案的申请号:201380036741.9,申请日:2013年07月16日,发明名称:Fe(II)置换MEL型沸石、包含其的气体吸附剂及其制造方法、以及一氧化氮及烃的除去方法。
技术领域
本发明涉及一种Fe(II)置换MEL型沸石、包含其的气体吸附剂及其制造方法。另外,本发明涉及一种用来将内燃机的废气等气相中的一氧化氮气体或烃气体吸附除去的吸附剂、及自气相中除去一氧化氮气体或烃气体的方法。
背景技术
作为汽车的废气净化用催化剂,提出了使用由铁离子进行离子交换而成的沸石(参照专利文献1~专利文献3)。例如专利文献1中记载了一种脱硝催化剂,该脱硝催化剂具有载体及该载体所载有的氧化铁,所述载体是由0.1质量%~15质量%的Fe3+离子将SiO2/Al2O3的摩尔比为15~300的β型沸石进行离子交换而成。
专利文献2中记载:将β型沸石进行离子交换而使其载有Fe3+,并使其与含有氮氧化物的废气接触,其中所述β型沸石具有在29Si魔角旋转核磁共振(29Si Magic AngleSpinning Nuclear Magnetic Resonance,29Si MAS NMR)光谱中观测到的归属于沸石骨架的Q4的Si含有率为35质量%~47质量%的骨架结构,并且SiO2/Al2O3的摩尔比为20以上且小于100。
专利文献3中记载了一种NOx吸附材料的制造方法。该方法包括以下工序:含浸工序,使ZSM-5、丝光沸石(Mordenite)或β型沸石含浸氯化铁水溶液而制成含氯化铁的沸石;离子交换工序,在不含水分的环境下在330℃~500℃下对该含氯化铁的沸石进行加热,将Fe进行离子交换;以及热处理工序,在非氧化性环境下对该离子交换工序后的该含氯化铁的沸石进行热处理。
现有技术文献
专利文献
专利文献1:国际公开第2006/011575号说明书
专利文献2:日本专利特开2007-076990号公报
专利文献3:日本专利特开2008-264702号公报
发明内容
[发明所欲解决的问题]
然而,在进行一氧化氮的催化除去时,在废气中以高浓度存在氧气的情况、或废气的温度低的情况下,即便使用所述材料也不容易有效地吸附除去一氧化氮。
本发明的课题在于提供一种可以消除上文所述的现有技术所具有的各种缺点的MEL型沸石。
[解决问题的技术手段]
本发明人等人进行了努力研究,结果发现,通过使用由二价铁进行离子交换而成、且具有特定的SiO2/Al2O3比的Fe(II)置换MEL型沸石,可以达成所述目的。
即,本发明提供一种Fe(II)置换MEL型沸石,其SiO2/Al2O3比为10以上且30以下、并且是由Fe(II)离子进行离子交换而成。
另外,本发明提供一种气体吸附剂,其包含所述Fe(II)置换MEL型沸石。
进而,本发明提供一种Fe(II)置换MEL型沸石的制造方法,其包括以下工序:将SiO2/Al2O3比为10以上且30以下的MEL型沸石分散在二价铁的水溶性化合物水溶液中,并进行混合搅拌,由此使该MEL型沸石载有Fe(II)离子。
进而,本发明提供一种一氧化氮的除去方法,其使Fe(II)置换MEL型沸石与一氧化氮或含有一氧化氮的气体接触,使一氧化氮吸附到该Fe(II)置换MEL型沸石上,其中所述Fe(II)置换MEL型沸石是SiO2/Al2O3比为10以上且30以下、并且由Fe(II)离子进行离子交换而成的Fe(II)置换MEL型沸石。
进而,本发明提供一种烃的除去方法,其使Fe(II)置换MEL型沸石与烃或含有烃的气体接触,使烃吸附到该Fe(II)置换MEL型沸石上,其中所述Fe(II)置换MEL型沸石是SiO2/Al2O3比为10以上且30以下、并且由Fe(II)离子进行离子交换而成的Fe(II)置换MEL型沸石。
[发明的效果]
根据本发明,提供一种在各种气体的催化除去时有用的Fe(II)置换MEL型沸石及其制造方法。尤其根据本发明,在进行一氧化氮或烃的催化除去时,即便通过置换而导入到MEL型沸石上的Fe(II)的量少,也可以有效地吸附除去一氧化氮或烃。
附图说明
图1为用来制造本发明中所用的置换前MEL型沸石的工序图。
具体实施方式
以下,根据本发明的优选实施方式对本发明进行说明。本发明涉及一种Fe(II)置换MEL型沸石,其是由Fe(II)离子将MEL型沸石进行离子交换所得。另外,本发明涉及一种气体吸附剂,其包含该Fe(II)置换MEL型沸石。Fe(II)离子是通过与存在于MEL型沸石中的[AlO2]-点(site)的阳离子进行离子交换,而载有在MEL型沸石上。本发明中重要的方面为以下方面:与MEL型沸石所含的阳离子进行离子交换的铁离子为Fe(II)离子。在与阳离子进行离子交换的铁离子为Fe(III)离子的情况下,无法表现出所需水准的气体除去效果。本发明人认为,其原因与使用后述具有特定物性值的MEL型沸石作为MEL型沸石有关。
在与阳离子进行离子交换的铁离子为Fe(HI)离子的情况下,无法表现出所需水准的气体除去效果,但这并不妨碍本发明中所用的Fe(II)置换MEL型沸石载有Fe(HI)离子。即,容许Fe(II)置换MEL型沸石载有Fe(IH)离子。
本发明中,成为使用Fe(II)置换MEL型沸石的吸附对象的气体例如可以举出:作为内燃机的废气所含的气体的一氧化氮气体或烃气体。关于烃气体,特别是在吸附甲烷、乙烷、丙烷、丁烷、戊烷、己烷、正庚烷及异辛烷等烷烃类,乙烯、丙烯、丁烯、戊烯、甲基戊烯、己烯及甲基己烯等烯烃类,苯、甲苯、二甲苯及三甲基苯等芳香族类等时,本发明的Fe(II)置换MEL型沸石有效。在成为处理对象的气体中含有一氧化氮及烃这两种的情况下,若使用本发明的Fe(II)置换MEL型沸石,则可以同时吸附这两种气体。
相对于Fe(II)置换MEL型沸石,Fe(II)置换MEL型沸石所含的Fe(II)的量、即载有量优选0.001mmol/g~0.4mmol/g,更优选0.001mmol/g~0.3mmol/g,进而优选0.001mmol/g~0.2mmol/g,进而更优选0.001mmol/g~0.15mmol/g。通过将Fe(II)的载有量设定为该范围,可以有效地提高一氧化氮或烃的吸附效率。
Fe(II)置换MEL型沸石所含的Fe(II)的载有量是利用以下方法来测定。首先,称量成为测定对象的Fe(II)置换MEL型沸石。利用氟化氢(HF)来溶解该Fe(II)置换MEL型沸石,使用感应耦合等离子体发光分光分析装置对溶解液中的铁的总量进行定量。另利用H2-程序升温还原法(H2-Temperature Program Reduction,H2-TPR)来测定成为测定对象的Fe(II)置换MEL型沸石中的Fe(III)的量。然后,由铁的总量减去Fe(III)的量,由此算出Fe(II)的量。
为了使MEL型沸石载有Fe(II)离子,例如可以采用以下方法。将MEL型沸石分散在二价铁的水溶性化合物水溶液中,并进行搅拌混合。相对于所述水溶液100质量份,MEL型沸石优选的是以0.5质量份~7质量份的比例混合。二价铁的水溶性化合物的添加量只要根据离子交换的程度来适当设定即可。
混合搅拌可在室温下进行,或者也可在加热下进行。在加热下进行混合搅拌的情况下,优选的是将液温设定为10℃~30℃。另外,混合搅拌可在大气环境下进行,或者也可在氮气环境下等惰性气体环境下进行。
混合搅拌时,也可将防止二价铁被氧化成三价铁的化合物添加到水中。这种化合物优选的是作为不妨碍Fe(II)离子的离子交换、且能防止Fe(II)离子被氧化成Fe(III)离子的化合物的抗坏血酸。从有效地防止二价铁的氧化的观点来看,抗坏血酸的添加量优选的是设定为所添加的二价铁的摩尔数的0.1倍~3倍、特别是0.2倍~2倍。
进行既定时间的混合搅拌后,对固体成分进行抽吸过滤,水洗并加以干燥,由此可以获得目标Fe(II)置换MEL型沸石。该Fe(II)置换MEL型沸石的X射线衍射图与载有Fe(II)离子之前的MEL型沸石的X射线衍射图大致相同。即,沸石的结晶结构并未因离子交换而变化。
本发明中所用的Fe(II)置换MEL型沸石的SiO2/Al2O3比为10以上且30以下,优选12以上且24以下,进而优选12以上且21以下。即,该Fe(II)置换MEL型沸石的SiO2/Al2O3比低。通常沸石中SiO2/Al2O3比低意味着离子交换点的个数多。换言之,意味着载有Fe(II)离子的能力高。本发明人的研究结果也意外地表明:SiO2/Al2O3比低的Fe(II)置换MEL型沸石的情况下,可以提高1个Fe(II)离子可吸附的一氧化氮或烃的分子数。因此,通过使用本发明的Fe(II)置换MEL型沸石,可以高效地吸附一氧化氮或烃。
本发明中所用的Fe(II)置换MEL型沸石优选的是除了具有所述SiO2/Al2O3比以外,布鲁诺-埃梅特-泰勒(Brunauer Emmett Teller,BET)比表面积为200m2/g~550m2/g,特别优选200m2/g~450m2/g,尤其优选250m2/g~400m2/g。并且,微孔比表面积优选180m2/g~450m2/g,特别优选190m2/g~350m2/g,尤其优选190m2/g~280m2/g。进而,微孔容积优选0.08cm3/g~0.25cm3/g,特别优选0.10cm3/g~0.20cm3/g,尤其优选0.10cm3/g~0.15cm3/g。通过使用具有这种物性值的MEL型沸石作为Fe(II)置换MEL型沸石,一氧化氮或烃的吸附特性提高。此外,如后述那样,这些物性值与由Fe(II)离子进行离子交换之前的MEL型沸石的对应物性值相比并未大幅度地变化。
本发明中所用的Fe(II)置换MEL型沸石在内燃机的冷启动(cold start)时所排出的一氧化氮或烃的捕捉性方面特别优异。汽油发动机(gasoline engine)或柴油发动机(diesel engine)的冷启动时,三元催化剂的温度不会变得足够高,因此难以有效地进行利用三元催化剂的废气净化,结果与该三元催化剂不同,通过使用包含本发明中所用的Fe(II)置换MEL型沸石的吸附剂(催化剂),可以捕捉冷启动时的温度相对较低的废气所含的一氧化氮,从而可以将废气净化。若自冷启动起经过几分钟而到达三元催化剂的运作温度附近,则本发明中所用的Fe(II)置换MEL型沸石捕捉的一氧化氮或烃会被释放,所释放的一氧化氮或烃通过到达运作温度的三元催化剂而被净化。
作为由Fe(II)离子进行离子交换的沸石的MEL型沸石,在本发明中优选使用具有特定物性值的MEL型沸石。详细来说,本发明中所用的MEL型沸石(以下,与Fe(II)置换MEL型沸石进行对比,而将该沸石称为“置换前MEL型沸石”)在为SiO2/Al2O3比低的富铝MEL型沸石的方面具有一个特征。详细来说,置换前MEL型沸石为其SiO2/Al2O3比优选10以上且30以下、更优选12以上且24以下的富铝MEL型沸石。这种富铝的置换前MEL型沸石在钠型的状态下测定的BET比表面积优选190m2/g~420m2/g,更优选190m2/g~370m2/g。另外,在钠型的状态下测定的微孔比表面积优选200m2/g~550m2/g,更优选380m2/g~500m2/g。进而,在钠型的状态下测定的微孔容积优选0.08cm3/g~0.25cm3/g,更优选0.10cm3/g~0.20cm3/g。
如上文所述,置换前MEL型沸石的SiO2/Al2O3比、BET比表面积、微孔比表面积及微孔容积的值与Fe(II)置换MEL型沸石的对应的值相比并未大幅度地变化。
置换前MEL型沸石也包含钠型的MEL型沸石,进而也包含钠离子与质子进行离子交换而成的H+型的MEL型沸石。在MEL型沸石为H+型的类型的情况下,所述比表面积等的测定是在利用钠离子置换质子后进行。为了将钠型的MEL型沸石转变成H+型,例如将钠型的MEL型沸石分散在硝酸铵等铵盐水溶液中,将沸石中的钠离子与铵离子进行置换。对该铵型的MEL型沸石进行煅烧,由此可以获得H+型的MEL型沸石。
所述比表面积或容积如后述实施例中所说明,是使用BET表面积测定装置来进行测定。
具有所述物性的富铝置换前MEL型沸石可以通过后述制造方法而较佳地制造。本发明中,推测置换前MEL型沸石可以达成所述物性的原因在于:通过使用该制造方法,可以抑制所得的置换前MEL型沸石的结晶结构中有时产生的缺陷的产生,但详细情况并不明确。
然后,对置换前MEL型沸石的较佳的制造方法进行说明。置换前MEL型沸石可以利用本申请人以前提出的专利申请案WO2012/002367A1中记载的方法而较佳地制造。详细来说,通过以下方法来制造:使含有二氧化硅源、氧化铝源、碱源及水的反应混合物(凝胶)与MEL型沸石的晶种进行反应。所述凝胶是使用如下组成的凝胶:在仅由该凝胶来合成沸石时,所合成的该沸石成为包含目标沸石的MEL型沸石的复合结构单元(composite buildingunit)中的至少一种作为其复合结构单元的沸石。MEL型沸石由mor、mel及mfi这三种复合结构单元来形成骨架结构,结果若使用生成作为含有这些三种复合结构单元中至少一种的沸石的丝光沸石的组成的凝胶,则可以容易地获得作为目标沸石的SiO2/Al2O3比低的MEL型沸石。
具体来说,所述凝胶、即生成丝光沸石的组成的凝胶只要使用以下凝胶即可:优选的是以成为以下的(a)或(b)所示的摩尔比所表示的组成的方式,将二氧化硅源、氧化铝源、碱源及水混合而成的凝胶。
(a)
SiO2/Al2O3=40~200、特别是44~200
Na2O/SiO2=0.24~0.4、特别是0.25~0.35
H2O/SiO2=10~50、特别是15~25
(b)
SiO2/Al2O3=10~40、特别是12~40
Na2O/SiO2=0.05~0.25、特别是0.1~0.25
H2O/SiO2=5~50、特别是10~25
另一方面,晶种可以通过使用有机结构导向剂(Structure Directing Agent,以下称为“有机SDA”)的现有方法来合成。可以较佳地用于合成MEL型沸石的有机结构导向剂例如可以使用氢氧化四丁基铵。通过将有机结构导向剂与氧化铝源及二氧化硅源一起在水中搅拌加热,可以获得作为晶种的MEL型沸石。所得的沸石成为包含有机结构导向剂的状态,因此通过在空气中进行煅烧而除去该有机结构导向剂。如此而得的作为晶种的MEL型沸石的SiO2/Al2O3比大致成为30~70左右。
一边参照图1,一边对置换前MEL型沸石的较佳制造方法进行更详细说明。本发明中,在图1中可以按照<1>、<2>、<3>、<6>的顺序进行制造。若采用该顺序,则可以制造宽广范围的SiO2/Al2O3比的沸石。另外,该图1也可以按照<1>、<2>、<4>、<3>、<6>的顺序进行制造。若采用该顺序,则大多情况下通过在进行老化后进行静置加热,可以有效地使用低SiO2/Al2O3比的晶种。进而,图1中也可以按照<1>、<2>、<4>、<5>、<6>的顺序进行制造。该顺序的情况下,进行老化及搅拌的操作。
以上的各顺序中,将含有晶种的反应混合物(凝胶)加入到密闭容器中并进行加热而使其反应,使作为目标的MEL型沸石结晶。该凝胶中不含有机SDA。此外,所谓以上的顺序中的老化,是指在低于反应温度的温度下保持该温度一定时间的操作。在老化中,通常不加搅拌而进行静置。已知通过进行老化而发挥以下效果:防止杂质的副产生;可以在搅拌下进行加热而不副产生杂质;可以提高反应速度等。但作用机制未必明确。老化的温度与时间是以最大限度地发挥所述效果的方式设定。本发明中,在优选20℃~80℃、更优选20℃~60℃下,在优选2小时~1天的范围内进行老化。
为了在加热中实现凝胶温度的均匀化而进行搅拌的情况下,若在进行老化之后进行加热搅拌,则可以防止杂质的副产生(<1>、<2>、<4>、<5>、<6>的顺序)。搅拌是为了使凝胶的组成与温度均匀化而进行,有利用搅拌翼的混合、或利用容器的旋转的混合等。搅拌强度或转速只要根据温度的均匀性或杂质的副产生状况来调整即可。并非不停地搅拌,也可为间歇搅拌。通过如此那样将老化与搅拌组合,可以实现工业上的量产化。
静置法及搅拌法的任一情况下,加热温度均为100℃~200℃、优选120℃~180℃的范围,并且为自生压力下的加热。在小于100℃的温度下结晶化速度变得极慢,因此有时MEL型沸石的生成效率变差。另一方面,在超过200℃的温度下,不仅因必需高耐压强度的高压釜而缺乏经济性,而且杂质的产生速度变快。加热时间在本制造方法中并无临限值,只要加热到生成结晶性足够高的MEL型沸石即可。通常,通过5小时~240小时左右的加热,可以获得令人满意的结晶性的MEL型沸石。
通过所述加热,可以获得作为目标的置换前MEL型沸石的结晶。加热结束后,通过过滤将所生成的结晶粉末与母液分离后,利用水或温水进行清洗并进行干燥。所得的置换前MEL型沸石的结晶在保持干燥的状态下不含有机物,因此无需煅烧,只要进行脱水便可立即使用。
所述反应中所用的二氧化硅源可以举出:二氧化硅本身及可以在水中生成硅酸根离子的含硅化合物。具体可以举出:湿式法二氧化硅、干式法二氧化硅、胶体二氧化硅、硅酸钠、铝硅酸盐凝胶等。这些二氧化硅源可以单独使用或将两种以上组合使用。这些二氧化硅源中,就不会伴有多余的副产物而可以获得沸石的方面来看,优选使用二氧化硅(silica)。
氧化铝源例如可以使用水溶性含铝化合物。具体可以举出铝酸钠、硝酸铝、硫酸铝等。另外,氢氧化铝也为较佳的氧化铝源之一。这些氧化铝源可以单独使用或将两种以上组合使用。这些氧化铝源中,就不会伴有多余的副产物(例如硫酸盐或硝酸盐等)而可以获得沸石的方面来看,优选使用铝酸钠或氢氧化铝。
关于碱源,钠的情况下例如可以使用氢氧化钠。此外,在使用硅酸钠作为二氧化硅源的情况或使用铝酸钠作为氧化铝源的情况下,其中所含的作为碱金属成分的钠同时被视为NaOH,也为碱成分。因此,所述Na2O是以反应混合物(凝胶)中的所有碱成分之和来计算。
关于制备反应混合物时的各原料的添加顺序,只要采用容易获得均匀的反应混合物的方法即可。例如,通过在室温下在氢氧化钠水溶液中添加氧化铝源及锂源并使其溶解,接着添加二氧化硅源并进行搅拌混合,可以获得均匀的反应混合物。晶种是一边与二氧化硅源混合一边添加,或在添加二氧化硅源之后添加。然后,以晶种均匀地分散的方式进行搅拌混合。制备反应混合物时的温度也无特别限制,通常只要在室温(20℃~25℃)下进行即可。
如此而得的置换前MEL型沸石如上文所述那样,由Fe(II)离子进行离子交换而成为Fe(II)置换MEL型沸石。Fe(II)置换MEL型沸石可以保持所述状态而用作一氧化氮或烃等各种气体的吸附剂,或者也可以用作包含该Fe(II)置换MEL型沸石的气体吸附剂。无论Fe(II)置换MEL型沸石为何种形态,通过使Fe(II)置换MEL型沸石与一氧化氮或烃等各种气体进行固气接触,均可以将该气体吸附到Fe(II)置换MEL型沸石上。
本发明中,除了使一氧化氮气体或烃气体本身与Fe(II)置换MEL型沸石接触而吸附一氧化氮气体或烃气体以外,也可以使含有一氧化氮气体或烃气体的气体与Fe(II)置换MEL型沸石接触,吸附该气体中的一氧化氮气体或烃气体,自该气体中除去一氧化氮气体或烃气体。这种气体的例子可以举出:将汽油或轻油等烃作为燃料的内燃机的废气、或自各种锅炉或焚烧炉产生的废气等。
实施例
以下,通过实施例对本发明加以更详细说明。然而,本发明的范围并不限制于该实施例。只要无特别说明,则“%”是指“质量%”。此外,以下的实施例、比较例及参考例中所用的分析设备如以下所述。
粉末X射线衍射装置:马克科学(MAC Science)公司制造,粉末X射线衍射装置MO3XHF22、使用Cu kα线、电压40kV、电流30mA、扫描步进0.02°、扫描速度2°/min。
SiO2/Al2O3比:使用氟化氢(HF)溶解MEL型沸石,使用感应耦合等离子体(Inductively Coupled Plasma,ICP)分析溶解液并对A1进行定量。另外,使用氢氧化钾(KOH)溶解MEL型沸石,使用ICP分析溶解液并对Si进行定量。根据所定量的Si及Al的量来算出SiO2/A12O3比。
BET表面积、微孔比表面积及微孔容积测定装置:康塔仪器(QuantachromeInstruments)公司制造的奥拓索伯-1(AUTOSORB-1)。
[实施例1]
(1)置换前MEL型沸石的制造
该实施例1为制造SiO2/Al2O3比为19.0的Fe(II)置换MEL型沸石的例子。在纯水12.88g中溶解铝酸钠0.113g、及36%氢氧化钠2.582g,获得水溶液。将微粉状二氧化硅(Cab-O-Sil,M-5)2.427g及0.243g的晶种混合,将所得的混合物一点一点添加到所述水溶液中并进行搅拌混合,获得凝胶。晶种是通过以下的方法来制造。该凝胶的SiO2/A12O3比为100,Na2O/SiO2比为0.300,H2O/SiO2比为20,该凝胶为若仅由该凝胶来合成沸石,则生成丝光沸石(MOR)的组成。将凝胶与晶种的混合物放入到60cc的不锈钢制密闭容器中,不进行老化及搅拌而在140℃下在自生压力下静置加热15小时。将密闭容器冷却后,过滤产物,进行温水清洗而获得白色粉末。该产物为不含杂质的MEL型沸石。将如此而得的置换前MEL型沸石的物性值示于表1中。
[MEL型沸石晶种的制造方法]
使用氢氧化四乙基铵作为有机SDA,通过以铝酸钠作为氧化铝源、以微粉状二氧化硅(Cab-O-Sil,M-5)作为二氧化硅源的现有公知的方法进行搅拌加热而获得MEL型沸石。搅拌加热的条件为180℃、96小时。MEL型沸石的SiO2/Al2O3比为34.0。在电炉中一边流通空气一边在550℃下将所述MEL型沸石煅烧10小时,制造不含有机物的结晶。根据X射线衍射的结果确认到该结晶为MEL型沸石。该MEL型沸石不含SDA。使用该MEL型沸石作为晶种。
(2)Fe(II)置换MEL型沸石的制造
在聚丙烯容器中添加60ml的蒸馏水、置换前MEL型沸石1g及所添加的铁化合物的2倍摩尔数的抗坏血酸后,添加相对于置换前MEL型沸石而为10质量%的Fe(II)SO4·7H2O,在氮气环境下在室温下搅拌1天。然后,将沈淀物抽吸过滤,以蒸馏水进行清洗后,加以干燥而获得载有0.041mmol/g的Fe2+的Fe(II)置换MEL型沸石。Fe2+的载有量是利用上文所述的方法而求出。对所得的Fe(II)置换MEL型沸石进行X射线衍射(X-ray Diffraction,XRD)测定,结果观察到峰值位置及峰值强度与置换前MEL型沸石相比几乎未变化,确认到离子交换后也维持MEL型沸石的结构。
(3)一氧化氮气体吸附的评价
利用电子天平准确称量Fe(II)置换MEL型沸石20mg后,使用硅碳化物180mg作为稀释剂,以成为均匀的方式将两者混合。将混合物装进内径6mm的石英玻璃管中。利用覆套式加热器(mantle heater)将混合物中的吸附水加温而加以除去后,冷却到室温。接着,在石英玻璃管内每隔2分钟在室温下脉冲5cm3的1030ppm的一氧化氮气体。根据由气相色谱仪热导检测器((Gas Chromatograph-Thermal Conductivity Detector,GC-TCD),岛津制作所制造,GC-8A)的峰值面积及化学发光式NO分析装置(NOx分析仪,柳本制作所制造,ECL-77A)所检测的值,来算出未吸附而自石英玻璃管中出来的一氧化氮气体的量。气相色谱仪热导检测器(GC-TCD)的测定条件如以下所示。然后,由一氧化氮气体的供给量减去所算出的值,由此求出每单位质量的Fe(II)置换MEL型沸石所吸附的一氧化氮气体的量。将其结果示于以下的表1中。
[气相色谱仪热导检测器(GC-TCD)的测定条件]
·载气:氦气(He)
·载气流量:30cm3·min-1
·检测部温度:100℃
·检测部电流:80mA
(4)甲苯气体吸附的评价
使用作为自内燃机排出的废气所含的典型的烃的甲苯作为吸附的对象气体。将Fe(II)置换MEL型沸石20mg加入到内径4mm的石英管中,并保持于石英棉与玻璃珠之间。使用氦气作为移动相,使试样在390℃下活化约1小时。将管柱冷却到50℃后,注入甲苯至达到饱和状态。根据由气相色谱仪热导检测器(GC-TCD,岛津制作所制造,GC-8A)的峰值面积所检测的值,来算出未吸附而自石英玻璃管中出来的甲苯气体的量。气相色谱仪热导检测器(GC-TCD)的测定条件如以下所示。然后,由甲苯气体的供给量减去所算出的值,由此求出每单位质量的Fe(I1)置换MEL型沸石所吸附的甲苯气体的量。将其结果示于以下的表1中。
[气相色谱仪热导检测器(GC-TCD)的测定条件]
·载气:氦气(He)
·载气流量:30cm3·min-1
·检测部温度:150℃
·检测部电流:50mA
[实施例2及实施例3]
除了相对于置换前MEL型沸石而添加20质量%(实施例2)及40质量%(实施例3)的Fe(II)SO4·7H2O以外,与实施例1同样地获得Fe(II)置换MEL型沸石。Fe2+的载有量如表1所示。对所得的Fe(II)置换MEL型沸石进行与实施例1相同的评价。将其结果示于表1中。
[实施例4]
(1)置换前MEL型沸石的制造
该实施例4为制造SiO2/Al2O3比为15.4的Fe(II)置换MEL型沸石的例子。实施例1中,作为凝胶的组成,使用SiO2/Al2O3比为30、Na2O/SiO2比为1.93、H2O/SiO2比为20的凝胶。另外,使用SiO2/Al2O3比为66.0的MEL型沸石作为晶种。该晶种是与实施例1同样地使用氢氧化四乙基铵作为有机SDA而制造。除此以外,与实施例1同样地获得白色粉末。对该产物进行XRD测定,结果确认到该产物为不含SDA等杂质的MEL型沸石。将如此而得的置换前MEL型沸石的物性值示于表1中。
(2)Fe(II)置换MEL型沸石的制造
在聚丙烯容器中添加60ml的蒸馏水、置换前MEL型沸石1g及所添加的铁化合物的2倍摩尔数的抗坏血酸后,添加相对于置换前MEL型沸石而为10质量%的Fe(II)SO4·7H2O,在氮气环境下在室温下搅拌1天。然后,将沈淀物抽吸过滤,以蒸馏水进行清洗后,加以干燥而获得载有0.029mmol/g的Fe2+的Fe(II)置换MEL型沸石。对所得的Fe(II)置换MEL型沸石及置换前MEL型沸石进行XRD测定,结果观察到峰值位置及峰值强度几乎未变化,确认到离子交换后也维持MEL型沸石的结构。对所得的Fe(II)置换MEL型沸石进行与实施例1相同的评价。将其结果示于表1中。
[实施例5及实施例6]
除了相对于置换前MEL型沸石而添加20质量%(实施例5)及40质量%(实施例6)的Fe(II)SO4·7H2O以外,与实施例4同样地获得Fe(II)置换MEL型沸石。Fe2+的载有量如表1所示。对所得的Fe(II)置换MEL型沸石进行与实施例1相同的评价。将其结果示于表1中。
如由表1所示的结果所表明,得知若使用各实施例中所得的Fe(II)置换MEL型沸石,则可以高效地吸附除去一氧化氮气体及甲苯气体。

Claims (14)

1.一种Fe(II)置换MEL型沸石,其特征在于,SiO2/Al2O3比为10以上且30以下、并且是由Fe(II)离子进行离子交换而成。
2.一种Fe(II)置换MEL型沸石,其特征在于,是SiO2/Al2O3比为10以上且30以下的Fe(II)置换MEL型沸石,使用含有晶种且不含有机结构导向剂的凝胶来合成MEL型沸石,将所述MEL型沸石分散在二价铁的水溶性化合物的水溶液中,并进行混合搅拌,由此使所述MEL型沸石载有Fe(II)离子而制造。
3.根据权利要求1或2所述的Fe(II)置换MEL型沸石,其中相对于所述Fe(II)置换MEL型沸石,Fe(II)的载有量为0.001mmol/g~0.4mmol/g。
4.根据权利要求1或2所述的Fe(II)置换MEL型沸石,其中使用SiO2/Al2O3比为10以上且30以下的MEL型沸石作为由Fe(II)离子进行离子交换之前的MEL型沸石。
5.根据权利要求1或2所述的Fe(II)置换MEL型沸石,其中布鲁诺-埃梅特-泰勒比表面积为200m2/g~550m2/g,微孔比表面积为300m2/g~450m2/g,且微孔容积为0.10cm3/g~0.20em3/g。
6.一种气体吸附剂,其特征在于,含有根据权利要求1至5中任一项所述的Fe(II)置换MEL型沸石。
7.根据权利要求6所述的气体吸附剂,其用于吸附一氧化氮。
8.根据权利要求6所述的气体吸附剂,其用于吸附烃。
9.一种Fe(II)置换MEL型沸石的制造方法,其特征在于,包括以下工序:将SiO2/Al2O3比为10以上且30以下的MEL型沸石分散在二价铁的水溶性化合物的水溶液中,并进行混合搅拌,由此使所述MEL型沸石载有Fe(II)离子。
10.根据权利要求9所述的Fe(II)置换MEL型沸石的制造方法,其中在所述混合搅拌时,在所述水溶液中添加所述二价铁的摩尔数的0.1倍~3倍的抗坏血酸。
11.一种一氧化氮的除去方法,其特征在于,使Fe(II)置换MEL型沸石与一氧化氮或含有一氧化氮的气体接触,使一氧化氮吸附到所述Fe(II)置换MEL型沸石上,其中
所述Fe(II)置换MEL型沸石是SiO2/Al2O3比为10以上且30以下、并且由Fe(II)离子进行离子交换而成的Fe(II)置换MEL型沸石。
12.一种一氧化氮的除去方法,其特征在于,使Fe(II)置换MEL型沸石与一氧化氮或含有一氧化氮的气体接触,使一氧化氮吸附到所述Fe(II)置换MEL型沸石上,其中
所述Fe(II)置换MEL型沸石的SiO2/Al2O3比为10以上且30以下,其是使用含有晶种且不含有机结构导向剂的凝胶来合成MEL型沸石,将所述MEL型沸石分散在二价铁的水溶性化合物的水溶液中,并进行混合搅拌,由此使所述MEL型沸石载有Fe(II)离子而制造。
13.一种烃的除去方法,其特征在于,使Fe(II)置换MEL型沸石与烃或含有烃的气体接触,使烃吸附到所述Fe(II)置换MEL型沸石上,其中
所述Fe(II)置换MEL型沸石是SiO2/Al2O3比为10以上且30以下、并且由Fe(II)离子进行离子交换而成的Fe(II)置换MEL型沸石。
14.一种烃的除去方法,其特征在于,使Fe(II)置换MEL型沸石与烃或含有烃的气体接触,使烃吸附到所述Fe(II)置换MEL型沸石上,其中
所述Fe(II)置换MEL型沸石的SiO2/Al2O3比为10以上且30以下,其是使用含有晶种且不含有机结构导向剂的凝胶来合成MEL型沸石,将所述MEL型沸石分散在二价铁的水溶性化合物的水溶液中,并进行混合搅拌,由此使所述MEL型沸石载有Fe(II)离子而制造。
CN201810470599.3A 2012-07-18 2013-07-16 Fe(II)置换MEL型沸石及包含其的气体吸附剂 Active CN108640127B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-159149 2012-07-18
JP2012159149A JP5972694B2 (ja) 2012-07-18 2012-07-18 Fe(II)置換MEL型ゼオライト、それを含むガス吸着剤及びその製造方法、並びに一酸化窒素及びハイドロカーボンの除去方法
PCT/JP2013/069250 WO2014013968A1 (ja) 2012-07-18 2013-07-16 Fe(II)置換MEL型ゼオライト、それを含むガス吸着剤及びその製造方法、並びに一酸化窒素及びハイドロカーボンの除去方法
CN201380036741.9A CN104507863B (zh) 2012-07-18 2013-07-16 Fe(II)置换MEL型沸石的制造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201380036741.9A Division CN104507863B (zh) 2012-07-18 2013-07-16 Fe(II)置换MEL型沸石的制造方法

Publications (2)

Publication Number Publication Date
CN108640127A true CN108640127A (zh) 2018-10-12
CN108640127B CN108640127B (zh) 2022-06-07

Family

ID=49948795

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201380036741.9A Active CN104507863B (zh) 2012-07-18 2013-07-16 Fe(II)置换MEL型沸石的制造方法
CN201810470599.3A Active CN108640127B (zh) 2012-07-18 2013-07-16 Fe(II)置换MEL型沸石及包含其的气体吸附剂

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201380036741.9A Active CN104507863B (zh) 2012-07-18 2013-07-16 Fe(II)置换MEL型沸石的制造方法

Country Status (7)

Country Link
US (1) US9409785B2 (zh)
EP (1) EP2876085B1 (zh)
JP (1) JP5972694B2 (zh)
KR (1) KR102074755B1 (zh)
CN (2) CN104507863B (zh)
BR (1) BR112015000915A2 (zh)
WO (1) WO2014013968A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI619539B (zh) 2016-10-14 2018-04-01 財團法人工業技術研究院 淨化含氮氧化物氣體的組成物及裝置
RU2712549C1 (ru) * 2018-11-29 2020-01-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Способ получения цеолита типа mel
CN114426281B (zh) * 2020-10-13 2023-08-04 中国石油化工股份有限公司 含铁元素mfi结构分子筛及合成方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0136067A2 (en) * 1983-08-29 1985-04-03 Mobil Oil Corporation Tailoring acid strength of ZSM-11
US5236880A (en) * 1989-12-11 1993-08-17 W. R. Grace & Co.-Conn. Catalyst for cracking of paraffinic feedstocks
US5524432A (en) * 1991-08-01 1996-06-11 Air Products And Chemicals, Inc. Catalytic reduction of nitrogen oxides in methane-fueled engine exhaust by controlled methane injections
CN1324325A (zh) * 1998-10-19 2001-11-28 罗狄亚化学公司 制备mel型钛硅质岩的新方法,获得的产品和其在催化剂中的应用
CN101279745A (zh) * 2007-04-05 2008-10-08 Ifp公司 制备mel-结构型沸石的方法
WO2012002367A1 (ja) * 2010-07-01 2012-01-05 日本化学工業株式会社 ゼオライトの製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0760069A (ja) * 1993-08-30 1995-03-07 Tosoh Corp 窒素酸化物の除去方法
US6347627B1 (en) * 1998-04-23 2002-02-19 Pioneer Inventions, Inc. Nitrous oxide based oxygen supply system
US6419894B1 (en) * 2000-12-22 2002-07-16 California Institute Of Technology Process for preparing zeolites having MEL structure using 2,2-diethoxyethyltrimethylammonium structure directing agent
US7438878B2 (en) * 2001-03-12 2008-10-21 Basf Catalysts Llc Selective catalytic reduction of N2O
DE10112396A1 (de) 2001-03-13 2002-10-02 Krupp Uhde Gmbh Verfahren zur Verringerung des N¶2¶O-Gehalts in Gasen und ausgewählte Katalysatoren
US20050100494A1 (en) * 2003-11-06 2005-05-12 George Yaluris Ferrierite compositions for reducing NOx emissions during fluid catalytic cracking
BRPI0509507B1 (pt) * 2004-03-31 2021-02-23 Research Institute Of Petroleum Processing, Sinopec catalisador de conversão de hidrocarbonetos contendo zeólito, o processo de preparação dos mesmos, e um processo para converter óleos hidrocarbonados com o catalisador
KR20050102766A (ko) * 2004-04-22 2005-10-27 주식회사 엘지화학 탄화수소 분해촉매 및 그 제조방법
JP4745968B2 (ja) 2004-07-29 2011-08-10 エヌ・イーケムキャット株式会社 低温特性に優れる脱硝触媒
WO2006017557A2 (en) 2004-08-03 2006-02-16 The Regents Of The University Of Colorado Membranes for highly selective separations
JP4992214B2 (ja) 2005-09-16 2012-08-08 東ソー株式会社 β型ゼオライトを含んでなる窒素酸化物の浄化触媒およびそれを用いた窒素酸化物の浄化方法
JP2008264702A (ja) 2007-04-20 2008-11-06 Toyota Motor Corp NOx吸着材の製造方法及びNOx吸着材
US8206676B2 (en) * 2009-04-15 2012-06-26 Air Products And Chemicals, Inc. Method for making a chlorosilane
CN101711991B (zh) * 2009-10-15 2012-07-18 清华大学 一种Fe分子筛复合催化剂及其制备方法
FR2959749B1 (fr) * 2010-05-06 2012-06-01 Inst Francais Du Petrole Procede flexible de transformation de l'ethanol en distillats moyens.
US8518242B2 (en) * 2011-05-26 2013-08-27 Uop Llc Fibrous substrate-based hydroprocessing catalysts and associated methods
CN103008002B (zh) * 2012-12-11 2015-02-18 清华大学 Fe和Cu复合分子筛催化剂的制备方法及应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0136067A2 (en) * 1983-08-29 1985-04-03 Mobil Oil Corporation Tailoring acid strength of ZSM-11
US5236880A (en) * 1989-12-11 1993-08-17 W. R. Grace & Co.-Conn. Catalyst for cracking of paraffinic feedstocks
US5524432A (en) * 1991-08-01 1996-06-11 Air Products And Chemicals, Inc. Catalytic reduction of nitrogen oxides in methane-fueled engine exhaust by controlled methane injections
CN1324325A (zh) * 1998-10-19 2001-11-28 罗狄亚化学公司 制备mel型钛硅质岩的新方法,获得的产品和其在催化剂中的应用
CN101279745A (zh) * 2007-04-05 2008-10-08 Ifp公司 制备mel-结构型沸石的方法
WO2012002367A1 (ja) * 2010-07-01 2012-01-05 日本化学工業株式会社 ゼオライトの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
O.A. ANUNZIATA ET AL.,: "Fe-containing ZSM-11 zeolites as active catalyst for SCR of NOx Part I. Synthesis, characterization by XRD,BET and FTIR and catalytic properties", 《APPLIED CATALYSIS A: GENERAL》 *

Also Published As

Publication number Publication date
JP2014019602A (ja) 2014-02-03
CN108640127B (zh) 2022-06-07
EP2876085A4 (en) 2015-08-05
BR112015000915A2 (pt) 2017-06-27
CN104507863B (zh) 2018-11-02
EP2876085A1 (en) 2015-05-27
EP2876085B1 (en) 2020-04-29
KR102074755B1 (ko) 2020-02-10
US9409785B2 (en) 2016-08-09
US20150166356A1 (en) 2015-06-18
KR20150036054A (ko) 2015-04-07
WO2014013968A1 (ja) 2014-01-23
CN104507863A (zh) 2015-04-08
JP5972694B2 (ja) 2016-08-17

Similar Documents

Publication Publication Date Title
CN103402918B (zh) Fe(II)置换β型沸石、包含其的气体吸附剂及其制造方法、以及一氧化氮及烃的除去方法
CN104428249B (zh) Fe(II)置换β型沸石及其制造方法、包含其的气体吸附剂、以及一氧化氮及烃的除去方法
CN104321280B (zh) β型沸石及其制造方法
CN105324334B (zh) β型沸石及其制造方法、气体吸附剂及一氧化氮除去方法
JP2023099653A (ja) 金属含有cha型ゼオライト及びその製造方法
CN104507863B (zh) Fe(II)置换MEL型沸石的制造方法
Santos et al. Carbon dioxide adsorption on micro-mesoporous composite materials of ZSM-12/MCM-48 type: The role of the contents of zeolite and functionalized amine
CN105008047A (zh) 烃类重整捕获材料及烃类的除去方法
CN104936897A (zh) Vet型沸石的制造方法
CN113713851A (zh) 一种提高抗硫抗水性能的In/H-β催化剂制备方法
CN104437417B (zh) 负载聚乙烯亚胺的Magadiite层状材料及其制备方法
CN102580712A (zh) 一种高比表面积MgSiO3/SiO2复合物的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant