CN108625040A - 一种同轴静电纺丝制备碳纳米管增强阴离子交换膜的方法 - Google Patents

一种同轴静电纺丝制备碳纳米管增强阴离子交换膜的方法 Download PDF

Info

Publication number
CN108625040A
CN108625040A CN201810375926.7A CN201810375926A CN108625040A CN 108625040 A CN108625040 A CN 108625040A CN 201810375926 A CN201810375926 A CN 201810375926A CN 108625040 A CN108625040 A CN 108625040A
Authority
CN
China
Prior art keywords
electrostatic spinning
coaxial
nanofiber
anion
coaxial electrostatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810375926.7A
Other languages
English (en)
Other versions
CN108625040B (zh
Inventor
吴雪梅
贺高红
王乾峰
宫雪
姜晓滨
杨寅帅
苑倩倩
梁山
张楠
李甜甜
王小舟
高莉
王茜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201810375926.7A priority Critical patent/CN108625040B/zh
Publication of CN108625040A publication Critical patent/CN108625040A/zh
Application granted granted Critical
Publication of CN108625040B publication Critical patent/CN108625040B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/16Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one other macromolecular compound obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/18Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from other substances
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/38Oxides or hydroxides of elements of Groups 1 or 11 of the Periodic Table
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/30Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Artificial Filaments (AREA)
  • Nonwoven Fabrics (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本发明属于电化学工程技术领域,涉及一种同轴静电纺丝制备碳纳米管增强阴离子交换膜的方法。采用同轴静电纺丝,将功能化碳纳米管固定在纳米纤维内部,再经溶剂蒸汽浴、热压、氢氧根离子交换,制备得到具备三维网络形貌的致密膜。功能化碳纳米管固定在纳米纤维内部并沿纳米纤维轴向取向,其表面的咪唑功能基团促进了膜中的离子簇聚集。因此,本发明有效地增强了有机/无机组分的相容性,提高了碳纳米管掺杂量,显著提高了膜的氢氧根离子传导率、机械强度和耐水溶胀能力。

Description

一种同轴静电纺丝制备碳纳米管增强阴离子交换膜的方法
技术领域
本发明属于电化学工程技术领域,涉及一种同轴静电纺丝制备碳纳米管增强阴离子交换膜的方法。
背景技术
阴离子交换膜燃料电池是新一代燃料电池,与质子交换膜燃料电池相比具有氧还原反应活性高、甲醇等燃料渗透性小等优点。阴离子交换膜选择性地透过氢氧根离子,是决定燃料电池性能和寿命的核心部件之一。目前,阴离子交换膜存在的主要问题是离子传导率低、耐水溶胀、热碱等的稳定性差,限制了其商业化应用。
针对上述关键问题,各国学者开展了广泛研究。J.Membr.Sci.522(2017)267了采用嵌段、接枝功能侧链、互穿网络等方法,增强阴离子交换膜中亲-憎水微相分离;RSCAdv.,2015,5,95118中采用单轴静电纺丝方法,在纤维中形成长程有序的离子传导通道,提高电性能和耐水溶胀性。掺杂无机材料如石墨烯、碳纳米管等,可以进一步提高膜的机械强度和碱稳定性,如J.Membr.Sci.487(2015)99在季铵化聚砜中掺杂氧化石墨烯,但存在有机/无机组分间的相容性难以提高等问题。
发明内容
为解决上述问题,本发明提供了一种同轴静电纺丝制备碳纳米管增强阴离子交换膜的方法。通过同轴静电纺丝方法,将阴离子交换膜材料制备成三维网络状纳米纤维,同时将功能化碳纳米管固定在纳米纤维内部。功能化碳纳米管在纳米纤维内部并沿纳米纤维轴向取向,其表面的咪唑功能基团可以促进膜中的离子簇聚集,使氢氧根离子沿纳米纤维轴向传导,形成长程有序传导通道。因此,有效地增强了有机/无机组分的相容性,提高了碳纳米管掺杂量,获得较高的电化学性能、机械强度和耐水溶胀能力。
本发明的技术方案如下:
一种同轴静电纺丝制备碳纳米管增强阴离子交换膜的方法,采用同轴静电纺丝制备纳米纤维,将功能化碳纳米管固定在阴离子交换聚合物纤维内部,纳米纤维再经溶剂蒸汽浴、热压、氢氧根离子交换,制备得到具有三维网络形貌的致密膜,作为阴离子交换膜;具体如下:
(1)同轴静电纺丝制备纳米纤维
所述的同轴静电纺丝,是指在高压电场20-40kV中,同轴纺丝液通过同轴纺丝头处的静电力牵引作用,在滚筒接收器上形成纳米纤维;在同轴纺丝头的芯层和壳层的微量注射泵内分别放置不同的同轴纺丝液,为壳层纺丝液和芯层纺丝液;所述的壳层纺丝液,是将非氟阴离子交换聚合物溶于N,N-二甲基甲酰胺溶剂中,其中,非氟阴离子交换聚合物的质量分数为15-25%;所述的芯层纺丝液,将掺杂功能化碳纳米管的非氟阴离子交换聚合物分散在N,N-二甲基甲酰胺溶剂中,其中,非氟阴离子交换聚合物的质量分数为15-25%,功能化碳纳米管的质量分数不大于1.5%;
(2)溶剂蒸汽浴
所述的溶剂蒸汽浴,是将同轴静电纺丝制备得到的纳米纤维放置在常压、60℃的N,N-二甲基甲酰胺溶剂浴上部形成的饱和蒸汽中,放置10-30min,使纳米纤维溶胀、相互粘连;
(3)热压
所述的热压,是将经溶剂蒸汽浴处理后的纳米纤维压缩,在100-130℃、3-5MPa下压缩10-30min,使纳米纤维形成致密膜,且致密膜保持三维网络形貌;
(4)氢氧根离子交换
所述的氢氧根离子交换,是将制备的致密膜放置在1mol/L KOH中常温浸泡36-48h,然后用新制的二次煮沸去离子水清洗至中性,最终得到碳纳米管增强阴离子交换膜。
所述的纳米纤维,具有三维网络形貌,功能化碳纳米管在纳米纤维内部伸长取向,纳米纤维外直径为50-400nm。
所述的非氟阴离子交换聚合物,为咪唑化聚砜,离子交换容量为1.3-1.7mmol/g。
所述的功能化碳纳米管,是将多壁羧基化碳纳米管依次经过酰胺化、季铵化反应制备得到,其中,酰胺化试剂为1-(3-氨丙基咪唑),季铵化试剂为溴代正丁烷。
所述的同轴静电纺丝的设备参数如下:同轴纺丝头到接收板的间距为15cm,滚筒接收器的转速为1500rpm;同轴纺丝头的芯层直径为500μm、壳层直径为1500μm;芯层和壳层微量注射泵的推速为0.03-0.15ml/h。
相比于现有的阴离子交换膜,本发明的有益效果是:(1)采用同轴静电纺丝,将功能化碳纳米管固定在纳米纤维内部,可以有效地提高有机/无机组分的相容性,提高碳纳米管掺杂量;(2)功能化碳纳米管沿纳米纤维的轴向取向,其表面咪唑基团可以促进膜中的离子簇聚集,显著提高了膜的离子传导率;(3)本发明的同轴静电纺丝法制备的碳纳米管增强阴离子交换膜,与浇铸膜和单轴静电纺丝膜相比,氢氧根离子传导率、耐水溶胀性和湿膜拉伸强度均有较大提高。
附图说明
图1为本发明的制备碳纳米管增强阴离子交换膜的同轴静电纺丝装置示意图。
图2为本发明的同轴静电纺丝纳米纤维及其制备的阴离子交换膜的形貌示意图。其中,图2(A)为同轴静电纺丝纳米纤维的表面扫描电镜照片,标尺为2μm,纤维中添加了质量分数为0.6%的功能化碳纳米管;图2(B)为图2(A)中的纤维直径分布直方图;图2(C)为单根纤维的透射电镜照片,箭头所指为纤维中碳纳米管的取向方向;图2(D)为同轴静电纺丝纳米纤维阴离子交换膜的表面扫描电镜照片,标尺为2μm。从图2可以看出,静电纺丝纳米纤维为三维网络状排列的多孔结构,纤维直径为纳米级,碳纳米管沿纳米纤维的轴向取向,所制备的阴离子交换膜为致密膜,膜中仍具有三维网络形貌。
图3为本发明的同轴静电纺丝碳纳米管增强阴离子交换膜的性能测试图。其中,咪唑化聚砜的离子交换容量为1.61mmol/g。图3(A)为水溶胀性能曲线,测试温度为60℃;图3(B)为氢氧根离子传导率测试曲线,测试方法为交流阻抗四电极法,扫描频率为1-106Hz,在60℃水浴中测试。从图3可以看出,与浇铸膜和单轴电纺膜相比,同轴电纺膜具有最低的水溶胀度和最高的氢氧根离子传导率,而且性能最优的功能化碳纳米管的掺杂量提高。
具体实施方式
以下结合附图和技术方案,进一步说明本发明的具体实施方式。
实施例1:
将1.5g离子交换容量为1.61mmol/g的咪唑化聚砜溶解在6.0g的N,N-二甲基甲酰胺中,配制成质量分数为20%的溶液,作为壳层纺丝液;在壳层纺丝液中加入9.0mg的功能化碳纳米管,使其质量分数为0.6%,经磁力搅拌12h、超声分散30min后分散均匀,作为芯层纺丝液。在外加电压为24kV,同轴喷丝头到接收转鼓间距为15cm,同轴喷丝头的芯层直径为500μm、壳层直径为1500μm,芯层、壳层注射泵推速均为0.06ml/h,滚筒转速为1500rpm的纺丝条件下,制备三维网络状排列的同轴静电纺丝纳米纤维,纤维直径为100-300nm。
将同轴静电纺丝纤维在60℃的N,N-二甲基甲酰胺溶剂浴的上部饱和蒸汽中,放置15min,使纤维溶胀、相互粘连。然后,在硫化机中采用4.0MPa、110℃条件热压20min,使纤维形成具有三维纳米纤维网络结构的致密膜。然后,将致密膜在1mol/L的KOH溶液中浸泡48h进行氢氧根离子交换,再用新制的二次煮沸去离子水清洗至中性。所制备的同轴静电纺丝阴离子交换膜厚度约为25μm。
将同轴电纺阴离子交换膜进行性能测试,测试条件与图3相同。60℃时,膜的含水率为37.5%,溶胀度为10.5%,比浇铸膜减少43.5%,比单轴电纺膜减少32.7%;湿膜的拉伸强度为16.8MPa,比浇铸膜提高106.3%,比单轴电纺膜提高43.5%;氢氧根离子传导率为49.7mS/cm,比浇铸膜提高70.2%,比单轴电纺膜提高40.8%,表明同轴静电纺丝阴离子交换膜具有更好的电化学及机械强度。
实施例2:
将1.0g离子交换容量为1.5mmol/g的咪唑化聚砜溶解在4.56g的N,N-二甲基甲酰胺中,配制成质量分数为18%的溶液,作为壳层纺丝液;在壳层纺丝液中加入4.0mg的功能化碳纳米管,使其质量分数为0.4%,经磁力搅拌12h、超声分散30min后分散均匀,作为芯层纺丝液。在外加电压为27kV,同轴喷丝头到接收转鼓间距为15cm,同轴喷丝头芯层直径为500μm,同轴喷丝头壳层直径为1500μm,芯层、壳层注射泵推速均为0.09ml/h,滚筒转速为1500rpm的纺丝条件下,制备三维网络状排列的同轴静电纺丝纳米纤维,纤维直径为50-350nm。
将同轴静电纺丝纤维在60℃的N,N-二甲基甲酰胺溶剂浴的上部饱和蒸汽中,放置20min,使纤维溶胀、相互粘连。然后,在硫化机中采用5.0MPa、120℃条件热压15min,使纤维形成具有三维纳米纤维网络结构的致密膜。然后,将致密膜在1mol/L的KOH溶液中浸泡36h进行氢氧根离子交换,再用新制的二次煮沸去离子水清洗至中性。所制备的同轴静电纺丝阴离子交换膜厚度约为30μm。
将同轴静电纺丝阴离子交换膜进行性能测试,测试条件与图3相同。60℃时,膜的含水率为39.3%,溶胀度为12.0%,比浇铸膜减少34.1%,比单轴电纺膜减少23.1%;湿膜拉伸强度为15.3MPa,比浇铸膜提高91.3%,比单轴电纺膜提高33%;氢氧根离子传导率为41.7mS/cm,比浇铸膜提高42.8%,比单轴电纺膜提高18%。
实施例3:
将0.5g离子交换容量为1.65mmol/g的咪唑化聚砜溶解在1.77g的N,N-二甲基甲酰胺中,配制成质量分数为22%的溶液,作为壳层纺丝液;在壳层纺丝液中加入4.0mg的功能化碳纳米管,使其质量分数为0.8%,经磁力搅拌12h后、超声分散30min后分散均匀,作为芯层纺丝液。在外加电压为30kV,同轴喷丝头到接收转鼓间距为15cm,同轴喷丝头芯层直径为500μm,同轴喷丝头壳层直径为1500μm,内、外轴注射泵推速均为0.12ml/h,滚筒转速为1500rpm的纺丝条件下,制备三维网络状排列的同轴静电纺丝纳米纤维,纤维直径为100-400nm。
将同轴静电纺丝纤维在60℃的N,N-二甲基甲酰胺溶剂浴的上部饱和蒸汽中,放置20min,使纤维溶胀、相互粘连。然后,在硫化机中采用3.0MPa、110℃条件热压30min,使纤维形成具有三维纳米纤维网络结构的致密膜。然后,将致密膜在1mol/L的KOH溶液中浸泡48h进行氢氧根离子交换,再用新制的二次煮沸去离子水清洗至中性。所制备的同轴静电纺丝阴离子交换膜厚度约为20μm。
将同轴静电纺丝阴离子交换膜进行性能测试,测试条件与图3相同。60℃时,膜的含水率为46.7%,溶胀度为15.3%,比浇铸膜减少15.9%,比单轴电纺膜减少2%;湿膜拉伸强度为16.7MPa,比浇铸膜提高108.9%,比单轴电纺膜提高45.2%。氢氧根离子传导率为35.6mS/cm,比浇铸膜提高21.9%,比单轴电纺膜提高1%。
上述实施例中,将功能化碳纳米管固定在纳米纤维内部,可以有效地提高有机/无机相容性,提高碳纳米管掺杂量,促进膜中离子簇聚集。与浇铸膜和单轴电纺膜相比,显示出更高的氢氧根离子传导率、耐水溶胀性和湿膜拉伸强度。

Claims (8)

1.一种同轴静电纺丝制备碳纳米管增强阴离子交换膜的方法,其特征在于,该方法采用同轴静电纺丝制备纳米纤维,将功能化碳纳米管固定在阴离子交换聚合物纤维内部,纳米纤维再经溶剂蒸汽浴、热压、氢氧根离子交换,制备得到具有三维网络形貌的致密膜,作为阴离子交换膜;具体如下:
(1)同轴静电纺丝制备纳米纤维
所述的同轴静电纺丝,是指在高压电场20-40kV中,同轴纺丝液通过同轴纺丝头处的静电力牵引作用,在滚筒接收器上形成纳米纤维;在同轴纺丝头的芯层和壳层的微量注射泵内分别放置不同的同轴纺丝液,为壳层纺丝液和芯层纺丝液;所述的壳层纺丝液,是将非氟阴离子交换聚合物溶于N,N-二甲基甲酰胺溶剂中,其中,非氟阴离子交换聚合物的质量分数为15-25%;所述的芯层纺丝液,将掺杂功能化碳纳米管的非氟阴离子交换聚合物分散在N,N-二甲基甲酰胺溶剂中,其中,非氟阴离子交换聚合物的质量分数为15-25%,功能化碳纳米管的质量分数不大于1.5%;
(2)溶剂蒸汽浴
所述的溶剂蒸汽浴,是将同轴静电纺丝制备得到的纳米纤维放置在常压、60℃的N,N-二甲基甲酰胺溶剂浴上部形成的饱和蒸汽中,放置10-30min,使纳米纤维溶胀、相互粘连;
(3)热压
所述的热压,是将经溶剂蒸汽浴处理后的纳米纤维压缩,在100-130℃、3-5MPa下压缩10-30min,使纳米纤维形成致密膜,且致密膜保持三维网络形貌;
(4)氢氧根离子交换
所述的氢氧根离子交换,是将制备的致密膜放置在1mol/L KOH中常温浸泡36-48h,然后用新制的二次煮沸去离子水清洗至中性,最终得到碳纳米管增强阴离子交换膜。
2.根据权利要求1所述的一种同轴静电纺丝制备碳纳米管增强阴离子交换膜的方法,其特征在于,所述的纳米纤维,具有三维网络形貌,功能化碳纳米管在纳米纤维内部伸长取向,纳米纤维外直径为50-400nm。
3.根据权利要求1或2所述的一种同轴静电纺丝制备碳纳米管增强阴离子交换膜的方法,其特征在于,所述的非氟阴离子交换聚合物,为咪唑化聚砜,离子交换容量为1.3-1.7mmol/g。
4.根据权利要求1或2所述的一种同轴静电纺丝制备碳纳米管增强阴离子交换膜的方法,其特征在于,所述的功能化碳纳米管,是将多壁羧基化碳纳米管依次经过酰胺化、季铵化反应制备得到,其中,酰胺化试剂为1-(3-氨丙基咪唑),季铵化试剂为溴代正丁烷。
5.根据权利要求3所述的一种同轴静电纺丝制备碳纳米管增强阴离子交换膜的方法,其特征在于,所述的功能化碳纳米管,是将多壁羧基化碳纳米管依次经过酰胺化、季铵化反应制备得到,其中,酰胺化试剂为1-(3-氨丙基咪唑),季铵化试剂为溴代正丁烷。
6.根据权利要求1、2或5所述的一种同轴静电纺丝制备碳纳米管增强阴离子交换膜的方法,其特征在于,所述的同轴静电纺丝的设备参数如下:同轴纺丝头到接收板的间距为15cm,滚筒接收器的转速为1500rpm;同轴纺丝头的芯层直径为500μm、壳层直径为1500μm;芯层和壳层微量注射泵的推速为0.03-0.15ml/h。
7.根据权利要求3所述的一种同轴静电纺丝制备碳纳米管增强阴离子交换膜的方法,其特征在于,所述的同轴静电纺丝的设备参数如下:同轴纺丝头到接收板的间距为15cm,滚筒接收器的转速为1500rpm;同轴纺丝头的芯层直径为500μm、壳层直径为1500μm;芯层和壳层微量注射泵的推速为0.03-0.15ml/h。
8.根据权利要求4所述的一种同轴静电纺丝制备碳纳米管增强阴离子交换膜的方法,其特征在于,所述的同轴静电纺丝的设备参数如下:同轴纺丝头到接收板的间距为15cm,滚筒接收器的转速为1500rpm;同轴纺丝头的芯层直径为500μm、壳层直径为1500μm;芯层和壳层微量注射泵的推速为0.03-0.15ml/h。
CN201810375926.7A 2018-04-17 2018-04-17 一种同轴静电纺丝制备碳纳米管增强阴离子交换膜的方法 Active CN108625040B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810375926.7A CN108625040B (zh) 2018-04-17 2018-04-17 一种同轴静电纺丝制备碳纳米管增强阴离子交换膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810375926.7A CN108625040B (zh) 2018-04-17 2018-04-17 一种同轴静电纺丝制备碳纳米管增强阴离子交换膜的方法

Publications (2)

Publication Number Publication Date
CN108625040A true CN108625040A (zh) 2018-10-09
CN108625040B CN108625040B (zh) 2020-10-20

Family

ID=63694592

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810375926.7A Active CN108625040B (zh) 2018-04-17 2018-04-17 一种同轴静电纺丝制备碳纳米管增强阴离子交换膜的方法

Country Status (1)

Country Link
CN (1) CN108625040B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111364166A (zh) * 2020-03-16 2020-07-03 厦门大学 一种表面功能同步修饰柔性纳米纤维复合膜的制备方法
CN112864436A (zh) * 2019-11-27 2021-05-28 中国科学院大连化学物理研究所 一种纤维增强阴离子交换膜及制备和应用
US20230256380A1 (en) * 2020-07-14 2023-08-17 The Board Of Trustees Of The University Of Illinois Systems and process for carbon capture and conversion

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101977985A (zh) * 2008-03-19 2011-02-16 E.I.内穆尔杜邦公司 导电聚合物组合物和由其制备的薄膜
CN105297287A (zh) * 2015-09-18 2016-02-03 东南大学 一种高压静电纺丝法制备阳离子交换膜的方法
CN106450101A (zh) * 2016-08-29 2017-02-22 大连理工大学 一种用同轴静电纺丝制备新型锂电池隔膜的方法
US20170316889A1 (en) * 2011-07-08 2017-11-02 Fastcap Systems Corporation Advanced electrolyte systems and their use in energy storage devices
WO2017222895A1 (en) * 2016-06-23 2017-12-28 Government Of The United States As Represented By The Secretary Of The Air Force Bendable creasable, and printable batteries with enhanced safety and high temperature stability - methods of fabrication, and methods of using the same
CN107881649A (zh) * 2016-09-29 2018-04-06 南京林业大学 一种光热响应的纳米纤维油水分离膜的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101977985A (zh) * 2008-03-19 2011-02-16 E.I.内穆尔杜邦公司 导电聚合物组合物和由其制备的薄膜
US20170316889A1 (en) * 2011-07-08 2017-11-02 Fastcap Systems Corporation Advanced electrolyte systems and their use in energy storage devices
CN105297287A (zh) * 2015-09-18 2016-02-03 东南大学 一种高压静电纺丝法制备阳离子交换膜的方法
WO2017222895A1 (en) * 2016-06-23 2017-12-28 Government Of The United States As Represented By The Secretary Of The Air Force Bendable creasable, and printable batteries with enhanced safety and high temperature stability - methods of fabrication, and methods of using the same
CN106450101A (zh) * 2016-08-29 2017-02-22 大连理工大学 一种用同轴静电纺丝制备新型锂电池隔膜的方法
CN107881649A (zh) * 2016-09-29 2018-04-06 南京林业大学 一种光热响应的纳米纤维油水分离膜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
吴瑶: "同轴共纺聚醚醚酮无机掺杂质子交换膜的研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112864436A (zh) * 2019-11-27 2021-05-28 中国科学院大连化学物理研究所 一种纤维增强阴离子交换膜及制备和应用
CN112864436B (zh) * 2019-11-27 2022-07-12 中国科学院大连化学物理研究所 一种纤维增强阴离子交换膜及制备和应用
CN111364166A (zh) * 2020-03-16 2020-07-03 厦门大学 一种表面功能同步修饰柔性纳米纤维复合膜的制备方法
US20230256380A1 (en) * 2020-07-14 2023-08-17 The Board Of Trustees Of The University Of Illinois Systems and process for carbon capture and conversion

Also Published As

Publication number Publication date
CN108625040B (zh) 2020-10-20

Similar Documents

Publication Publication Date Title
CN104157815B (zh) 一种细菌纤维素多孔薄膜及其制备方法
CN105161312B (zh) 一种碳纳米纤维‑石墨烯复合气凝胶及其协同组装制备方法
CN105406091B (zh) 一种聚偏氟乙烯‑杂多酸‑壳聚糖复合质子交换膜的制备方法
CN105720224B (zh) 一种纳米纤维素改良的锂离子电池隔膜及其制备方法
CN105355949B (zh) 一种微纳米纤维复合质子交换膜的制备方法
CN108625040A (zh) 一种同轴静电纺丝制备碳纳米管增强阴离子交换膜的方法
CN108285643A (zh) 一种纤维素纳米纤维/磺化聚醚砜质子交换膜及制备方法
CN104466063B (zh) 聚多巴胺表面改性聚醚砜纳米纤维复合隔膜、制备方法及应用
Wang et al. Solution blown biofunctionalized poly (vinylidene fluoride) nanofibers for application in proton exchange membrane fuel cells
Gong et al. Electrospun nanofiber enhanced imidazolium-functionalized polysulfone composite anion exchange membranes
CN108598520B (zh) 一种静电纺丝制备液流电池离子传导性隔膜的方法
Wu et al. Confinement of functionalized graphene oxide in sulfonated poly (ether ether ketone) nanofibers by coaxial electrospinning for polymer electrolyte membranes
CN109390617A (zh) 交联型聚苯并咪唑碱性阴离子交换膜及其制备和应用
Wang et al. High-performance yarn supercapacitor based on directly twisted carbon nanotube@ bacterial cellulose membrane
CN110797204A (zh) 电活性生物质基导电复合膜和自增强纤维素水凝胶的制备及其在可穿戴超级电容器上的应用
CN105037770A (zh) 一种基于溶液喷射纺丝技术的燃料电池质子交换膜
CN110364757A (zh) 磷酸掺杂的具有纤维结构的非水质子交换膜的制备方法
CN109935754A (zh) 一种用于锂离子电池的夹层式纤维素基隔膜及其制备方法
CN106299429B (zh) 一种燃料电池用碱性阴离子交换复合膜及制备方法
CN108097056A (zh) 一种阳离子交换膜的制备方法
CN104681841A (zh) 一种静电纺丝纤维沿膜厚度方向有序直通排列的质子交换膜
CN107051217B (zh) 一种耐高温、低电阻、机械性能优良的双极膜的制备方法
CN106784941B (zh) 一种具有跨膜分布纳米纤维结构的质子交换膜及其制备方法
CN108823983A (zh) 一种季铵化聚乙烯醇/壳聚糖静电纺丝固体电解质薄膜的制备方法
Wang et al. Nanofiber-based poly (aryl ether sulfone) containing guanidinium groups as novel anion-exchange membranes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant