CN110797204A - 电活性生物质基导电复合膜和自增强纤维素水凝胶的制备及其在可穿戴超级电容器上的应用 - Google Patents

电活性生物质基导电复合膜和自增强纤维素水凝胶的制备及其在可穿戴超级电容器上的应用 Download PDF

Info

Publication number
CN110797204A
CN110797204A CN201911030734.3A CN201911030734A CN110797204A CN 110797204 A CN110797204 A CN 110797204A CN 201911030734 A CN201911030734 A CN 201911030734A CN 110797204 A CN110797204 A CN 110797204A
Authority
CN
China
Prior art keywords
composite film
self
electroactive
preparation
graphene oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911030734.3A
Other languages
English (en)
Inventor
钟文斌
彭志远
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University
Original Assignee
Hunan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University filed Critical Hunan University
Priority to CN201911030734.3A priority Critical patent/CN110797204A/zh
Publication of CN110797204A publication Critical patent/CN110797204A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/04Oxycellulose; Hydrocellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2397/00Characterised by the use of lignin-containing materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明涉及储能材料,特别涉及电活性生物质基导电复合膜、自增强纤维素水凝胶及高性能可穿戴超级电容器的制备方法。导电复合膜制备包括以下步骤:(1)将氧化石墨烯与双氧水混合水热;(2)将单壁碳纳米管利用浓硝酸冷凝回流处理;(3)将木质素磺酸盐、酸化单壁碳纳米管和多孔氧化石墨烯混合形成均匀分散的溶液,然后通过抽滤干燥;(4)将得到的复合薄膜在木质素磺酸盐溶液中水热,即得。本发明通过抽滤法使得木质素、单壁碳纳米管和多孔氧化石墨烯形成类似层状的网络结构,本发明通过自增强的方法制备高强度多孔纤维素水凝胶。将二者组装成可穿戴超级电容器表现出超高的面积电容和能量密度,具有优异的柔性。

Description

电活性生物质基导电复合膜和自增强纤维素水凝胶的制备及 其在可穿戴超级电容器上的应用
技术领域
本发明涉及储能技术领域,具体涉及电活性生物质基导电复合膜和自增强纤维素水凝胶的制备及其在可穿戴超级电容器上的应用。
背景技术
随着便携式和可穿戴电子设备的迅速发展,对柔性甚至可折叠储能系统并且具有高储能能力、高机械性能和可穿戴安全性的储能设备需求增大。可穿戴超级电容器(SC)以其优越的功率密度和超长的循环寿命,一直是备受关注的研究领域。当前大量的努力致力于研究柔性线型或纤维状超级电容器和平面型超级电容器。线型或纤维状超级电容器通常有两种典型的结构:(1)由两个一维(1D)电极构成的同轴结构(电活性材料可以是金属氧化物/氢氧化物、石墨烯、碳纳米管、导电聚合物等);(2)由两个平行或扭曲的1D电极构成的超级电容器。这些1D电极通常采用静电纺丝法,水热处理密封在1D管中的电活性分散体和化学/电化学沉积电活性材料到纤维模板上等方法制得。然而这些组装的1D超级电容器具有相对较低的面积电容(0.51-847mF cm-2)。柔性平面型超级电容器可分为三大类:(1)由多个串联或并联的超级电容器组成得微型超级电容器。这些微型超级电容器电极通常是通过将电活性材料浸涂、注入或印刷到柔性基底(通常是纸、纤维素膜、纺织品、聚对苯二甲酸乙二醇酯、聚酰亚胺等)上而制备的;(2)用不同的方法将电活性材料锚在纸/织物柔性基材上作为电极,并用PVA基凝胶电解质隔离膜组装成柔性超级电容器。这些平面型超级电容器通常具有良好的面积电容(<1F cm-2、机械强度(<30MPa)以及很好的柔性;最近出现了(3)以柔性电活性膜构建的柔性超级电容器,尤其是二维片状材料(如石墨烯、MXene等)作为膜电极得到了广泛的研究。薄膜电极通常是通过过滤、蒸发干燥和压缩工艺制备。然而,大尺寸的多层二维片状堆积结构会延长电子和离子的传输路径,导致低的倍率性能。为了优化电子和离子的传输路径,人们开拓了各种策略。例如,将多孔石墨烯(HGO)引入MXene中制备的MXene/HGO复合膜在2mV s-1时的比电容为438F g-1,即使在500mV s-1时也保持了302F g-1的高电容(69%)。所制备的薄膜的倍率性能优于纯的MXene(34%)和rGO/MXene(60.9%)薄膜(Z.Fan,Y.Wang,Z.Xie,D.Wang,Y.Yuan,H.Kang,B.Su,Z.Cheng,Y.Liu,Adv.Sci.2018,5,1800750)。将2D MXene薄片细分成小薄膜的方式也被研究。在扫描范围为2~1000mV s-1时,由小MXene片(约57.9%)制成的薄膜的倍率性能比由大MXene片(约16%)制成的薄膜的倍率性能有了很大提高(E.Kayali,A.VahidMohammadi,J.Orangi,M.Beidaghi,ACSAppl.Mater.Interfaces2018,10,25949-25954)。此外,将纳米纤维(如碳纳米管、纤维素等)引入到二维结构中调整和改变紧凑的自堆叠多层结构的方式也被开拓。如将细菌纤维素(BC)网络夹在MXene层状结构之间,制备了双连续三维多孔MXene/BC膜。与纯MXene膜(27%)相比,复合膜在3~50mA cm-2的电流密度范围内,电容保持率有很大提升且高达62%(Y.Wang,X.Wang,X.Li,Y.Bai,H.Xiao,Y.Liu,R.Liu,G.Yuan,Adv.Funct.Mater.2019,29,1900326)。然而,对于可穿戴超级电容器而言,舒适性也是非常重要的方面之一,因为它可能与皮肤直接接触。虽然高性能柔性超级电容器的研究取得了很大的进展,但在实际应用中,超级电容器的舒适性却被忽视了。棉布衣服具有大量的亲水性纤维素和木质素成分,接触皮肤时具有良好的亲肤性,有助于皮肤吸收汗液,使人感到舒适(T,B.Volkmar,Biofunctional Textiles and the Skin2006,33,51-66.)。因此,通过合理的分子设计来构建舒适的高性能可穿戴超级电容器具有很大的前景。
发明内容
针对现有技术中可穿戴超级电容器对皮肤的舒适性被忽视的问题,本发明的第一个目的是采用分子设计,将富含亲水基团的木头衍生的木质素和纤维素用于制备超级电容器,以获得具有舒适感的可穿戴储能器件。
本发明的第二个目的是在于提供一种操作简单、成本低、条件温和的制备木质素磺酸盐/单壁碳纳米管/多孔还原氧化石墨烯薄膜的方法,该薄膜表现出优异的机械强度和柔性,并表现出超高的面积电容和能量密度。
本发明的第三个目的是开拓了一种利用细菌纤维素自增强微晶纤维素水凝胶的方法,自增强的水凝胶各组分具有极好的相容性,表现出更好的拉伸性能和可任意弯曲性。
本发明的第四个目的是提供了一种仿植物细胞壁结构的可穿戴超级电容器的设计,将含木质素的电极材料和自增强纤维素水凝胶隔膜组装成可穿戴超级电容器由于二者之间强的氢键作用防止了电极和隔膜的分层剥离,使得电容器器件具有极好的柔性。
为了实现上述技术目的,本发明提供了一种木质素磺酸盐/单壁碳纳米管/多孔还原氧化石墨烯薄膜的制备方法,其包括以下步骤:
(1)将氧化石墨烯与双氧水混合水热,得到多孔氧化石墨烯;
(2)将单壁碳纳米管利用浓硝酸冷凝回流处理,得到酸化单壁碳纳米管;
(3)将木质素磺酸盐、酸化单壁碳纳米管和多孔氧化石墨烯混合形成均匀分散的溶液,然后通过抽滤干燥,得到三元复合薄膜;
(4)将得到的复合薄膜在木质素磺酸盐溶液中水热,即得。
优选的方案,所述含有木质素磺酸盐、酸化碳纳米管和多孔氧化石墨烯溶液中酸化碳纳米管和多孔氧化石墨烯的浓度为1:1~3;优选为1:1.5~2.5;最优选为1:2。
优选的方案,所述含有木质素磺酸盐、酸化碳纳米管和多孔氧化石墨烯溶液中木质素磺酸盐和酸化碳纳米管的质量比为1:2~6;优选为1:3~5;最优选为1:4。
优选的方案,所述复合膜水热过程中木质素磺酸盐得浓度为3~5mg/mL;优选为3.5~4.5mg/mL,最优选为4mg/mL。
优选的方案,所述水热反应的条件:在90~180℃反应8~16h;优选为150~180℃反应10~14h;最优选为180℃反应12h。
本发明提供了一种木质素磺酸盐/单壁碳纳米管/多孔还原氧化石墨烯薄膜,其由上述制备方法制得。
本发明还提供了一种自增强纤维素水凝胶的制备方法。其包括以下步骤:
(1)将微晶纤维素在氢氧化钠-尿素中溶解,得到微晶纤维素溶液;
(2)将少量细菌纤维素加入微晶纤维素溶液中搅拌,得到混合溶液;
(3)取少量混合纤维素溶液加入稀硫酸,即得。
优选的方案,细菌纤维素与微晶纤维素混合溶液中细菌纤维素得质量分数为1~4.5%;优选为2.5~3.5%;最优选为3.5%。
本发明还提供了一种可穿戴超级电容器,其包括所述木质素磺酸盐/单壁碳纳米管/多孔还原氧化石墨烯薄膜作为电极和自增强纤维素水凝胶作为电解液隔膜。
相对现有技术,本发明的技术方案带来的有益技术效果:
1)本发明采用与棉布衣服一样的分子(木质素和纤维素)来制作可穿戴超级电容器,其丰富亲水的对皮肤很友好并且可以帮助吸附皮肤表面的含水,使人感到舒适,从而为开发舒适的储能器件提供了新思路。
2)本发明的木质素磺酸盐/单壁碳纳米管/多孔还原氧化石墨烯薄膜制作方法简单,条件温和,并且表现出比现有薄膜电极材料更高的力学强度、柔性、面积电容以及能量密度。
3)本发明的自增强纤维素水凝胶各组分之间相容性极好,相比与当前报道的纤维素水凝胶具有更强的拉伸强度和柔性,并且具有丰富的孔隙吸收、储存及转移电解液离子,从而使得超级电容器具有更好的电化学性能。
4)本发明的由木质素磺酸盐/单壁碳纳米管/多孔还原氧化石墨烯薄膜作为电极和自增强纤维素水凝胶作为电解液隔膜组装而成的可穿戴超级电容器由于类似植物细胞壁中纤维素和木质素强的氢键作用防止了电极和隔膜的分层剥离,从而表现出优异的柔性,即使在10000次反复折叠后仍保持了86.1%的初始面积电容,可以适用于各种实际极端状况。
附图说明
【图1】中a为Lig/SWCNT/HrGO薄膜的表面的SEM图像;b为Lig/SWCNT/HrGO薄膜的截面的SEM图像;c为冷冻干燥后BC/MCC水凝胶表面的SEM图像;d为BC/MCC水凝胶的TEM图像。
【图2】为Lig/SWCNT/HrGO,SWCNT/HrGO、Lig/HrGO和Lig/SWCNT薄膜的XPS谱图。【图3】为Lig/SWCNT/HrGO薄膜、BC/MCC水凝胶和柔性超级电容器的拉伸应力-应变曲线图。
【图4】中a为不同柔性薄膜基超级电容器的面积电容在电流密度为5~100mA cm-2范围内的变化曲线图;b为Lig/SWCNT/HrGO薄膜柔性超级电容器的在电流密度为20mA cm-2下充放电测试10000次的循环曲线图。
【图5】为薄膜电极质量为4.2和16.5mg cm-2的柔性器件的Ragone图。
【图6】为Lig/SWCNT/HrGO薄膜基柔性超级电容器在10000个折叠周期内面积电容的变化图。
具体实施方式
以下实施例旨在进一步说明本发明内容,而不是限制本发明权利要求保护的范围。
试剂:木质素磺酸钠(Lig,分子量约20000)购于挪威鲍利葛公司。
天然石墨(325mesh)购于青岛恒利德石墨有限公司。
单壁碳纳米管(SWCNT,长5-30μm,纯度>95wt%)购于成都中科时代有机化工有限公司。
微晶纤维素(MCC,100-200mesh)购于上海美亚化工科技有限公司。细菌纤维素(BC,直径20-40nm,长度1-3μm)购自中国桂林宏奇科技有限公司。
硝酸钠(NaNO3)、硫酸(98%H2SO4)、高锰酸钾(KMnO4)、盐酸(38%HCl)、过氧化氢(30%H2O2)和硝酸(68%HNO3,AR)购于国药化工试剂有限公司。
实施例1
步骤一:多孔氧化石墨烯和酸化碳纳米管的制备:以天然石墨为原料,采用改进的Hummers法制备了氧化石墨烯(GO)悬浮液,采用水热处理方法制备了多孔氧化石墨烯(HGO)。简要地说,向36mL GO悬浮液(1mg mL-1)中加入0.4mL过氧化氢(30%)均匀搅拌。将混合物倒入聚四氟乙烯容器(50mL),将容器密封在不锈钢高压釜中,并在100℃下加热10h。将获得的黑色悬浮液过滤并用去离子水冲洗,然后重新分散到去离子水中,形成HGO悬浮液。使用硝酸处理SWCNTs(70mg)得到酸化碳纳米管。
步骤二:Lig/SWCNT/HrGO的制备:将制备的经酸处理的SWCNT与HGO悬浮液在搅拌和超声振动下以SWCNT/HGO=1:2(溶液总体积为50mL)的质量比混合2h,然后加入10mL Lig溶液(Lig/SWCNT的质量比为1:4)。再分散2h,得到Lig/SWCNT/HGO均匀分散液。将分散液过滤,然后在室温下干燥,得到Lig/SWCNT/HGO膜。将该膜浸入20mL Lig溶液(4mg mL-1)中,然后转移到聚四氟乙烯容器(50mL)中。将容器密封在不锈钢高压釜中,在180℃下加热2h。然后在室温下自然冷却和干燥后获得Lig/SWCNT/HrGO膜。通过控制Lig/SWCNT/HGO分散体的体积,制备出不同质量的复合电极薄膜。比较而言,Lig/HrGO、Lig/SWCNT和SWCNT/HrGO薄膜的制备方法与Lig/SWCNT/HrGO薄膜相同,但分别在没有SWCNT、HGO和Lig的情况下进行。
步骤三:自增强纤维素水凝胶(BC/MCC水凝胶)的制备:采用相转化法制备了自增强纤维素水凝胶。简单地说,将氢氧化钠(1.4g)、尿素(2.4g)和去离子水(15.6mL)混合并预冷至-12.0℃,建立氢氧化钠-尿素水溶液。然后添加微晶纤维素(MCC,1.2g)剧烈搅拌5min以获得MCC溶液。将不同量的BC(BC占总纤维素质量分数分别为1%、2.5%、3.5%和4.5%)快速加入MCC溶液中分散3min,并将1mL混合分散液移入烧杯(25mL)中。然后,快速加入H2SO4水溶液(2mL,0.5mol L-1),室温保存1h,得到白色BC/MCC复合水凝胶,用过量去离子水洗涤去除残留的化学试剂。比较而言,MCC水凝胶的制备方法与BC/MCC水凝胶相同,但没有加入BC。
柔性全固态超级电容器的制备方法如下:将制备好的膜电极材料(膜电极质量约4.2mg cm-2)切成矩形片(面积1×1cm-2)。将厚度约为30μm的自增强纤维素水凝胶切成薄片(面积为1.1×1.1cm-2),再在1M的硫酸中浸泡12h,然后用自增强纤维素水凝胶作为隔离膜夹在所制备的两片薄膜电极之间,最后将其在0.2MPa的小应力作用下压缩1h,然后自然蒸发多余的水,得到柔性全固态超级电容器。
电化学性能测试在电化学工作站(CHI660E)上进行。在5~150mV s-1扫描速率范围内进行循环伏安(CV)实验,电位窗为0~1.0V,在同一电位窗内测量不同电流密度下的恒电流充放电(GCD)。电化学阻抗谱(EIS)测试是在10mV的振幅和100kHz至0.01Hz的频率范围内进行的开路电位。
根据GCD曲线,用式(1)计算了柔性超级电容器的面积比电容(CA,mF cm-2):
Figure BDA0002250072380000061
分别基于式(2)和式(3)得到面积能密度(E,μWh cm-2)和功率密度(P,W cm-2):
Figure BDA0002250072380000062
式中,I、Δt、ΔV和S分别是放电电流(mA cm-2)、放电时间(s)、窗口电压(V)和柔性超级电容器的面积(cm-2)。
木质素磺酸钠/单壁碳纳米管/多孔还原氧化石墨烯(Lig/SWCNT/HrGO)膜集成电极和多孔自增强纤维素水凝胶隔离膜的制备,采用分散、过滤和水热处理三种主要工艺制备了Lig/SWCNT/HrGO薄膜电极。首先,采用搅拌和超声振动的方法,制备了酸处理的SWCNT和HGO的混合分散体。随后加入的Lig可以通过氢键和π-π相互作用吸附在SWCNT和HGO的表面以获得稳定的分散。其次,在过滤过程中,小尺寸多孔HGO粘附并悬挂在3D SWCNT网络的表面形成复合层。一部分的HGO穿插在SWCNT网络中,可以形成一个三维的相互连接的类多层膜结构。最后,将薄膜浸入Lig溶液中,进行水热处理,使HGO还原为HrGO。此外,HrGO与SWCNT通过π-π作用紧密结合。Lig可以通过氢键和π-π相互作用紧密地附着在SWCNT和HrGO表面。因此所制备的Lig/SWCNT/HrGO复合膜具有连续的类似多层的导电网络结构,可以促进电子和离子的传输。采用简易的自增强方法制备了高强度多孔纤维素水凝胶。即向MCC溶液中加入少量BC在快速搅拌3分钟后,得到了部分溶解BC的细菌纤维素/微晶纤维素(BC/MCC)分散体。通过加入稀硫酸调节分散液的pH值,从而使纤维素链之间形成强氢键获得了具有BC纤维网络的多孔纤维素水凝胶。MCC与稳健的BC纤维具有良好的相容性,制备的多孔BC/MCC复合水凝胶具有优异的力学性能。
性能表征方法及主要测试仪器:用扫描电子显微镜(SEM,日本日立S-4800)和透射电子显微镜(TEM,FEI Titan G260-300)对样品的结构和形貌进行了表征。使用德国D8Advance X射线衍射仪对样品进行XRD测量。利用美国Thermo ESCALAB 250Xi仪器进行X射线光电子能谱(XPS)。
图1a为Lig/SWCNT/HrGO薄膜的表面的SEM图像;b为Lig/SWCNT/HrGO薄膜的截面的SEM图像;c为冷冻干燥后BC/MCC水凝胶表面的SEM图像;d为BC/MCC水凝胶的TEM图像。由图1a可见,Lig/SWCNT/HrGO薄膜的表面可以观察到直径约为20nm的相互连接的纤维网络,可能是HrGO和Lig包裹的结果。同时,小尺寸的HrGO粘附在网络上,形成光滑的表面。从Lig/SWCNT/HrGO薄膜的横截面可以观察到具有交联SWCNT和HrGO的类似多层膜结构(图1b)。这可能归因于穿插的小尺寸HrGO改变了网络结构。从图1c可以看出BC/MCC水凝胶的表面呈现均匀的多孔网络结构,孔径约为几十纳米。并且在BC/MCC水凝胶的TEM图像(图1d)可以看到直径约为14.8nm的BC纤维交联的多孔网络结构,说明BC纤维与MCC具有良好的相容。
图2为Lig/SWCNT/HrGO,SWCNT/HrGO、Lig/HrGO和Lig/SWCNT薄膜的XPS谱图。由图可知,与SWCNT/HrGO相比,Lig/SWCNT/HrGO、Lig/HrGO和Lig/SWCNT在168eV处出现了一个额外的S 2p峰,含量分别为1.46%、1.20%和0.74%,表明有Lig成功引入复合薄膜中。同时,Lig/SWCNT/HrGO、SWCNT/HrGO、Lig/HrGO和Lig/SWCNT薄膜的O含量分别为25.38、15.67、21.09和19.57%,Lig/SWCNT/HrGO薄膜的O含量较高可能与Lig的其引入的高含量的Lig有关。
图3为Lig/SWCNT/HrGO薄膜、BC/MCC水凝胶和柔性超级电容器的拉伸应力-应变曲线。由图中可知Lig/SWCNT/HrGO薄膜具有121.8MPa的高拉伸强度,这与Lig、SWCNT和HrGO三者协同作用和构建的三维类似层状结构有关。BC/MCC水凝胶的拉伸强度为9.56MPa,断裂伸长率为39.9%,其高的强度是稳健的BC纤维的引入导致的。组装成柔性超级电容器后其拉伸强度仍然有112.3MPa,这是主要归因于高强度的电极薄膜。
图4中a为不同柔性薄膜基超级电容器的面积电容在电流密度为5~100mA cm-2范围内的变化曲线;b为Lig/SWCNT/HrGO薄膜柔性超级电容器的在电流密度为20mA cm-2下充放电测试10000次的循环曲线。由图4a可知,Lig/SWCNT/HrGO基SC在5mAcm-2的面积电流密度下具有1121mF cm-2的高面电容,高于SWCNT/HrGO(301mF cm-2)。Lig/HrGO(532mF cm-2)和Lig/SWCNT(807mF cm-2)基SCs。Lig/SWCNT/HrGO基SC优异的面电容可归因于Lig提供的高赝电容和促进电解质扩散的优良三维多孔结构。基于Lig/SWCNT/HrGO的SC即使在高电流密度为100mA cm-2的情况下,仍能保持原来面积电容的70.5%(790mF cm-2)。在电流密度为100mA cm-2时,SWCNT/HrGO、Lig/HrGO和Lig/SWCNT基SCs的面电容分别为235、345和549mFcm-2。Lig/SWCNT/HrGO基SC优异的倍率性能归因于SWCNT与多孔HrGO构成的稳定的三维连续导电类似多层膜结构,以及电极与多孔隔离膜之间的紧密结合以及大量的介孔和大孔的存在有利于高电流密度下离子的快速扩散和电荷传输。此外,基于Lig/SWCNT/HrGO的SC在10000次循环后显示出良好的稳定性,相对于初始电容保持率为86.4%(图4b)。这可以归因于其优越的类似多层导电多孔结构以及Lig在HrGO和SWCNT表面的附着提供了可逆的法拉第反应。
图5为薄膜电极质量为4.2和16.5mg cm-2的柔性器件的Ragone图。结果显示,Lig/SWCNT/HrGO薄膜基超级电容器当电极质量为4.2和16.5mg cm-2时,在面积功率密度为2500μW cm-2时,电极面积能密度分别为77.8和285.4μWh cm-2。在超高功率密度为50000μW cm-2时,仍能保持54.8μWh cm-2和191.2μWh cm-2
图6为Lig/SWCNT/HrGO薄膜基柔性超级电容器在10000个折叠周期内面积电容的变化。结果显示即使在10000个折叠周期后,该柔性SC仍保留了86.1%的初始面积比电容。Lig/SWCNT/HrGO基SC优异的柔韧性是由于薄膜电极和纤维素复合水凝胶分离膜的优异力学性能。此外,两电极中Lig与纤维素隔离膜强的氢键使其结合紧密,可进一步防止层状剥离。
实施例2
实施例1是本发明的最佳优选的方案,以下表1和表2是得到实施例1最佳优选方案过程中进行的单一因素优化实验部分。除了考察的条件与实施例1不同之外,其他条件均与实施例1相同。
表1:不同反应条件对Lig/SWCNT/HrGO电化学性能的影响
Figure BDA0002250072380000081
Figure BDA0002250072380000091
实施例3
为了考察自增强纤维素水凝胶的最优性能的选择,对不同细菌纤维素含量的纤维素复合水凝胶的力学性能进行了研究,表2为其性能的对比。
表2.不同BC含量的BC/MCC水凝胶拉伸强度和断裂伸长率对比
实施例3
Lig/SWCNT/HrGO,SWCNT/HrGO、Lig/HrGO和Lig/SWCNT薄膜电极当电极质量为4.2mg/cm-2时电化学性能和力学性能对比实验:
表3.不同样品的电化学性能及力学性能对比
Figure BDA0002250072380000093
实施例4
不同质量的Lig/SWCNT/HrGO薄膜电化学性能和力学性能对比实验:
表4.不同质量电极的Lig/SWCNT/HrGO薄膜电极电化学性能对比
Figure BDA0002250072380000101

Claims (8)

1.一种电活性生物质导电复合膜的制备方法,其特征是,包括以下步骤:
(1)将氧化石墨烯与双氧水混合水热,得到多孔氧化石墨烯;
(2)将单壁碳纳米管利用浓硝酸冷凝回流处理,得到酸化单壁碳纳米管;
(3)将木质素磺酸盐、酸化单壁碳纳米管和多孔氧化石墨烯混合形成均匀分散的溶液,然后通过抽滤干燥,得到三元复合薄膜;
(4)将得到的复合薄膜在木质素磺酸盐溶液中水热,即得。
2.根据权利要求1所述电活性生物质导电复合膜的制备方法,其特征是,步骤(3)木质素磺酸盐、酸化单壁碳纳米管和多孔氧化石墨烯混合形成均匀分散的溶液中,酸化单壁碳纳米管和多孔氧化石墨烯的质量比为1:1~3,木质素磺酸盐和酸化单壁碳纳米管的质量比为1:2~6。
3.根据权利要求1所述电活性生物质导电复合膜的制备方法,其特征是,步骤(4)复合膜水热时,木质素磺酸盐得浓度为3~5mg/mL。
4.根据权利要求3所述电活性生物质导电复合膜的制备方法,其特征是,步骤(4)水热反应的条件:在90~180℃反应8~16h。
5.一种由权利要求1至4任意一项权利要求所述电活性生物质导电复合膜的制备方法所制备的电活性生物质导电复合膜。
6.一种自增强纤维素水凝胶的制备方法,其特征是,包括如下步骤:
(1)将微晶纤维素在氢氧化钠-尿素中溶解,得到微晶纤维素溶液;
(2)将少量细菌纤维素加入微晶纤维素溶液中搅拌,得到混合溶液;
(3)取少量混合纤维素溶液加入稀硫酸,即得。
7.根据权利要求6所述的自增强纤维素水凝胶的制备方法,其特征是,细菌纤维素与微晶纤维素混合溶液中细菌纤维素的质量分数为:1~4.5%。
8.一种高性能可穿戴超级电容器的制备方法,其特征是,将权利要求1至5任一权利要求所得的木质素磺酸盐/单壁碳纳米管/多孔还原氧化石墨烯薄膜和权利要求6-7任一权利要求所得的自增强纤维素水凝胶组装成类似“三明治”形式,即得。
CN201911030734.3A 2019-10-28 2019-10-28 电活性生物质基导电复合膜和自增强纤维素水凝胶的制备及其在可穿戴超级电容器上的应用 Pending CN110797204A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911030734.3A CN110797204A (zh) 2019-10-28 2019-10-28 电活性生物质基导电复合膜和自增强纤维素水凝胶的制备及其在可穿戴超级电容器上的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911030734.3A CN110797204A (zh) 2019-10-28 2019-10-28 电活性生物质基导电复合膜和自增强纤维素水凝胶的制备及其在可穿戴超级电容器上的应用

Publications (1)

Publication Number Publication Date
CN110797204A true CN110797204A (zh) 2020-02-14

Family

ID=69441653

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911030734.3A Pending CN110797204A (zh) 2019-10-28 2019-10-28 电活性生物质基导电复合膜和自增强纤维素水凝胶的制备及其在可穿戴超级电容器上的应用

Country Status (1)

Country Link
CN (1) CN110797204A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111499998A (zh) * 2020-04-27 2020-08-07 广西大学 基于相转化的纤维素聚乙烯醇复合膜及超级电容的制备方法
CN112876594A (zh) * 2021-01-21 2021-06-01 中南大学 水凝胶材料及其制备方法
CN114655950A (zh) * 2022-04-01 2022-06-24 河南农业大学 一种超快速电化学电容器用多孔石墨烯/Ti3C2TX复合薄膜材料的制备方法和应用
CN114899016A (zh) * 2022-05-09 2022-08-12 晋江瑞碧科技有限公司 一种氧化石墨烯基柔性超级电容器的制备方法
CN115020921A (zh) * 2022-08-10 2022-09-06 宁德卓高新材料科技有限公司 一种碳纳米管复合隔膜及其制备方法及应用
CN117497333A (zh) * 2023-12-28 2024-02-02 清华大学 隔膜及其制备方法、电化学滤波电容器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105118688A (zh) * 2015-09-08 2015-12-02 哈尔滨工业大学 一种细菌纤维素/活性碳纤维/石墨烯膜材料的制备方法及其应用
CN106654122A (zh) * 2017-01-18 2017-05-10 山东纳美德生物科技有限公司 一种动力锂离子电池隔膜的制备方法
WO2017219853A1 (zh) * 2016-06-22 2017-12-28 中国科学院金属研究所 一种碳焊结构单壁碳纳米管柔性透明导电薄膜及制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105118688A (zh) * 2015-09-08 2015-12-02 哈尔滨工业大学 一种细菌纤维素/活性碳纤维/石墨烯膜材料的制备方法及其应用
WO2017219853A1 (zh) * 2016-06-22 2017-12-28 中国科学院金属研究所 一种碳焊结构单壁碳纳米管柔性透明导电薄膜及制备方法
CN106654122A (zh) * 2017-01-18 2017-05-10 山东纳美德生物科技有限公司 一种动力锂离子电池隔膜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
彭志远: "全生物质基柔性超级电容器的研究", 《中国优秀硕士学位论文全文数据库(电子期刊) 工程科技Ⅱ辑》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111499998A (zh) * 2020-04-27 2020-08-07 广西大学 基于相转化的纤维素聚乙烯醇复合膜及超级电容的制备方法
CN111499998B (zh) * 2020-04-27 2022-06-03 广西大学 基于相转化的纤维素聚乙烯醇复合膜及超级电容的制备方法
CN112876594A (zh) * 2021-01-21 2021-06-01 中南大学 水凝胶材料及其制备方法
CN114655950A (zh) * 2022-04-01 2022-06-24 河南农业大学 一种超快速电化学电容器用多孔石墨烯/Ti3C2TX复合薄膜材料的制备方法和应用
CN114899016A (zh) * 2022-05-09 2022-08-12 晋江瑞碧科技有限公司 一种氧化石墨烯基柔性超级电容器的制备方法
CN114899016B (zh) * 2022-05-09 2023-08-04 武夷学院 一种氧化石墨烯基柔性超级电容器的制备方法
CN115020921A (zh) * 2022-08-10 2022-09-06 宁德卓高新材料科技有限公司 一种碳纳米管复合隔膜及其制备方法及应用
CN117497333A (zh) * 2023-12-28 2024-02-02 清华大学 隔膜及其制备方法、电化学滤波电容器
CN117497333B (zh) * 2023-12-28 2024-04-02 清华大学 隔膜及其制备方法、电化学滤波电容器

Similar Documents

Publication Publication Date Title
CN110797204A (zh) 电活性生物质基导电复合膜和自增强纤维素水凝胶的制备及其在可穿戴超级电容器上的应用
Jyothibasu et al. Flexible and freestanding electrodes based on polypyrrole/carbon nanotube/cellulose composites for supercapacitor application
Zhang et al. Cellulose nanofibers/reduced graphene oxide/polypyrrole aerogel electrodes for high-capacitance flexible all-solid-state supercapacitors
Ma et al. Bacterial cellulose: an encouraging eco-friendly nano-candidate for energy storage and energy conversion
Xiao et al. Nanocellulose and its derived composite electrodes toward supercapacitors: Fabrication, properties, and challenges
Bi et al. Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: a review
Sun et al. Carbonized cotton fabric in-situ electrodeposition polypyrrole as high-performance flexible electrode for wearable supercapacitor
Zhao et al. Graphene quantum dot reinforced electrospun carbon nanofiber fabrics with high surface area for ultrahigh rate supercapacitors
Goncalves et al. Mesoporous cellulose nanocrystal membranes as battery separators for environmentally safer lithium-ion batteries
Bo et al. Facile synthesis of flexible electrode based on cotton/polypyrrole/multi-walled carbon nanotube composite for supercapacitors
Ma et al. Facile synthesis of Ni (OH) 2/graphene/bacterial cellulose paper for large areal mass, mechanically tough and flexible supercapacitor electrodes
Choi et al. High performance of a solid-state flexible asymmetric supercapacitor based on graphene films
Wang et al. Polypyrrole composites with carbon materials for supercapacitors
Kim et al. Lithium ion battery separators based on carboxylated cellulose nanofibers from wood
Zhan et al. In-situ synthesis of flexible nanocellulose/carbon nanotube/polypyrrole hydrogels for high-performance solid-state supercapacitors
Lyu et al. Nanocellulose supported hierarchical structured polyaniline/nanocarbon nanocomposite electrode via layer-by-layer assembly for green flexible supercapacitors
Wang et al. Sustainable supercapacitors of nitrogen-doping porous carbon based on cellulose nanocrystals and urea
Huang et al. Large-scale preparation of electrically conducting cellulose nanofiber/carbon nanotube aerogels: Ambient-dried, recyclable, and 3D-Printable
Huang et al. Fabrication of ultrathin, flexible, all-in-one paper supercapacitor with high electrochemical performance based on multi-layer forming in paper sheet formation technology
Liao et al. Graphene aerogel with excellent property prepared by doping activated carbon and CNF for free-binder supercapacitor
CN110838415B (zh) 芳纶纳米纤维/碳纳米管/聚苯胺复合薄膜及其制备方法
KR101614299B1 (ko) 밀도가 향상된 울트라커패시터 전극의 제조방법 및 이를 이용하여 제조된 울트라커패시터 전극을 적용한 울트라커패시터 셀
Wang et al. High-performance yarn supercapacitor based on directly twisted carbon nanotube@ bacterial cellulose membrane
Teng et al. Renewable cellulose separator with good thermal stability prepared via phase inversion for high-performance supercapacitors
Zong et al. Flexible asymmetric supercapacitor based on open-hollow nickel-MOFs/reduced graphene oxide aerogel electrodes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200214

RJ01 Rejection of invention patent application after publication