CN108598520B - 一种静电纺丝制备液流电池离子传导性隔膜的方法 - Google Patents
一种静电纺丝制备液流电池离子传导性隔膜的方法 Download PDFInfo
- Publication number
- CN108598520B CN108598520B CN201810315236.2A CN201810315236A CN108598520B CN 108598520 B CN108598520 B CN 108598520B CN 201810315236 A CN201810315236 A CN 201810315236A CN 108598520 B CN108598520 B CN 108598520B
- Authority
- CN
- China
- Prior art keywords
- electrostatic spinning
- membrane
- ion
- flow battery
- spinning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000010041 electrostatic spinning Methods 0.000 title claims abstract description 37
- 238000000034 method Methods 0.000 title claims abstract description 16
- 239000012528 membrane Substances 0.000 claims abstract description 56
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims abstract description 33
- 239000002121 nanofiber Substances 0.000 claims abstract description 32
- 238000009987 spinning Methods 0.000 claims abstract description 21
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 20
- 239000000835 fiber Substances 0.000 claims abstract description 19
- 239000002041 carbon nanotube Substances 0.000 claims abstract description 17
- 229910021393 carbon nanotube Inorganic materials 0.000 claims abstract description 17
- 229910001456 vanadium ion Inorganic materials 0.000 claims abstract description 17
- 239000002904 solvent Substances 0.000 claims abstract description 16
- 238000005341 cation exchange Methods 0.000 claims abstract description 13
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 13
- 238000007731 hot pressing Methods 0.000 claims abstract description 9
- 229920000642 polymer Polymers 0.000 claims abstract description 9
- LMHDQOWNISVSPD-UHFFFAOYSA-N fluorine(1+) Chemical group [F+] LMHDQOWNISVSPD-UHFFFAOYSA-N 0.000 claims abstract description 8
- 230000005684 electric field Effects 0.000 claims abstract description 5
- 230000005588 protonation Effects 0.000 claims abstract description 5
- 230000009471 action Effects 0.000 claims abstract description 4
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 claims abstract description 3
- 239000004696 Poly ether ether ketone Substances 0.000 claims description 10
- 229920002530 polyetherether ketone Polymers 0.000 claims description 10
- 238000005342 ion exchange Methods 0.000 claims description 8
- 229920006395 saturated elastomer Polymers 0.000 claims description 7
- 239000008367 deionised water Substances 0.000 claims description 5
- 229910021641 deionized water Inorganic materials 0.000 claims description 5
- 230000010220 ion permeability Effects 0.000 claims description 5
- 238000002791 soaking Methods 0.000 claims description 5
- 238000005406 washing Methods 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- 150000002500 ions Chemical class 0.000 abstract description 17
- 230000008961 swelling Effects 0.000 abstract description 6
- 230000004888 barrier function Effects 0.000 abstract description 3
- 239000007788 liquid Substances 0.000 abstract 1
- 239000001257 hydrogen Substances 0.000 description 7
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 7
- 238000001523 electrospinning Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 238000011056 performance test Methods 0.000 description 4
- 229920000557 Nafion® Polymers 0.000 description 3
- 239000003011 anion exchange membrane Substances 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000002048 multi walled nanotube Substances 0.000 description 3
- 238000001728 nano-filtration Methods 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 229920002239 polyacrylonitrile Polymers 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 239000003115 supporting electrolyte Substances 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- -1 hydrogen ions Chemical class 0.000 description 2
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 2
- 229920002492 poly(sulfone) Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 241000047703 Nonion Species 0.000 description 1
- 239000004693 Polybenzimidazole Substances 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- 125000006615 aromatic heterocyclic group Chemical group 0.000 description 1
- 206010061592 cardiac fibrillation Diseases 0.000 description 1
- 239000002322 conducting polymer Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 238000012864 cross contamination Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002600 fibrillogenic effect Effects 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- VAOCPAMSLUNLGC-UHFFFAOYSA-N metronidazole Chemical compound CC1=NC=C([N+]([O-])=O)N1CCO VAOCPAMSLUNLGC-UHFFFAOYSA-N 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 238000000614 phase inversion technique Methods 0.000 description 1
- 229920002480 polybenzimidazole Polymers 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0221—Organic resins; Organic polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4326—Condensation or reaction polymers
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/70—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
- D04H1/72—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
- D04H1/728—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06B—TREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
- D06B3/00—Passing of textile materials through liquids, gases or vapours to effect treatment, e.g. washing, dyeing, bleaching, sizing, impregnating
- D06B3/10—Passing of textile materials through liquids, gases or vapours to effect treatment, e.g. washing, dyeing, bleaching, sizing, impregnating of fabrics
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06C—FINISHING, DRESSING, TENTERING OR STRETCHING TEXTILE FABRICS
- D06C21/00—Shrinking by compressing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0223—Composites
- H01M8/0226—Composites in the form of mixtures
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Textile Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Electrochemistry (AREA)
- Nanotechnology (AREA)
- Sustainable Development (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Sustainable Energy (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Composite Materials (AREA)
- Fuel Cell (AREA)
- Nonwoven Fabrics (AREA)
- Secondary Cells (AREA)
Abstract
本发明属于电化学工程技术领域,涉及一种静电纺丝制备液流电池离子传导性隔膜的方法。高压电场下,将掺杂碳纳米管的非氟阳离子交换聚合物分散在N,N‑二甲基甲酰胺或N,N‑二甲基乙酰胺溶剂的液纺丝,纺丝液通过喷丝头处的静电力牵引作用,在接收板上形成静电纺丝纳米纤维,获得具有三维网络结构的静电纺丝纳米纤维,再经溶剂蒸汽浴、热压、质子化后,制备而成具有离子传导性的液流电池致密隔膜。离子沿纤维轴向传导,形成长程有序的传导通道;碳纳米管优异的离子阻隔性能显著降低了钒离子通过亲水通道的渗透;纤维化也使电纺隔膜具有较高的机械强度和耐溶胀能力。因此,本发明隔膜获得了较高的全钒液流电池充放电性能。
Description
技术领域
本发明属于电化学工程技术领域,涉及一种静电纺丝制备液流电池离子传导性隔膜的方法,采用静电纺丝离子传导性纳米纤维,经溶剂蒸汽浴、热压、质子化后制备而成,用作全钒液流电池的隔膜,可以有效地降低隔膜的面电阻和钒离子渗透率,提高机械强度,获得较高的电池性能。
背景技术
能源制约社会经济发展。以风能、太阳能为代表的新型可再生能源,绿色、高效、可再生,被公认为是替代化石燃料、解决能源危机的根本途径。但新型可再生能源的无规性、间歇性能量输出与人类社会有规律的能量需求之间,存在巨大的供需“沟壑”。亟需开发大规模能源储存技术,以实现“平滑输出”和“削峰填谷”,加速新型能源的实用化。液流电池效率高、环境友好、设计灵活、充放电响应快,能与多数可再生能源协调运用,被认为是配合智能电网的最佳大规模储能技术。
隔膜是液流电池的核心部件,直接决定电池的效率、成本和寿命。以全钒液流电池为例,电解液中含有钒活性物质和酸性支持电解质,钒活性物质 V4+/V5+、V2+/V3+两个氧化-还原电对,分别在电池的正、负极发生氧化-还原反应,在外电路形成电子流;酸性支持电解质中的H+、SO4 2-等阳、阴离子透过隔膜传递,在电池内部形成离子流,从而实现液流电池的充放电。液流电池中,在电场曳力和浓度梯度作用下,存在多种离子的跨膜传递,因此要求隔膜对H+、SO4 2-等具有高离子传导率,同时具有高选择性以阻隔钒活性离子跨膜渗透,减小电池内阻,防止因电解液交叉污而降低电池效率。
目前,液流电池隔膜可以采用非离子传导膜和离子传导膜两类。非离子传导膜通常为多孔膜,Energy Enviorn.Sci.8(2011)1676采用相转化法制备聚丙烯腈纳滤膜,依靠孔径的筛分作用提供氢/钒离子选择性,透过氢离子,阻隔钒离子,但其孔径大小以及分布不易控制,限制了电池能量密度的提高。离子传导膜为阴、阳离子交换膜,可采用多孔膜、非对称膜等。如J.Mater.Chem.A.33 (2015)16948报道了带有致密皮层的聚砜基非对称阴离子交换膜,通过致密皮层实现高的氢/钒离子选择性,其多孔结构大大降低了膜的面电阻,从而得到优异的电池性能。但是,由于其皮层薄,容易导致缺陷,使得其长循环性能不够稳定。更普遍采用为致密离子传导膜,通过铸膜液的溶剂挥发成膜。ACS Appl.Mater.Inter.8(2016)12228中,采用全氟Nafion阳离子交换膜,离子传导率高,但其脂肪族C-F主链对氢/钒离子的选择性差、电池衰减严重;Int.J.Hydrogen Energy 42(2017)21806中,在Nafion表面旋涂氧化石墨烯以降低钒离子渗透,但仍存在Nafion膜成本较高问题;非氟聚合物价格低廉、多具有芳杂环主链结构,空间位阻较大,经离子化处理可用做液流电池隔膜。如MATER CHEM A.PBI 致密膜中,聚苯并咪唑与支持电解质中的氢离子形成离子键,促进氢离子传递; Adv.Func.Mater.25(2015)2583中采用季铵化聚砜阴离子交换膜,对钒离子具有Donnan排斥作用;Electrochimica Acta 153(2015)44中采用磺化聚醚醚酮阳离子交换膜,但上述隔膜的离子传导率均较低。采用常规的增加膜中离子交换基团数量的方法,会引起膜溶胀,不仅使亲水通道尺寸加宽而降低离子选择性,还会降低膜的机械强度和化学稳定性。因此,存在离子传导率与选择性、耐溶胀性的博弈,成为制约离子传导膜应用于液流电池的关键问题。
发明内容
本发明的目的在于提供一种静电纺丝制备液流电池离子传导性隔膜的方法。通过静电纺丝方法,将阳离子交换膜材料制备成三维网络状纳米纤维,使离子沿纤维轴向传导,形成长程有序传导通道,再经热压制备致密膜,获得远高于其浇铸膜的离子传导率。纤维化也使电纺隔膜具有较高的机械强度和耐溶胀能力,从而保持较低的钒渗透率、减薄隔膜厚度,获得较高的电池性能。进而在纺丝液中添加碳纳米管,高压电场下,碳纳米管会沿纤维轴向取向,其优异的离子阻隔性能可以显著降低钒离子通过亲水通道的渗透,同时与阳离子交换基团形成的氢键网络有利于氢离子传导,进一步提高隔膜的电池性能和机械强度。
本发明的技术方案如下:
一种静电纺丝制备液流电池离子传导性隔膜的方法,通过静电纺丝的方式形成静电纺丝纳米纤维,再经溶剂蒸汽浴、热压、质子化,制备得到具备三维网络形貌的致密膜;具体如下:
所述的静电纺丝,是在高压电场6-40kV中,纺丝液通过喷丝头处的静电力牵引作用,在接收板上形成静电纺丝纳米纤维,喷丝头到接收板的间距为10-30 cm;所述的纺丝液,将掺杂碳纳米管的非氟阳离子交换聚合物分散在N,N-二甲基甲酰胺或N,N-二甲基乙酰胺溶剂中,其中,非氟阳离子交换聚合物的质量分数为10-22%,所掺杂碳纳米管的质量分数为1.5%以下;
所述的溶剂蒸汽浴,是将静电纺丝纳米纤维放置在常压、60℃的N,N-二甲基甲酰胺溶剂浴的上部饱和蒸汽中,放置5-45min,使静电纺丝纳米纤维溶胀、相互粘连;
所述的热压,是将经溶剂蒸汽浴处理的静电纺丝纳米纤维,在100-180℃、 1-5MPa下压缩5-60min,使纤维形成致密膜,且致密膜保持三维网络形貌;
所述的质子化,是将制备的致密膜放置在3-5mol/L H2SO4中,常温浸泡 12-48h,然后用去离子水洗至中性。
所述的静电纺丝纳米纤维,纳米纤维直径为80-400nm,纳米纤维层厚度为 50-500μm。
所述的非氟阳离子交换聚合物为磺化聚醚醚酮,离子交换容量为1.0-2.5 mmol/g。
将上述方法制备的致密膜用作全钒液流电池离子传导性隔膜,有效地降低隔膜的面电阻和钒离子渗透率,提高机械强度,获得高电池性能。
本发明的有益效果是:(1)通过静电纺丝,在致密膜中设计纳米纤维网络形貌,提供长程有序的离子传导通道,有效提高了质子传导率,降低了面电阻; (2)非氟阳离子交换聚合物的纤维化,以及碳纳米管沿纤维轴向的取向,显著提高了隔膜的机械强度和耐溶胀能力,降低钒离子渗透率、减薄隔膜厚度;(3) 本发明的静电纺丝液流电池隔膜,与溶液浇铸法制备的隔膜相比,厚度相同时,具有较低的面电阻(降低约20%)。与普遍采用的商业垄断Nafion211相比,钒离子渗透系数显著降低(仅约1/200),机械强度提高(约2倍),液流电池的能量效率提高(电流密度100mA/cm2时,约为Nafion211膜的1.2倍),放电容量衰减明显降低。
附图说明
图1是本发明的制备液流电池离子传导性隔膜的静电纺丝装置示意图。
图2(A)-(C)为本发明的磺化聚醚醚酮静电纺丝纳米纤维及其制备的液流电池隔膜的形貌。其中,图2(A)为静电纺丝纳米纤维的扫描电镜图,标尺长度为2μm,纤维中添加了质量分率为0.5%的碳纳米管;图2(B)为图2(A)中纳米纤维的统计直径分布图;图2(C)为本发明所制备液流电池隔膜的断面扫描电镜照片,标尺长度为1μm。从图2(A)-(C)可以看出,静电纺丝纤维为三维网络状排列的多孔结构,纤维直径为纳米级,所制备的隔膜为致密膜,膜中仍具有三维网络形貌。
图3(A)和图3(B)为本发明的静电纺丝隔膜所组装全钒液流电池的性能测试图。其中,图3(A)为电池能量效率随电流密度的变化曲线图,图3(B)为电池放电容量随循环次数的变化曲线图。电池的操作温度为25℃,正、负极均采用有效面积为9cm2的碳毡,正、负极电解液分别为1.5M VO2+/VO2 +和1.5M V2+/V3+,分别溶解在 3M硫酸中。隔膜厚度约30μm,磺化聚醚醚酮的离子交换容量为1.62mmol/g。图中Cast0和Spin0分别为不添加碳纳米管的浇铸隔膜和电纺隔膜,Cast0.5和 Spin0.5分别为碳纳米管添加质量分率为0.5%的浇铸隔膜和电纺隔膜,从图3(A) 和图3(B)可以看出,碳纳米管添加质量分率为0.5%的电纺隔膜,其能量效率、放电容量远高于Nafion211膜,而且电流密度、循环次数增加时衰减最慢(在 100mA/cm2,0.45%/循环)。
具体实施方式
下面结合技术方案和附图详细本发明的具体实施例。
表1为本发明的静电纺丝隔膜的机械强度、钒离子渗透率、面电阻数据,及其与浇铸膜、Nafion211膜的对比,其中磺化聚醚醚酮的离子交换容量为1.62 mmol g-1,测试温度为室温。从表1可以看出,与浇铸膜相比,静电纺丝隔膜的面电阻降低约20%。与商业垄断Nafion211相比,钒离子渗透率仅约为1/200,而机械强度提高约1.7至3.1倍。
表1 静电纺丝隔膜的参数
实施例1:
将0.6585g离子交换容量为1.62mmol/g的磺化聚醚醚酮溶解在3g的N, N-二甲基甲酰胺中,配制成质量分率为18%的纺丝液,然后加入3.3mg多壁碳纳米管,使其质量分率为0.5%,经磁力搅拌6h后,超声30min使其分散均匀。在外加电压为18kV,喷丝头到接收板间距为15cm的纺丝条件下,制备三维网络状静电纺丝纳米纤维,纤维直径80-300nm,厚度为130μm。
将上述静电纺丝有序纳米纤维在常压、60℃的N,N-二甲基甲酰胺溶剂浴的上部饱和蒸汽中,放置15min,使纤维溶胀、相互粘连。然后,在常温、4.0MPa 下热压10min,使纤维形成具有三维纳米纤维网络结构的致密膜。进而,将膜在3mol/L H2SO4中浸泡48h充分质子化,然后用去离子水洗至中性,得到电纺液流电池隔膜,厚度约为30μm。
将上述电纺液流电池隔膜进行性能测试,测试条件与图2(A)-(C)、图 3(A)和图3(B)及表1相同。常温下,隔膜的面电阻为0.2273Ωcm2,溶胀度为17.3%,VO2+渗透率为0.6×10-8cm2/min。将其组装成全钒液流电池,在电流密度为100mA/cm时,库仑效率、电压效率、能量效率分别为98.1%、87.9%、 86.2%,其中,能量效率达到相同碳纳米管掺杂量的浇铸膜的1.11倍,Nafion211 膜的1.15倍。100个充放电循环测试中,电纺隔膜的容量衰减约为0.47%/循环,远低于Nafion211膜的0.85%/循环。说明本发明静电纺丝制备液流电池隔膜具有更好的电池性能。
实施例2:
将0.6585g离子交换容量为2.06mmol/g的磺化聚醚醚酮溶解在3g的N, N-二甲基甲酰胺中,配制成质量分率为18%的纺丝液,然后加入5.3mg多壁碳纳米管,其质量分率为0.8%,经磁力搅拌6h后,超声30min使其分散均匀。在外加电压为20kV,喷丝头到接收板间距为18cm,的纺丝条件下,制备三维网络状静电纺丝纳米纤维,纤维直径100-300nm,厚度约130μm。
将上述静电纺丝制备的纳米纤维在常压、60℃的N,N-二甲基甲酰胺溶剂浴的上部饱和蒸汽中,放置20min,使纤维溶胀、相互粘连。然后,在常温、5.0 MPa下热压20min,使纤维形成具有三维纳米纤维网络结构的致密膜。进而,将膜在5mol/L H2SO4中浸泡12h充分质子化,然后用去离子水洗至中性,制备电纺液流电池隔膜,厚度约31μm。
将上述电纺液流电池隔膜进行性能测试,测试条件与图2(A)-(C),3 及表1相同。常温下,隔膜的面电阻为0.1990Ωcm2,溶胀度为39.9%,将其组装成全钒液流电池,在电流密度为100mA/cm2时,库仑效率、电压效率、能量效率分别为95.5%、89.7%、85.7%。
实施例3:
将0.6585g离子交换容量为1.62mmol/g的磺化聚醚醚酮溶解在3g的N, N-二甲基甲酰胺中,配制成质量分率为18%的纺丝液,然后加入3.3mg多壁碳纳米管,使其质量分率为0.2%,经磁力搅拌6h后,超声30min使其分散均匀。在外加电压为22kV,喷丝头到接收板间距为20cm,的纺丝条件下,制备三维网络状静电纺丝纳米纤维,纤维直径80-300nm,厚度约200μm。
将上述静电纺丝制备的纳米纤维在常压、60℃的N,N-二甲基甲酰胺溶剂浴的上部饱和蒸汽中,放置25min,使纤维溶胀、相互粘连。然后,在常温、3.0 MPa下热压40min,使纤维形成具有三维纳米纤维网络结构的致密膜。进而,将膜在4mol/L H2SO4中浸泡24h充分质子化,然后用去离子水洗至中性,得制备电纺液流电池隔膜,厚度约48μm。
将上述电纺液流电池隔膜进行性能测试,测试条件与图2(A)-(C)、图 3(A)和图3(B)及表1相同。常温下,将其组装成全钒液流电池,在电流密度为100mA/cm2时,库仑效率、电压效率、能量效率分别为96.9%、78.2%、75.8%,其中,能量效率高于Nafion211膜。
上述实施例中,将碳纳米管掺杂的非氟磺化质子传导聚合物通过静电纺丝制备纳米纤维,经后处理,在致密膜中获得静电纺丝纤维网络形貌,提供长程有序的离子传导通道,有效地提高了质子传导率,降低了面电阻;电纺纤维中,碳纳米管优异的可纺性、离子阻隔性,显著地降低了钒离子通过亲水通道的渗透,进一步提高隔膜的阻钒离子渗透能力和机械强度,获得较高的全钒液流电池性能。
Claims (4)
1.一种静电纺丝制备液流电池离子传导性隔膜的方法,其特征在于,通过静电纺丝的方式形成静电纺丝纳米纤维,再经溶剂蒸汽浴、热压、质子化,制备得到具备三维网络形貌的致密膜;具体如下:
所述的静电纺丝,是在高压电场6-40kV中,纺丝液通过喷丝头处的静电力牵引作用,在接收板上形成静电纺丝纳米纤维,喷丝头到接收板的间距为10-30cm;所述的纺丝液,将掺杂碳纳米管的非氟阳离子交换聚合物分散在N,N-二甲基甲酰胺或N,N-二甲基乙酰胺溶剂中,其中,非氟阳离子交换聚合物的质量分数为10-22%,所掺杂碳纳米管的质量分数为1.5%以下;
所述的溶剂蒸汽浴,是将静电纺丝纳米纤维放置在常压、60℃的N,N-二甲基甲酰胺溶剂浴的上部饱和蒸汽中,放置5-45min,使静电纺丝纳米纤维溶胀、相互粘连;
所述的热压,是将经溶剂蒸汽浴处理的静电纺丝纳米纤维,在100-180℃、1-5MPa下压缩5-60min,使纤维形成致密膜,且致密膜保持三维网络形貌;
所述的质子化,是将制备的致密膜放置在3-5mol/L H2SO4中,常温浸泡12-48h,然后用去离子水洗至中性。
2.根据权利要求1所述的一种静电纺丝制备液流电池离子传导性隔膜的方法,其特征在于,所述的静电纺丝纳米纤维,纳米纤维直径为80-400nm,纳米纤维层厚度为50-500μm。
3.根据权利要求1或2所述的一种静电纺丝制备液流电池离子传导性隔膜的方法,其特征在于,所述的非氟阳离子交换聚合物为磺化聚醚醚酮,离子交换容量为1.0-2.5mmol/g。
4.权利要求1-3任一所述的方法制备得到的致密膜用作全钒液流电池离子传导性隔膜,其特征在于,有效地降低隔膜的面电阻和钒离子渗透率,提高机械强度,获得高电池性能。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810315236.2A CN108598520B (zh) | 2018-04-04 | 2018-04-04 | 一种静电纺丝制备液流电池离子传导性隔膜的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810315236.2A CN108598520B (zh) | 2018-04-04 | 2018-04-04 | 一种静电纺丝制备液流电池离子传导性隔膜的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108598520A CN108598520A (zh) | 2018-09-28 |
CN108598520B true CN108598520B (zh) | 2020-06-16 |
Family
ID=63621460
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810315236.2A Active CN108598520B (zh) | 2018-04-04 | 2018-04-04 | 一种静电纺丝制备液流电池离子传导性隔膜的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108598520B (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109851828B (zh) * | 2018-12-03 | 2021-04-16 | 大连理工大学 | 一种电纺一维中空多孔无机纳米纤维掺杂改性的非氟质子交换膜及其制备方法 |
CN109935873A (zh) * | 2019-03-18 | 2019-06-25 | 山东星火科学技术研究院 | 磺化聚醚醚酮与碳纳米管的静电纺丝膜的制备方法 |
CN111370741B (zh) * | 2020-03-26 | 2022-10-04 | 中国科学院金属研究所 | 一种全钒氧化还原液流电池用超薄膜及其制备方法 |
CN115198442B (zh) * | 2022-06-17 | 2024-04-12 | 青岛大学 | 一种具有定向水分传输和高效抗菌功能的纳米膜的制备方法及应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102945972A (zh) * | 2012-09-07 | 2013-02-27 | 四川大学 | 一种全钒氧化还原液流电池用复合质子交换膜的制备方法 |
CN103219533A (zh) * | 2013-04-12 | 2013-07-24 | 清华大学深圳研究生院 | 一种液流电池用石墨烯复合离子交换膜及其制备方法 |
CN104681841A (zh) * | 2015-02-03 | 2015-06-03 | 大连理工大学 | 一种静电纺丝纤维沿膜厚度方向有序直通排列的质子交换膜 |
CN106188543A (zh) * | 2016-07-08 | 2016-12-07 | 北京航空航天大学 | 一种液流电池用的质子传导膜及其制备方法 |
-
2018
- 2018-04-04 CN CN201810315236.2A patent/CN108598520B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102945972A (zh) * | 2012-09-07 | 2013-02-27 | 四川大学 | 一种全钒氧化还原液流电池用复合质子交换膜的制备方法 |
CN103219533A (zh) * | 2013-04-12 | 2013-07-24 | 清华大学深圳研究生院 | 一种液流电池用石墨烯复合离子交换膜及其制备方法 |
CN104681841A (zh) * | 2015-02-03 | 2015-06-03 | 大连理工大学 | 一种静电纺丝纤维沿膜厚度方向有序直通排列的质子交换膜 |
CN106188543A (zh) * | 2016-07-08 | 2016-12-07 | 北京航空航天大学 | 一种液流电池用的质子传导膜及其制备方法 |
Non-Patent Citations (2)
Title |
---|
Dramatic Improvement in Water Retention and Proton Conductivity in Electrically Aligned Functionalized CNT/SPEEK Nanohybrid PEM;Swati Gahlot 等;《 Applied Materials & Interfaces》;20141216;第7卷;264-272页 * |
Electrospun multifunctional sulfonated carbon nanofibers for design and fabrication of SPEEK composite proton exchange membranes for direct methanol fuel cell application;Xupo Liu 等;《international journal of hydrogen energy》;20170413;第42卷;10275-10284页 * |
Also Published As
Publication number | Publication date |
---|---|
CN108598520A (zh) | 2018-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108598520B (zh) | 一种静电纺丝制备液流电池离子传导性隔膜的方法 | |
Zhou et al. | Asymmetric porous membranes with ultra-high ion selectivity for vanadium redox flow batteries | |
CN106532081B (zh) | 一种液流电池用具有分级孔结构的多孔膜及其制备和应用 | |
Liu et al. | High performance acid-base composite membranes from sulfonated polysulfone containing graphitic carbon nitride nanosheets for vanadium redox flow battery | |
CN102569839B (zh) | 一种液流储能电池用无机物填充有孔复合膜及其应用 | |
CN104716353B (zh) | 一种液流电池用多孔膜及其制备和应用 | |
Yang et al. | Phosphotungstic acid immobilized nanofibers-Nafion composite membrane with low vanadium permeability and high selectivity for vanadium redox flow battery | |
CN110364757A (zh) | 磷酸掺杂的具有纤维结构的非水质子交换膜的制备方法 | |
CN112717731B (zh) | 一种离子导电膜及其制备方法 | |
CN116444848A (zh) | 一种多孔离子传导膜及其制备方法和在酸性水系有机液流电池中的应用 | |
CN104681841B (zh) | 一种静电纺丝纤维沿膜厚度方向有序直通排列的质子交换膜 | |
CN108625040B (zh) | 一种同轴静电纺丝制备碳纳米管增强阴离子交换膜的方法 | |
CN110197911B (zh) | 一种全钒液流电池用多孔隔膜及其制备方法和用途 | |
CN110676495A (zh) | 一种纳米纤维增强质子/碱性膜制备方法 | |
CN110197919B (zh) | 一种全钒液流电池用离子传导型多孔隔膜及其制备法和用途 | |
Shi et al. | Molecular self-assembled cellulose enabling durable, scalable, high-power osmotic energy harvesting | |
CN111395008B (zh) | 全氟磺酸树脂/聚偏氟乙烯复合电纺丝膜及其制备方法 | |
JP2013229325A (ja) | 高分子電解質膜、膜電極接合体および燃料電池 | |
Cao et al. | Biomass-based anion exchange membranes using poly (ionic liquid) filled bacterial cellulose with superior ionic conductivity and significantly improved strength | |
CN113889636B (zh) | 一种液流电池用纳米纤维复合膜及其制备方法和应用 | |
CN105226223A (zh) | C基多孔复合膜及其应用 | |
CN109851828B (zh) | 一种电纺一维中空多孔无机纳米纤维掺杂改性的非氟质子交换膜及其制备方法 | |
Subianto et al. | Electrospun nanofibers for low-temperature proton exchange membrane fuel cells | |
US10141593B2 (en) | Composite membranes, methods of making same, and applications of same | |
CN111370741B (zh) | 一种全钒氧化还原液流电池用超薄膜及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |