CN108623302B - 一种无铅压电纳米阵列及其制备方法 - Google Patents

一种无铅压电纳米阵列及其制备方法 Download PDF

Info

Publication number
CN108623302B
CN108623302B CN201810670156.9A CN201810670156A CN108623302B CN 108623302 B CN108623302 B CN 108623302B CN 201810670156 A CN201810670156 A CN 201810670156A CN 108623302 B CN108623302 B CN 108623302B
Authority
CN
China
Prior art keywords
ball
milling
tio
hours
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810670156.9A
Other languages
English (en)
Other versions
CN108623302A (zh
Inventor
周昌荣
许积文
曾卫东
黎清宁
杨玲
袁昌来
陈国华
饶光辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Electronic Technology
Original Assignee
Guilin University of Electronic Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Electronic Technology filed Critical Guilin University of Electronic Technology
Priority to CN201810670156.9A priority Critical patent/CN108623302B/zh
Publication of CN108623302A publication Critical patent/CN108623302A/zh
Application granted granted Critical
Publication of CN108623302B publication Critical patent/CN108623302B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/475Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on bismuth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/0072Heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3267MnO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics

Abstract

本发明公开了一种无铅压电纳米阵列及其制备方法,材料组成为:0.9Bi0.5Na0.5TiO3‑0.1Bi2(Mn4/3Ni2/3)O6。通过Bi0.5Na0.5TiO3和A位纯Bi的Bi2(Mn4/3Ni2/3)O6铁电体复合,结合固相烧结及热处理技术,生长纳米阵列,其中纳米线长度在2‑10μm,直径为60‑800nm,工艺简单,产率高,成本低廉,适合大规模工业生产。

Description

一种无铅压电纳米阵列及其制备方法
技术领域
本发明涉及的无铅铁电材料,具体是一种ABO3型钙钛矿结构,无铅压电纳米阵列及其制备方法。
背景技术
—维压电纳米结构主要包括纳米管,纳米纤维,纳米线以及量子点等。与薄膜不同,纳米线、纳米管等一维材料有更高的比表面积,更高的长径比,具有比薄膜和纳米颗粒更优异的性质,可以大幅缩小器件体积、提高性能,便于集成化制造。而且这些结构不仅具有一些特殊特点如晶体学取向,混合相组成,电畴结构,以及有限尺寸的极化响应等,而且还具有某些特殊的效应例如表界面效应,隧道效应,半导体性铁电体的电子运输等很可能使得铁电一维纳米材料在性能上发生质的变化。一维纳米材料的合成方法有很多种,早期的有纳米平板印刷术如电子束离子束刻蚀、射线或远紫外光刻等,目前兴起的还有化学法。通过纳米平板印刷术制备一维纳米材料的目标性强,而且可以较好的控制材料的微观尺寸,但是这一类方法存在着普遍的缺陷,即生产成本过高且不易实现工业生产。
常见的纳米阵列化学合成方法有模板法、金属溶盐法、水热法和溶胶凝胶法等。但是这些制备方法对材料的种类、生产成本、材料产量和产率方面的都存在不足。通过固相烧结结合热处理制备无铅压电纳米阵列还未见报导。
发明内容
本发明的目的是提供一种ABO3型钙钛矿结构,无铅压电纳米阵列及制备方法,通过Bi0.5Na0.5TiO3和A位纯Bi的Bi2(Mn4/3Ni2/3)O6铁电体复合,以及固相烧结法与热处理三者有机结合,生长长度在3-8μm,直径为100-500nm的纳米阵列,具有产率高、工艺简单、成本低、易于实现、适合大规模工业生产的优点。
本发明一种无铅压电纳米阵列,材料组成为:
0.9Bi0.5Na0.5TiO3-0.1Bi2(Mn4/3Ni2/3)O6
本发明无铅压电纳米阵列的制备方法,采用传统陶瓷烧结法,结合热处理技术,具体包括如下步骤:
(1)按照Bi0.5Na0.5TiO3的化学计量分别称取分析纯原料Bi2O3、Na2CO3和TiO2,装入球磨罐中,以氧化锆为磨球、无水乙醇为球磨介质,充分混合球磨24小时,分离磨球,将原料在60℃烘干,再在高铝坩埚中于850℃保温2小时预合成Bi0.5Na0.5TiO3粉体;
(2)按照Bi2(Mn4/3Ni2/3)O6的化学计量分别称取分析纯原料Bi2O3、NiO和MnO2,装入球磨罐中,以氧化锆为磨球、无水乙醇为球磨介质,充分混合球磨24小时,分离磨球,将原料在60℃烘干,再在高铝坩埚中于760℃保温2小时预合成Bi2(Mn4/3Ni2/3)O6粉体;
(3)将合成好的Bi0.5Na0.5TiO3、Bi2(Mn4/3Ni2/3)O6粉体,按照0.9Bi0.5Na0.5TiO3-0.1Bi2(Mn4/3Ni2/3)O6化学计量式配料,以无水乙醇为介质球磨15h,干燥,加入5%的PVA造粒;在100Mpa压力下冷等静压成型;
(4)成型的原料采用微波烧结,990℃保温20分钟,烧结成瓷;
(5)烧结的样品放在氧化锆板上,上面覆盖氧化铝板,58℃/min快速升温至635℃保温95分钟,然后随炉冷却至室温,通过热处理的样品生长成无铅压电纳米阵列,其中纳米线长度在2-10μm,直径为60-800nm。
采用本发明方法制备的无铅压电纳米阵列,长度在2-10μm,直径为60-800nm,具有产率高、工艺简单、成本低、易于实现、适合大规模工业生产的优点。
附图说明
图1为本发明无铅压电纳米阵列的SEM图。
具体实施方式
下面结合实施例和附图对本发明内容作进一步的说明,但不是以本发明的限定。
实施例
本发明无铅压电纳米阵列材料,组成为:
0.9Bi0.5Na0.5TiO3-0.1Bi2(Mn4/3Ni2/3)O6;制备方法包括如下步骤:
(1)按照Bi0.5Na0.5TiO3的化学计量分别称取分析纯原料Bi2O3、Na2CO3和TiO2,装入球磨罐中,以氧化锆为磨球、无水乙醇为球磨介质,充分混合球磨24小时,分离磨球,将原料在60℃烘干, 再在高铝坩埚中于850℃保温2小时预合成Bi0.5Na0.5TiO3粉体;
(2)按照Bi2(Mn4/3Ni2/3)O6的化学计量分别称取分析纯原料Bi2O3、NiO和MnO2,装入球磨罐中,以氧化锆为磨球、无水乙醇为球磨介质,充分混合球磨24小时,分离磨球,将原料在60℃烘干, 再在高铝坩埚中于760℃保温2小时预合成Bi2(Mn4/3Ni2/3)O6粉体;
(3)将合成好的Bi0.5Na0.5TiO3、Bi2(Mn4/3Ni2/3)O6粉体,按照0.9Bi0.5Na0.5TiO3-0.1Bi2(Mn4/3Ni2/3)O6化学计量式配料,以无水乙醇为介质球磨15h,干燥,加入5%的PVA造粒;在100Mpa压力下冷等静压成型;
(4)成型的原料采用微波烧结,990℃保温20分钟,烧结成瓷;
(5)烧结的样品放在氧化锆板上,上面覆盖氧化铝板,58℃/min快速升温至635℃保温95分钟,然后随炉冷却至室温;通过热处理的样品生长成压电纳米阵列,其SEM图,如图1所示,其中纳米线长度在2-10μm,直径为60-800nm。
通过上面给出的实施例,可以进一步清楚的了解本发明的内容,但它们不是对本发明的限定。

Claims (1)

1.一种无铅压电纳米阵列的制备方法,其特征在于,该无铅压电纳米阵列的组成为:0.9Bi0.5Na0.5TiO3-0.1Bi2(Mn4/3Ni2/3)O6
制备方法包括如下步骤:
(1)按照Bi0.5Na0.5TiO3的化学计量分别称取分析纯原料Bi2O3、Na2CO3和TiO2,装入球磨罐中,以氧化锆为磨球、无水乙醇为球磨介质,充分混合球磨24小时,分离磨球,将原料在60°C烘干,再在高铝坩埚中于850℃保温2小时预合成Bi0.5Na0.5TiO3粉体;
(2)按照Bi2(Mn4/3Ni2/3)O6的化学计量分别称取分析纯原料Bi2O3、NiO和MnO2,装入球磨罐中,以氧化锆为磨球、无水乙醇为球磨介质,充分混合球磨24小时,分离磨球,将原料在60°C烘干,再在高铝坩埚中于760℃保温2小时预合成Bi2(Mn4/3Ni2/3)O3粉体;
(3)将合成好的Bi0.5Na0.5TiO3粉体、Bi2(Mn4/3Ni2/3)O6粉体,按照0.9Bi0.5Na0.5TiO3-0.1Bi2(Mn4/3Ni2/3)O6化学计量式配料,以无水乙醇为介质球磨15h,干燥,加入5%的PVA造粒;在100Mpa压力下冷等静压成型;
(4)成型的原料采用微波烧结,在990℃保温20分钟,烧结成瓷;
(5)烧结的样品放在氧化锆板上,上面覆盖氧化铝板,58°C/min快速升温至635°C保温95分钟,然后随炉冷却至室温;通过热处理的样品生长成无铅压电纳米阵列,其中纳米线长度在2-10μm,直径为60-800nm。
CN201810670156.9A 2018-06-26 2018-06-26 一种无铅压电纳米阵列及其制备方法 Active CN108623302B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810670156.9A CN108623302B (zh) 2018-06-26 2018-06-26 一种无铅压电纳米阵列及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810670156.9A CN108623302B (zh) 2018-06-26 2018-06-26 一种无铅压电纳米阵列及其制备方法

Publications (2)

Publication Number Publication Date
CN108623302A CN108623302A (zh) 2018-10-09
CN108623302B true CN108623302B (zh) 2021-01-05

Family

ID=63688333

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810670156.9A Active CN108623302B (zh) 2018-06-26 2018-06-26 一种无铅压电纳米阵列及其制备方法

Country Status (1)

Country Link
CN (1) CN108623302B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1354155A (zh) * 2000-11-20 2002-06-19 松下电器产业株式会社 压电陶瓷组合物
JP2007290887A (ja) * 2006-04-24 2007-11-08 Fuji Ceramics:Kk ビスマスチタン酸系ナノ粒子、それを用いた圧電セラミックス、それらの製造方法
CN101234895A (zh) * 2008-02-04 2008-08-06 桂林电子科技大学 一种钛酸铋钠基无铅压电陶瓷
CN102659416A (zh) * 2012-05-11 2012-09-12 哈尔滨工业大学 晶须状钛酸铋钠-钛酸铋钾-钛酸钡压电陶瓷的制备方法
CN104752054A (zh) * 2013-12-30 2015-07-01 三星电机株式会社 多层陶瓷电子元件及其制备方法和安装有多层陶瓷电子元件的电路板
CN105016724A (zh) * 2014-04-16 2015-11-04 三星电机株式会社 介电陶瓷组合物和含有该组合物的多层陶瓷电容器
CN106316389A (zh) * 2016-08-05 2017-01-11 聊城大学 一种低电场驱动下的高电致应变无铅压电材料及制备方法
CN107311649A (zh) * 2017-07-26 2017-11-03 中南大学 一种钛酸铋钠‑钛酸锶亚微米棒及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8709304B2 (en) * 2009-12-14 2014-04-29 Board Of Regents Of The Nevada System Of Higher Education, On Behalf Of The University Of Nevada, Reno Hydrothermal synthesis of nanocubes of sillenite type compounds for photovoltaic applications and solar energy conversion of carbon dioxide to fuels

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1354155A (zh) * 2000-11-20 2002-06-19 松下电器产业株式会社 压电陶瓷组合物
JP2007290887A (ja) * 2006-04-24 2007-11-08 Fuji Ceramics:Kk ビスマスチタン酸系ナノ粒子、それを用いた圧電セラミックス、それらの製造方法
CN101234895A (zh) * 2008-02-04 2008-08-06 桂林电子科技大学 一种钛酸铋钠基无铅压电陶瓷
CN102659416A (zh) * 2012-05-11 2012-09-12 哈尔滨工业大学 晶须状钛酸铋钠-钛酸铋钾-钛酸钡压电陶瓷的制备方法
CN104752054A (zh) * 2013-12-30 2015-07-01 三星电机株式会社 多层陶瓷电子元件及其制备方法和安装有多层陶瓷电子元件的电路板
CN105016724A (zh) * 2014-04-16 2015-11-04 三星电机株式会社 介电陶瓷组合物和含有该组合物的多层陶瓷电容器
CN106316389A (zh) * 2016-08-05 2017-01-11 聊城大学 一种低电场驱动下的高电致应变无铅压电材料及制备方法
CN107311649A (zh) * 2017-07-26 2017-11-03 中南大学 一种钛酸铋钠‑钛酸锶亚微米棒及其制备方法和应用

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
(Bi1/2Na1/2)TiO3-Bi(B"B")O3体系无铅压电陶瓷的制备及性能研究;段成辉;《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》;20150315;第43第5.1节和第50-51页第5.5节 *
Effects of thermal and electrical histories on structure and dielectric behaviors of (Li0.5Nd0.5)(2+)-modified (Bi0.5Na0.5) TiO3-BaTiO3 ceramics;Xu Jiwen等;《JOURNAL OF MATERIOMICS》;20170630;第3卷(第2期);第121-129页 *
Ferroelectric-quasiferroelectric-ergodic relaxor transition and multifunctional electrical properties in Bi0.5Na0.5TiO3-based ceramics;Zhou Chang rong 等;《JOURNAL OF THE AMERICAN CERAMIC SOCIETY》;20180430;第101卷(第4期);第1554-1565页 *
Frustration of Magnetic and Ferroelectric Long-Range Order in Bi2Mn4/3Ni2/3O6;John B. Claridge等;《Journal of the American Chemical society》;20091109;摘要 *
Mn掺杂Na1/2Bi1/2TiO3无铅单晶的电学性能研究;江向平等;《第15届全国晶体生长与材料学术会议论文集》;20091106;第129页 *
钛酸铋钠基多元系无铅压电陶瓷的研究;沈文轶;《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》;20090515;第C042-33页 *

Also Published As

Publication number Publication date
CN108623302A (zh) 2018-10-09

Similar Documents

Publication Publication Date Title
Wen et al. Synthesis of nanocrystalline yttria powder and fabrication of transparent YAG ceramics
JP5185224B2 (ja) 結晶配向セラミックスの製造方法
US20140239774A1 (en) NEW PROCESSING METHOD FOR GRAIN-ORIENTED LEAD-FREE PIEZOELECTRIC Na0.5Bi0.5TiO3-BaTiO3 CERAMICS EXHIBITING GIANT PERFORMANCE
Supriya Synthesis mechanisms and effects of BaTiO3 doping on the optical properties of Bi0. 5Na0. 5TiO3 lead-free ceramics
Zhengfa et al. Grain growth and piezoelectric property of KNN-based lead-free ceramics
Thong et al. The origin of chemical inhomogeneity in lead-free potassium sodium niobate ceramic: competitive chemical reaction during solid-state synthesis
WO2014132720A1 (ja) 酸化物粒子、圧電素子および酸化物粒子の製造方法
JP2007290887A (ja) ビスマスチタン酸系ナノ粒子、それを用いた圧電セラミックス、それらの製造方法
CN108623302B (zh) 一种无铅压电纳米阵列及其制备方法
JP5532305B2 (ja) 金属酸化物ナノ結晶の製造方法、金属酸化物ナノ結晶配列膜の作製方法、金属酸化物ナノ結晶配列膜被覆基板及びその製造方法
CN106588007B (zh) 一种高品质因数的无铅压电陶瓷
CN110550945B (zh) 一种LuAG:Ce透明陶瓷的制备方法及LuAG:Ce透明陶瓷
Hou et al. Solvothermal synthesis of single-crystalline BaTiO3 nanocubes in a mixed solution
Huang et al. Synthesis and characterization of yttrium aluminum garnet by high-energy ball milling
CN109502643B (zh) 一种硼镁共掺杂vo2粉体及其制备方法和应用
CN108793993B (zh) 一种单相陶瓷靶材及其制备方法和用途
Li et al. Synthesis and characterization of (Na0. 85K0. 15) 0.5 Bi0. 5TiO3 ceramics by different methods
Arabgari et al. Parameters effects on the surface morphology and structure of Nd: YAG nanopowders synthesized by co-precipitation method
KR101786056B1 (ko) 코어쉘 구조를 갖는 저온소성용 무연압전 세라믹 및 그 제조 방법
JP2011219351A (ja) BaTi2O5系複合酸化物およびBaTi2O5系複合酸化物の製造方法
CN109734437A (zh) 一种巨介电、低损耗ccto基陶瓷材料的制备方法
JP5912702B2 (ja) 複合セラミックスおよびその製造方法
RU2681860C1 (ru) Способ получения высокотемпературного термоэлектрического материала на основе кобальтита кальция
US11097984B2 (en) Composite ceramic and preparation method therefor
Gu et al. Low‐Temperature, Single Step, Reactive Sintering of Lead Magnesium Niobate Using Mg (OH) 2‐Coated Nb2O5 Powders

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20181009

Assignee: Guilin Sensing Material Technology Co.,Ltd.

Assignor: GUILIN University OF ELECTRONIC TECHNOLOGY

Contract record no.: X2022450000575

Denomination of invention: A lead-free piezoelectric nanoarray and its preparation method

Granted publication date: 20210105

License type: Common License

Record date: 20221230