CN108611511B - 一种三维互通CNTs/Cu复合材料及其制备方法 - Google Patents

一种三维互通CNTs/Cu复合材料及其制备方法 Download PDF

Info

Publication number
CN108611511B
CN108611511B CN201810431239.2A CN201810431239A CN108611511B CN 108611511 B CN108611511 B CN 108611511B CN 201810431239 A CN201810431239 A CN 201810431239A CN 108611511 B CN108611511 B CN 108611511B
Authority
CN
China
Prior art keywords
cnts
sintering
composite material
alloy
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810431239.2A
Other languages
English (en)
Other versions
CN108611511A (zh
Inventor
陈小红
刘平
周洪雷
李伟
付少利
吴湾湾
刘新宽
张柯
马凤仓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201810431239.2A priority Critical patent/CN108611511B/zh
Publication of CN108611511A publication Critical patent/CN108611511A/zh
Application granted granted Critical
Publication of CN108611511B publication Critical patent/CN108611511B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/01Alloys based on copper with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/02Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1051Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by electric discharge
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • C22C2026/002Carbon nanotubes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开了一种新型三维互通CNTs/Cu复合材料及其制备方法。本发明运用放电等离子预压烧结三维疏松结构,并采用水辅助化学气相沉积(CVD)法实现CNTs的原位生成,最后采用SPS制备CNTs/Cu复合材料。本发明制得的复合材料导电性及强度等各项性能优异,可用于电器、电子领域,且制备方法简单、成本低、制备过程易于实施及控制。

Description

一种三维互通CNTs/Cu复合材料及其制备方法
技术领域
本发明属于金属基复合材料技术领域,具体涉及一种CNTs在Cu中能均匀分布以及具有较强界面结合力的CNTs/Cu复合材料及其制备方法。
背景技术
随着时代的发展,传统材料的性能已不能满足人们的要求,因此,复合材料渐渐成为研究焦点。复合材料由连续的基体相和分散的强化相组成,这两相之间由相界面连接。复合材料的种类很多,但是金属基复合材料以其高导电导热性、高强度以及优良的耐磨性等优点而成为研究热点。
铜及铜合金由于其优良的导电导热性,被广泛用于电器、电子领域,但是因为其强度较弱,耐热性较差,使其在某些领域的应用受到了一定限制。目前一般的改善技术是添加氧化物颗粒或合金元素,此法虽改善了其力学性能,但却致使其导电到热性大幅下降。采用何种技术能够解决这一两难的问题,是我们研究的主要方向。
碳纳米管是中空结构且由石墨层构成的具有特殊结构的一维纳米材料,具有强度大、密度小、导电导热性能好、弹性模量大等优点。因此我们能够将具有良好综合性能的CNTs和具有独特性能的铜基进行复合,制造出组织性能优良的铜基复合材料,从而增加铜及铜合金的应用范围。
发明内容
本发明的目的在于提供一种CNTs能均匀分布且界面结合较强的三维CNTs/Cu复合材料及其制备方法,这种方法所制得的材料具高导电、高导热、高强度以及高耐磨性的特点。
为达到上述目的,本发明采用如下技术方案:
一种三维互通CNTs/Cu复合材料及其制备方法,该方法的具体步骤为:
(1)以铜合金粉末为原料,将其置于热处理炉中,在Ar及H2保护下进行一定时间的固溶时效处理;
(2)将固溶时效处理后的合金粉末放入石墨模具中,把装有合金粉末的模具放入SPS烧结炉中,设置升温速率、烧结压强以及烧结温度,进行预烧结制得三维互通的合金结构;
(3)将三维互通的合金结构置于水平管式炉的恒温区,在反应温度下,通入H2/C2H4的混合气体与水蒸汽并保持一定时间进行CNTs的原位生长,而后关闭C2H4气体与水蒸气的通入,并使管式炉在Ar保护下降至室温,得到CNTs/Cu三维互通复合结构。
(4)将得到的CNTs/Cu复合结构再放入石墨模具中,把模具放入SPS烧结炉中,设置升温速率、烧结压强以及烧结温度,进行烧结制得CNTs/Cu复合材料。
具体情况下,所述铜合金为CuAl合金或CuCr合金,合金粉末中Al元素或Cr元素含量控制在质量百分比为0.2-0.7%,粒度在150-350目之间均匀分布。
优选情况下,所述CuAl合金或CuCr合金是通过加压氢还原工艺制得,具体步骤为:在高压釜中,将Al2(SO4)3·12H2O或Cr(NO3)3·9H2O溶解在氨水溶液中,然后加入电解铜粉,控制PH为7‐8,通入氢气,在1‐5MPa的压力、80‐200℃下,反应1‐4小时后,将所得沉淀物进行洗涤、过滤、烘干、研磨后,制得Cu合金固体粉末。采用加压氢还原工艺Cu粉进行微合金化,合金组织均匀,引入的金属Ni和Cr具有高活性,可以作为沉积碳纳米管的催化剂。
具体情况下,其中步骤(1)中所述的固溶时效处理,固溶温度为800-880℃,固溶时间为1-1.5小时,时效温度为450-550℃,时效时间为1.5-2.5小时。
具体情况下,其中步骤(2)所述的SPS预烧结,升温速率为70-80℃/min,烧结温度为200-300℃,烧结压强为4-6MPa,烧结时间为10-15min。
具体情况下,其中步骤(3)中,原位生长CNTs时,通入的H2流量为2300-2500ml/min,C2H4流量为100-200ml/min,水蒸气流量为1200-1500ml/min,生长温度为750-850℃,生长时间为1-2小时。
具体情况下,其中步骤(4)所述的SPS烧结,升温速率为70-80℃/min,烧结温度为800-900℃,烧结压强为40-50MPa,烧结时间为10-15min。
本发明在保证铜及铜合金导电和导热性能损失较小的情况下,通过加入碳纳米管增强相来提高其力学性能。本发明先利用放电等离子烧结法(SPS)烧结出一个三维疏松合金结构,接着在管式炉中以C2H4为碳源,以化学气相沉积法制备CNTs/Cu复合三维结构,最后采用SPS法烧结形成块状的CNTs/Cu复合材料,生长出来的碳纳米管和铜基体有较强的界面结合强度,且由于疏松多孔结构的存在,CVD过程中,反应气流更稳定,CNTs生长更为均匀。解决了CNTs和Cu基体由于密度相差较大,CNTs难以在Cu中均匀分布以及两者难以相互润湿、界面结合力弱的难题。所制备的CNTs/Cu复合材料导电性及强度等各项性能优异,可用于电器、电子领域,且制备方法简单、成本低、制备过程易于实施及控制,具有巨大的经济价值和社会价值。
附图说明
图1为根据本发明具体实施例制备的CNTs/CuAl三维互通复合结构的扫描电镜照片;
图2为根据本发明具体实施例制备的CNTs/CuAl三维互通复合结构的另一扫描电镜照片;
图3为根据本发明具体实施例制备的CNTs/CuAl三维互通复合结构的又一扫描电镜照片。
具体实施方式
本发明技术方案不局限于以下所列举的具体实施方式,还包括各具体实施方式之间的任意组合。
具体实施方式一:
本实施方式所述的一种三维互通CNTs/Cu复合材料及其制备方法,具体是按照以下步骤进行的:
(1)取12g大小为400目的0.6%Al的铜铝合金粉末,将合金粉末置于水平管式炉的恒温区并在1950ml/min Ar及1300ml/min H2保护下在860℃固溶1小时,接着在500℃时效2小时。
(2)将固溶时效处理后的合金粉末在酒精中超声清洗1小时,静置,倒去上层悬浊液,干燥。再将粉末放入内径为的材质为石墨的模具中,把装有合金粉末的模具放入SPS烧结炉中,设置升温速率为70℃、烧结压强为4MPa以及烧结温度300℃,烧结12min,得到三维互通的CuAl合金结构,结构参见图1。
(3)将三维互通的合金结构置于水平管式炉的恒温区,在反应温度800℃下,通入2450ml/min H2和100ml/min C2H4的混合气体与1500ml/min水蒸气并保持1小时进行CNTs的原位生长,而后关闭C2H4气体与水蒸气的通入,并使管式炉在1650ml/min Ar保护下降至室温,得到CNTs/CuAl三维互通复合结构,具体参见图2-3所示。
(4)将得到的CNTs/CuAl再放入内径为的材质为石墨的模具中,把模具放入SPS烧结炉中,设置升温速率为70℃/min、烧结压强为45MPa以及烧结温度为850℃,进行烧结制得CNTs/CuAl复合材料。
具体实施方式二:
本实施方式所述的一种CNTs/Cu复合材料及其制备方法,具体是按照以下步骤进行的:
(1)取12g大小为200目的0.6%Cr的铜铬合金粉末,将合金粉末置于水平管式炉的恒温区并在1950ml/min Ar及1300ml/min H2保护下在850℃固溶1小时,接着在450℃时效2小时。
(2)将固溶时效处理后的合金粉末在酒精中超声清洗1小时,静置,倒去上层悬浊液,干燥。再将粉末放入内径为的材质为石墨的模具中,把装有合金粉末的模具放入SPS烧结炉中,设置升温速率为70℃、烧结压强为4MPa以及烧结温度300℃,烧结12min,得到三维互通的CuCr合金结构。
(3)将三维互通的合金结构置于水平管式炉的恒温区,在反应温度800℃下,通入2450ml/min H2和100ml/min C2H4的混合气体与1500ml/min水蒸气并保持1小时进行CNTs的原位生长,而后关闭C2H4气体与水蒸气的通入,并使管式炉在1650ml/min Ar保护下降至室温,得到CNTs/CuCr三维互通复合结构。
(4)将得到的CNTs/CuCr再放入内径为的材质为石墨的模具中,把模具放入SPS烧结炉中,设置升温速率为70℃/min、烧结压强为45MPa以及烧结温度为850℃,进行烧结制得CNTs/CuCr复合材料。

Claims (2)

1.一种三维互通CNTs/Cu复合材料的制备方法,其特征在于,该方法的具体步骤为:
(1)以铜合金粉末为原料,将其置于热处理炉中,在Ar及H2保护下进行一定时间的固溶时效处理;
(2)将固溶时效处理后的合金粉末放入石墨模具中,把装有合金粉末的模具放入SPS烧结炉中,设置升温速率、烧结压强以及烧结温度,进行预烧结制得三维互通的合金结构;
(3)将三维互通的合金结构置于水平管式炉的恒温区,在反应温度下,通入H2/C2H4的混合气体与水蒸汽并保持一定时间进行CNTs的原位生长,而后关闭C2H4气体与水蒸气的通入,并使管式炉在Ar保护下降至室温,得到CNTs/Cu三维互通复合结构;
(4)将得到的CNTs/Cu复合结构再放入石墨模具中,把模具放入SPS烧结炉中,设置升温速率、烧结压强以及烧结温度,进行烧结制得CNTs/Cu复合材料;
所述铜合金为CuAl合金或CuCr合金,合金粉末中Al元素或Cr元素含量控制在质量百分比为0.2-0.7%,粒度在150-350目之间均匀分布;
其中步骤(1)中所述的固溶时效处理,固溶温度为800-880℃,固溶时间为1-1.5小时,时效温度为450-550℃,时效时间为1.5-2.5小时;
其中步骤(2)所述的SPS预烧结,升温速率为70-80℃/min,烧结温度为200-300℃,烧结压强为4-6MPa,烧结时间为10-15min;
其中步骤(3)中,原位生长CNTs时,通入的H2流量为2300-2500ml/min,C2H4流量为100-200ml/min,水蒸气流量为1200-1500ml/min,生长温度为750-850℃,生长时间为1-2小时;
其中步骤(4)所述的SPS烧结,升温速率为70-80℃/min,烧结温度为800-900℃,烧结压强为40-50MPa,烧结时间为10-15min。
2.一种采用权利要求1所述的制备方法制备的CNTs/Cu复合材料。
CN201810431239.2A 2018-05-08 2018-05-08 一种三维互通CNTs/Cu复合材料及其制备方法 Active CN108611511B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810431239.2A CN108611511B (zh) 2018-05-08 2018-05-08 一种三维互通CNTs/Cu复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810431239.2A CN108611511B (zh) 2018-05-08 2018-05-08 一种三维互通CNTs/Cu复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN108611511A CN108611511A (zh) 2018-10-02
CN108611511B true CN108611511B (zh) 2019-08-09

Family

ID=63662440

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810431239.2A Active CN108611511B (zh) 2018-05-08 2018-05-08 一种三维互通CNTs/Cu复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN108611511B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109182832B (zh) * 2018-11-08 2020-01-03 江苏精研科技股份有限公司 一种碳纳米管增强铜基合金及一种粉末注射成型工艺
CN110899717A (zh) * 2019-12-04 2020-03-24 上海理工大学 一种Al2O3-CNTs/Cu复合材料及其制备方法
CN115255377B (zh) * 2022-08-09 2023-10-27 上海大学 一种高强高导铜碳氮材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1888103A (zh) * 2006-07-17 2007-01-03 天津大学 气相沉积原位反应制备碳纳米管增强铜基复合材料的方法
CN103831549A (zh) * 2014-03-19 2014-06-04 哈尔滨工业大学 一种原位反应制备碳纳米管增强铜基复合钎料的方法
CN105364068A (zh) * 2015-10-19 2016-03-02 天津大学 一种三维石墨烯原位包覆铜复合材料的制备方法
CN105386003A (zh) * 2015-12-02 2016-03-09 哈尔滨工业大学 一种三维结构石墨烯增强铜基复合材料的制备方法
CN105441711A (zh) * 2015-12-28 2016-03-30 哈尔滨工业大学 一种三维结构CNTs增强Cu基复合材料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1888103A (zh) * 2006-07-17 2007-01-03 天津大学 气相沉积原位反应制备碳纳米管增强铜基复合材料的方法
CN103831549A (zh) * 2014-03-19 2014-06-04 哈尔滨工业大学 一种原位反应制备碳纳米管增强铜基复合钎料的方法
CN105364068A (zh) * 2015-10-19 2016-03-02 天津大学 一种三维石墨烯原位包覆铜复合材料的制备方法
CN105386003A (zh) * 2015-12-02 2016-03-09 哈尔滨工业大学 一种三维结构石墨烯增强铜基复合材料的制备方法
CN105441711A (zh) * 2015-12-28 2016-03-30 哈尔滨工业大学 一种三维结构CNTs增强Cu基复合材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
铜基石墨烯复合材料的制备及性能研究;刘忠鹏 等;《有色金属材料与工程》;20171231;第38卷(第6期);第344页左栏第3段-右栏末段 *

Also Published As

Publication number Publication date
CN108611511A (zh) 2018-10-02

Similar Documents

Publication Publication Date Title
CN105525124B (zh) 原位合成三维石墨烯增强铜基复合材料制备方法
Xue et al. Preparation and application of three-dimensional filler network towards organic phase change materials with high performance and multi-functions
CN108611511B (zh) 一种三维互通CNTs/Cu复合材料及其制备方法
CN108611510B (zh) 一种CNTs/Cu复合材料及其制备方法
CN103952588A (zh) 高强高导石墨烯铜基复合材料及其制备方法
CN103787661B (zh) 一种MoSi2-RSiC复合材料的制备方法
CN103145124B (zh) 高性能石墨烯纸及其制备方法
CN103303901B (zh) 一种在石墨烯表面生长碳纳米管的方法
CN105236982B (zh) 氮化铝增强的石墨基复合材料及制备工艺
CN105695783B (zh) 一种石墨烯/铜基复合材料及其制备方法
CN104018019B (zh) 一种ZrB2/Cu复合材料的制备方法
CN109175354A (zh) 一种金刚石/W-Cu复合材料的制备方法
CN111961903A (zh) 纳米颗粒掺杂氧化石墨烯增强铜基复合材料的制备方法
Guo et al. Enhancement of solar thermal storage properties of phase change composites supported by modified copper foam
CN106282628B (zh) 一种碳纳米管增强铜基复合材料的制备方法
Wang et al. MXene reconciles concurrent enhancement of thermal conductivity and mechanical robustness of SiC-based thermal energy storage composites
CN108550471B (zh) 一种碳纤维柔性电极材料及其制备方法
CN104651658B (zh) 一种新型高导热铜基复合材料制备方法
CN109295335A (zh) 一种改性膨胀石墨-石墨/铜复合材料及其制备方法
CN105967176A (zh) 一种蜂窝状三维石墨烯的制备方法
Chen et al. Anisotropically enhancing thermal conductivity of epoxy composite with a low filler load by an AlN/C fiber skeleton
CN106219532B (zh) 一种纳米碳管阵列/石墨复合导热膜及其制备方法
CN104087776B (zh) 掺碳增强W-Cu复合材料的制备方法
CN105016773B (zh) 反应烧结及微氧化处理制备多孔碳化硅陶瓷的方法
CN110697695A (zh) 一种石墨烯增强金属基泡沫骨架结构复合材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant