CN108598161B - 一种利用全固态电池实现的增强型iii-v hemt器件 - Google Patents

一种利用全固态电池实现的增强型iii-v hemt器件 Download PDF

Info

Publication number
CN108598161B
CN108598161B CN201810405244.6A CN201810405244A CN108598161B CN 108598161 B CN108598161 B CN 108598161B CN 201810405244 A CN201810405244 A CN 201810405244A CN 108598161 B CN108598161 B CN 108598161B
Authority
CN
China
Prior art keywords
solid
state battery
hemt device
semiconductor layer
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810405244.6A
Other languages
English (en)
Other versions
CN108598161A (zh
Inventor
董志华
张辉
张佩佩
程知群
刘国华
李仕琦
蒋俊杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Dianzi University
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN201810405244.6A priority Critical patent/CN108598161B/zh
Publication of CN108598161A publication Critical patent/CN108598161A/zh
Priority to PCT/CN2019/082605 priority patent/WO2019210770A1/zh
Priority to US17/043,855 priority patent/US11398566B2/en
Application granted granted Critical
Publication of CN108598161B publication Critical patent/CN108598161B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/8252Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using III-V technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0605Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits made of compound material, e.g. AIIIBV
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0629Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明公开了一种利用全固态电池实现的增强型III‑V HEMT器件,在衬底上依次形成第二半导体层和第一半导体层并在所述第二半导体层和第一半导体层之间形成异质结构;源电极和漏电极通过形成于该异质结构中的二维电子气电连接;栅电极用于控制所述异质结构中二维电子气的导通或断开;还包括设置在所述源电极和栅电极之间的全固态电池,所述全固态电池由至少1组电池单元串联或串并联构成,用于使异质结构相应区域中二维电子气耗尽。本发明能有效实现增强型工作模式,此外,全固态电池是与微纳加工工艺兼容的,可以在器件的工艺过程中一次完成。同时,器件的阈值电压可通过串联固态电池的单元数来改变。

Description

一种利用全固态电池实现的增强型III-V HEMT器件
技术领域
本发明涉及微电子器件领域,特别涉及一种通过引入全固态电池和二极管对的组合结构(全固态电池组合结构)获得增强型III-V HEMT(High Electron MobilityTransistor,高电子迁移率晶体管)器件。
背景技术
随着技术进步,人们对于微电子器件的截止频率、功率密度、开关损耗等指标的要求越来越高,所有这些目标都吸引人们将目光聚焦于III-V HEMT器件。以最典型的AlGaN/GaN器件为例,由于多项性能优异,因此在5G通信、相控阵雷达、光伏发电、电动汽车等领域都有重要的应用。作为典型的III-V器件,由于晶体结构对称性的原因,在AlGaN/GaN基异质结中存在着较强的自发极化和压电极化,在天然情况下,即在异质结界面处形成高浓度的2DEG(2dimensional electron gas,二维电子气),因此,天然的GaN基HEMT是耗尽型器件(又称常开型器件),缺少增强型器件(又称常关型器件)。但是在实际应用中,增强型器件是必不可少的。如何获得增强型器件是一项具有挑战性的工作。现有的技术包括:(1)槽栅技术。刻蚀栅下的AlGaN,使栅下沟道二维电子气耗尽。(2)栅下引入PN结技术,也称GIT(gateinjection Trsansistor,栅下注入晶体管)器件。即在栅下重新生长一层P型AlGaN层,依靠pn结将势垒一侧的导带底拉高,使异质结界面的三角势阱高于费米能级,造成2DEG的耗尽。(3)F离子注入技术。该技术利用F离子体积小的特点,将带负电的F离子注入到栅下的势垒层中,造成2DEG的耗尽。
第一种技术难以获得精确的刻蚀深度,而且容易造成沟道的损伤。第二种技术,P型材料的生长使材料生长的成本显著提高。第三种技术难于精确控制,且存在可靠性的隐患。
故,针对现有技术的缺陷,实有必要提出一种技术方案以解决现有技术存在的技术问题。
发明内容
有鉴于此,确有必要提供一种利用全固态电池获得增强型III-V HEMT器件,将全固态电池技术引入微电子器件领域,利用电池在栅电极和源电极之间形成一个负电势,耗尽栅电极附近沟道中的电子,从而实现增强型器件。
为实现上述发明目的,本发明采用了如下技术方案:
一种利用全固态电池实现的增强型III-V HEMT器件,在衬底(1)上依次形成第二半导体层(2)和第一半导体层(3)并在所述第二半导体层(2)和第一半导体层(3)之间形成异质结构;源电极(5)和漏电极(6)通过形成于该异质结构中的二维电子气电连接;栅电极(12)用于控制所述异质结构中二维电子气的导通或断开;还包括设置在所述源电极(5)和栅电极(12)之间的全固态电池,所述全固态电池由至少1组电池单元串联或串并联构成,用于使异质结构相应区域中二维电子气耗尽。
作为优选的技术方案,还包括二极管对(13、14),所述全固态电池的正极集流体(7)与所述源电极(5)电连接,所述全固态电池的负极集流体(11)经该由二极管对(13、14)与所述栅电极(12)电连接。
作为优选的技术方案,所述全固态电池在所述栅电极(12)和源电极(5)之间形成一个负电势,以耗尽栅电极(5)附近沟道中的二维电子气。
作为优选的技术方案,所述全固态电池由至少1组电池单元串联或串并联构成,所述电池单元为多层薄膜结构,至少包括正极集流体(7)、正极薄膜材料层(8)、全固态电解质(9)、负极薄膜材料层(10)及负极集流体(11)。
作为优选的技术方案,所述全固态电池的正极集流体(7)与所述异质结构之间还设置绝缘隔离层(4)。
作为优选的技术方案,所述绝缘隔离层(4)为单层SiO2、AlON、Si3N4、SiON绝缘体、六方氮化硼绝缘二维材料等,或者由上述材料组成的多层结构。
作为优选的技术方案,所述全固态电池的正极集流体(7)为金属或者合金;所述正极薄膜材料层(8)为锂金属氧化物、金属硫化物或钒化物;所述全固态电解质(9)为无机固态电解质、无机有机复合固态电解质或固态化聚合物电解质中的任一种;所述负极薄膜材料层(10)为氮化物、氧化物、锂金属或复合材料。
作为优选的技术方案,所述第一半导体层(3)为GaN、AlN、AlxGa1-xN、InxAl1-xN、InxAlyGa1-x-yN、InxAl1-xAs、InxGa1-xAs、AlxGa1-xAs或InxAl1-xSb材料中的任意一种材料形成的层状结构或任意两种以上材料组合形成的层叠结构,其中,0≤x<1,0≤y<1,x+y=1。
作为优选的技术方案,所述第二半导体层(2)为GaN、AlN、AlxGa1-xN、InxAl1-xN、InxAlyGa1-x-yN、InxAl1-xAs、InxGa1-xAs、AlxGa1-xAs或InP材料中的任意一种材料形成的层状结构或任意两种以上材料或其组合形成的层叠结构,其中,0≤x<1,0≤y<1,x+y=1。
作为优选的技术方案,所述全固态电池的正极集流体(7)与所述源电极(5)之间以及所述全固态电池的负极集流体(11)、二极管对(13、14)与所述栅电极(12)之间采用引线键合技术实现电连接。
与现有技术相比,本发明至少具有如下优点:可以有效实现增强型工作模式,由于不需要对器件的栅下和栅以外区域进行刻蚀,避免了因刻蚀工艺引入的均匀性、重复性和引入损伤问题,并且保证栅下沟道的高电子迁移率,从而保证了器件的高性能。此外,全固态电池是与微纳加工工艺兼容的,它可以在器件的工艺过程中一次完成。同时,器件的阈值电压可通过串联固态电池来的单元数来改变。
附图说明
图1是本发明中一种利用全固态电池实现的增强型III-V HEMT器件的剖面结构示意图;
图2是一种利用全固态电池组合结构获得的增强型III-V HEMT器件的俯视结构示意图;除了图中可见的各标号与剖面示意图一一对应之外,图中的虚线矩形框表示HEMT器件的有源区。
图3是本发明的器件示意图。
其中,1为衬底及缓冲材料层,2为第二半导体层,3为第一半导体层,4为绝缘隔离层,5为HEMT器件的源电极,6为漏电极,7为全固态电池的正极集流体,8为正电极,9为固体电解质,10为负极,11为负极集流体,12为栅电极,13和14为二极管对的两个正极。
值得特殊说明的是,图1和图2仅提供示意图,其剖面示意图和俯视图在尺寸比例对应及空间对应关系上并不严格符合工程制图规范,图1中二极管对虽然位于栅电极和源电极之间,在实际中,二极管对和基础HEMT器件并不位于同一个有源区,这样设计的目的是为了避免二者相互干扰。但是,具有本领域知识的人可以很容易理解图示内容。
具体实施方式
针对现有技术存在的技术缺陷,本发明独辟蹊径,将全固态电池技术引入微电子器件领域,提出一种全新的获得增强型HEMT器件及其方法。
参见图1-3,本发明一种利用全固态电池实现的增强型III-V HEMT器件,包括源电极5、漏电极6、栅电极12、异质结构(第一半导体层3和第二半导体层2之间形成)、全固态电池和二极管对(13、14),该源、漏电极通过形成于异质结构中的二维电子气电连接,且源、漏电极与异质结构形成欧姆接触,该异质结构包括沿设定方向依次设置的第一半导体层3和第二半导体层2,第一半导体层3设置于源、漏电极之间,且第一半导体层3表面还设有栅电极12。全固态电池组合结构位于绝缘隔离层4之上,包括全固态电池组及二极管对,绝缘隔离层位于基础HEMT有源区(即仅在该区域有2DEG,该区域之外,通过一定的微电子工艺,使2DEG消失)之外的表面之上。进一步的,全固态电池组由至少1组电池单元串联或串并联构成,电池单元为多层薄膜结构,主要包括正极集流体7、正极薄膜材料层8、全固态电解质9、负极薄膜材料层10及负极集流体11。所述全固态电池组的正极集流体7与基础HEMT器件源电极电连接,所述全固态电池组的负极集流体11经由二极管对与基础HEMT器件的栅电极电连接。
作为较为优选的实施方案之一,源电极5与栅电极12之间设置二极管对,当对HEMT器件施加外部电压,栅电极接高电位,源电极接低电位,栅电极施加一个足够大的正电压时,抵消固态电池的电势,从而使沟道电子重新产生,该HEMT器件导通,但是由于二极管对的反接,使得栅泄漏电流极小。其中,全固态电池由正极、负极和电解质构成,并且其电解质中不含有液态电解质,与微电子器件平面工艺兼容,它具有能量密度高、体积小、安全可靠的特点,被认为是电动汽车领域最有竞争力的电池之一。利用微电子平面工艺,将全固态电池现有HEMT器件结合起来,电池的阳极与HEMT的源电极连接,电池的阴极通过二极管对与HEMT的栅电极连接,在充满电的情况下,电池会在栅电极和源电极之间形成一个负电势,通过合理设计电池的面积和串联级数获得足够的负电势,就可以耗尽栅电极附近沟道中的电子,从而实现增强型器件。二极管对的作用是仅仅将电池的负电势施加于栅电极和源电极之间,而使源电极和栅电极之间的电流仅为二极管的反向导通电流。
绝缘隔离层具有如下特点:(1)可以对固有HEMT器件表面进行钝化,即该绝缘隔离层的引入,会使HEMT器件有源区外的表面态密度降低。(2)具有良好的电绝缘性能,避免全固态电池对HEMT核心结构的电特性产生影响。
作为较为优选的实施方案之一,本发明为实现增强型HEMT器件,在现有公认的常规耗尽型III-V HEMT器件基础上,依次构造全固态电池和二极管对。以AlGaN/GaN HEMT为例,该器件已包括源电极5、漏电极6位于第一半导体层3(此处为AlGaN)一面,且分列两端,栅电极12也位于第一半导体层3一面,且在源电极5、漏电极6之间。绝缘隔离层位于有源区之外的HEMT器件的最外表面。在绝缘隔离层上,依次构造正极集流体7、正极薄膜材料层8、固态电解质9、负极薄膜材料层10与负极集流体11。全固态电池的正极与二极管对的一个正极相连,二极管对的另一个正极与栅电极相连。
为了克服现有技术的缺陷,本发明还公开了一种利用全固态电池实现增强型III-V HEMT器件的方法,具体包括以下工艺步骤:
(a)在选定衬底1上形成主要由第一半导体层3和第二半导体层2组成的异质结构。
作为外延异质结材料实施方案之一,步骤(a)可采用:金属有机化合物化学气相沉积(MOCVD)或分子束外延(MBE)或氢化物气相外延(HVPE)等外延技术。
(b)在第一半导体层3上形成绝缘隔离层4。
作为生长绝缘隔离层实施方案之一,步骤(b)可采用:原子层沉积(ALD)、等离子体辅助的原子层沉积(PEALD)、溅射、低压化学气相沉积(LPCVD)、脉冲激光沉积(PLD)、等离子体增强的化学气相沉积(PECVD)、等介质层沉积技术。
(c)在有源区之外进行离子注入隔离,并去除并保留所述绝缘隔离层4。
作为去除部分绝缘隔离层实施方案之一,步骤(c)可采用:电感耦合等离子体刻蚀、反应离子刻蚀、离子束刻蚀等干法刻蚀或湿法腐蚀技术。
(d)在所述第一半导体3上制作源电极5和漏电极6。
作为沉积源电极与漏电极金属的实施方案之一,步骤(d)可采用金属沉积,然后快速热退火技术实现欧姆接触。。
(e)在所述绝缘隔离层4依次沉积生长正极集流体7、正极薄膜材料层8、固态电解质9、负极薄膜材料层10和负极集流体11,进而形成全固态电池。
作为优选的实施方案之一,步骤(e)还包括:正极集流体与负极集流体可采用:电子束蒸发或磁控溅射等金属沉积技术。正极薄膜材料层(8)、固态电解质、负极薄膜材料层(10)可采用:化学气相沉积法、物理气相沉积法、旋涂法和丝网印刷法等。
(f)在所述第一半导体上的有源区制作栅电极,同时在有源区中制作肖特基二极管的正极13和14。
作为优选的实施方案之一,步骤(f)可采用电子束蒸发或溅射等金属沉积技术。
(g)实现全固态电池的级联,以及基础HEMT器件和电池组以及二极管的电连接。
进一步的,用以实现上述连接的方法包括引线键合技术。
实施例1
参阅图1,该器件的基础HEMT为AlGaN/GaN HEMT。其隔离绝缘层为Si3N4,厚度为100~200nm,采用LPCVD工艺制备。
利用电子束蒸发工艺在Si3N4上溅射150nm的Ni金属层,然后用磷酸锂陶瓷靶材为溅射源,采用射频磁控溅射的方法在Ni金属上制备500~2000nm LiPON薄膜。其次在LiPON薄膜上溅射250nm的LiCoO2薄膜。之后在LiCoO2薄膜上蒸发厚度为10/200nm的Ti/铂Pt金属,最后在AlGaN表面制作栅电极和二极管对,二极管的阳极金属采用Ni/Au(50/200nm),单级二极管的开启电压约为1~1.5V,最终通过引线键合技术将基础HEMT器件和全固态电池以及二极管对进行电连接。
进一步的,所述全固态电池所占区域为方形,且边长为50~100μm,充电后,电池的工作电压为约为2~5V,其容量约为10μAhcm-2
实施例2
该器件的基础HEMT为AlN/GaN HEMT。其隔离绝缘层为Si3N4,厚度为300nm,采用LPCVD工艺制备。
利用射频磁控溅射的方法在300nm厚的Si3N4上沉积250nm的Ti金属,随后以LiMn2O4靶材为溅射源,采用射频磁控溅射的方法在Ti金属上制备800nm的LiMn2O4薄膜,然后用Li3PO4为溅射源,在LiMn2O4薄膜上制备500nm的LiPON薄膜作为固态电解质,其次在LiPON薄膜上制备450nm的ZnO薄膜,之后在ZnO薄膜层上制作250nm的Ti金属,最后在AlN表面制作栅电极和二极管对,二极管的阳极金属采用Ni/Au(50/200nm),单级二极管的开启电压约为1~1.5V,最终通过引线键合技术将基础HEMT器件和全固态电池以及二极管对进行电连接。
整个全固态电池部分呈圆形,半径为80~120μm。电池可获得的输出电压约为0.5~5V之间,电池的输出电流密度约为300~400mA/mm2
最后应说明的是,以上实施方案仅用以说明本发明的技术方案,而非对其限制,本领域的普通技术人员应当理解:其依然可以对前述方案所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明装置方案的精神和范围。

Claims (9)

1.一种利用全固态电池实现的增强型III-V HEMT器件,在衬底(1)上依次形成第二半导体层(2)和第一半导体层(3)并在所述第二半导体层(2)和第一半导体层(3)之间形成异质结构;源电极(5)和漏电极(6)通过形成于该异质结构中的二维电子气电连接;栅电极(12)用于控制所述异质结构中二维电子气的导通或断开;其特征在于,还包括设置在所述源电极(5)和栅电极(12)之间的全固态电池,所述全固态电池由至少1组电池单元串联或串并联构成,用于使异质结构相应区域中二维电子气耗尽;
其中,所述全固态电池在所述栅电极(12)和源电极(5)之间形成一个负电势,以耗尽栅电极(12 )附近沟道中的二维电子气。
2.根据权利要求1所述的利用全固态电池实现的增强型III-V HEMT器件,其特征在于,还包括阴极相连的二极管对(13、14),所述全固态电池的正极集流体(7)与所述源电极(5)电连接,所述全固态电池的负极集流体(11)经该由二极管对(13、14)与所述栅电极(12)电连接。
3.根据权利要求1或2所述的利用全固态电池实现的增强型III-V HEMT器件,其特征在于,所述全固态电池由至少1组电池单元串联或串并联构成,所述电池单元为多层薄膜结构,至少包括正极集流体(7)、正极薄膜材料层(8)、全固态电解质(9)、负极薄膜材料层(10)及负极集流体(11)。
4.根据权利要求1或2所述的利用全固态电池实现的增强型III-V HEMT器件,其特征在于,所述全固态电池的正极集流体(7)与所述异质结构之间还设置绝缘隔离层(4)。
5.根据权利要求4所述的利用全固态电池实现的增强型III-V HEMT器件,其特征在于,所述绝缘隔离层(4)为单层SiO2、AlON、Si3N4、SiON绝缘体、六方氮化硼绝缘二维材料,或者由上述材料组成的多层结构。
6.根据权利要求3所述的利用全固态电池实现的增强型III-V HEMT器件,其特征在于,所述全固态电池的正极集流体(7)为金属或者合金;所述正极薄膜材料层(8)为锂金属氧化物、金属硫化物或钒化物;所述全固态电解质(9)为无机固态电解质、无机有机复合固态电解质或固态化聚合物电解质中的任一种;所述负极薄膜材料层(10)为氮化物、氧化物、锂金属或复合材料。
7.根据权利要求1或2所述的利用全固态电池实现的增强型III-V HEMT器件,其特征在于,所述第一半导体层(3)为GaN、AlN、AlxGa1-xN、InxAl1-xN、InxAlyGa1-x-yN、InxAl1-xAs、InxGa1-xAs、AlxGa1-xAs或InxAl1-xSb材料中的任意一种材料形成的层状结构或任意两种以上材料组合形成的层叠结构,其中,0≤x<1,0≤y<1,x+y=1。
8.根据权利要求1或2所述的利用全固态电池实现的增强型III-V HEMT器件,其特征在于,所述第二半导体层(2)为GaN、AlN、AlxGa1-xN、InxAl1-xN、InxAlyGa1-x-yN、InxAl1-xAs、InxGa1-xAs、AlxGa1-xAs或InP材料中的任意一种材料形成的层状结构或任意两种以上材料或其组合形成的层叠结构,其中,0≤x<1,0≤y<1,x+y=1。
9.根据权利要求1或2所述的利用全固态电池实现的增强型III-V HEMT器件,其特征在于,所述全固态电池的正极集流体(7)与所述源电极(5)之间以及所述全固态电池的负极集流体(11)、二极管对(13、14)与所述栅电极(12)之间采用引线键合技术实现电连接。
CN201810405244.6A 2018-04-29 2018-04-29 一种利用全固态电池实现的增强型iii-v hemt器件 Active CN108598161B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201810405244.6A CN108598161B (zh) 2018-04-29 2018-04-29 一种利用全固态电池实现的增强型iii-v hemt器件
PCT/CN2019/082605 WO2019210770A1 (zh) 2018-04-29 2019-04-15 一种利用全固态电池实现的增强型iii-v hemt器件
US17/043,855 US11398566B2 (en) 2018-04-29 2019-04-15 Enhancement-mode III-V HEMT based on all-solid-state battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810405244.6A CN108598161B (zh) 2018-04-29 2018-04-29 一种利用全固态电池实现的增强型iii-v hemt器件

Publications (2)

Publication Number Publication Date
CN108598161A CN108598161A (zh) 2018-09-28
CN108598161B true CN108598161B (zh) 2021-03-09

Family

ID=63620159

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810405244.6A Active CN108598161B (zh) 2018-04-29 2018-04-29 一种利用全固态电池实现的增强型iii-v hemt器件

Country Status (3)

Country Link
US (1) US11398566B2 (zh)
CN (1) CN108598161B (zh)
WO (1) WO2019210770A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108598161B (zh) * 2018-04-29 2021-03-09 杭州电子科技大学 一种利用全固态电池实现的增强型iii-v hemt器件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105789682A (zh) * 2014-12-17 2016-07-20 中国电子科技集团公司第十八研究所 安全高倍率全固态电池的制备方法
CN106159671A (zh) * 2015-04-10 2016-11-23 中国科学院苏州纳米技术与纳米仿生研究所 Ⅲ族氮化物HEMT与GaN激光器的集成单片及其制作方法
CN106876459A (zh) * 2017-02-22 2017-06-20 中国科学院苏州纳米技术与纳米仿生研究所 Ⅲ族氮化物hemt模块及其制法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7298123B2 (en) * 2000-02-08 2007-11-20 The Furukawa Electric Co., Ltd. Apparatus and circuit for power supply, and apparatus for controlling large current load
US8958263B2 (en) * 2011-06-10 2015-02-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
CN106601804B (zh) * 2015-10-15 2018-06-01 上海新昇半导体科技有限公司 场效应晶体管及其制备方法
WO2018063395A1 (en) * 2016-09-30 2018-04-05 Intel Corporation Pn diodes and connected group iii-n devices and their methods of fabrication
JP2020017551A (ja) * 2016-11-15 2020-01-30 株式会社桑田 蓄電モジュールおよび蓄電モジュール急速充電システム
US11437504B2 (en) * 2017-09-29 2022-09-06 Intel Corporation Complementary group III-nitride transistors with complementary polarization junctions
CN108493110B (zh) * 2018-04-29 2021-01-29 杭州电子科技大学 一种利用全固态电池实现增强型iii-v hemt器件的方法
CN108598161B (zh) * 2018-04-29 2021-03-09 杭州电子科技大学 一种利用全固态电池实现的增强型iii-v hemt器件
US10903359B2 (en) * 2018-06-19 2021-01-26 Panasonic Semiconductor Solutions Co., Ltd. Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105789682A (zh) * 2014-12-17 2016-07-20 中国电子科技集团公司第十八研究所 安全高倍率全固态电池的制备方法
CN106159671A (zh) * 2015-04-10 2016-11-23 中国科学院苏州纳米技术与纳米仿生研究所 Ⅲ族氮化物HEMT与GaN激光器的集成单片及其制作方法
CN106876459A (zh) * 2017-02-22 2017-06-20 中国科学院苏州纳米技术与纳米仿生研究所 Ⅲ族氮化物hemt模块及其制法

Also Published As

Publication number Publication date
CN108598161A (zh) 2018-09-28
US11398566B2 (en) 2022-07-26
US20210126119A1 (en) 2021-04-29
WO2019210770A1 (zh) 2019-11-07

Similar Documents

Publication Publication Date Title
US6495283B1 (en) Battery with trench structure and fabrication method thereof
CN105789047B (zh) 一种增强型AlGaN/GaN高电子迁移率晶体管的制备方法
CN108493110B (zh) 一种利用全固态电池实现增强型iii-v hemt器件的方法
CN104465748B (zh) 一种GaN基增强型HEMT器件及其制备方法
CN107393890B (zh) 一种石墨烯掩埋散热层和纵向沟道GaN MISFET元胞结构及制备方法
CN105428412A (zh) AlGaN/GaN异质结场效应晶体管及其制备方法
CN104332504A (zh) 一种GaN基异质结肖特基二极管器件及其制作方法
CN104617160A (zh) 肖特基二极管及其制造方法
JP2019506740A (ja) ショットキーバリア整流器
CN107978642A (zh) 一种GaN基异质结二极管及其制备方法
CN109873034A (zh) 沉积多晶AlN的常关型HEMT功率器件及其制备方法
CN110459595A (zh) 一种增强型AlN/AlGaN/GaN HEMT器件及其制备方法
US9685818B2 (en) Device for converting luminous energy into electrical energy and storing electrical energy, and a method of making an electrochemical cell
CN210429824U (zh) 一种增强型AlN/AlGaN/GaN HEMT器件
CN111384171A (zh) 高沟道迁移率垂直型umosfet器件及其制备方法
CN108598161B (zh) 一种利用全固态电池实现的增强型iii-v hemt器件
CN109037327A (zh) 一种具有局部电流阻挡层的纵向栅极结构功率器件及其制备方法
CN204118078U (zh) 一种GaN基异质结肖特基二极管器件
KR20140096235A (ko) 반도체 구조물 및 그 제조 공정
CN105280694A (zh) 半导体功率元件
US10720670B2 (en) Self-aligned 3D solid state thin film battery
CN105280493A (zh) 一种沟槽igbt器件的制造方法
CN115881774A (zh) 一种具有阵列侧栅结构的hemt器件及其制备方法
CN116504805A (zh) 具有垂直AlGaN/GaN结构的高电子迁移率晶体管及其制备方法
CN115966604A (zh) 一种半导体器件结构及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant