CN108588582B - 低温服役环境下3d打印用高强不锈钢粉末及制备工艺 - Google Patents

低温服役环境下3d打印用高强不锈钢粉末及制备工艺 Download PDF

Info

Publication number
CN108588582B
CN108588582B CN201810714496.7A CN201810714496A CN108588582B CN 108588582 B CN108588582 B CN 108588582B CN 201810714496 A CN201810714496 A CN 201810714496A CN 108588582 B CN108588582 B CN 108588582B
Authority
CN
China
Prior art keywords
powder
printing
standard component
stainless steel
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810714496.7A
Other languages
English (en)
Other versions
CN108588582A (zh
Inventor
王长军
梁剑雄
刘振宝
杨志勇
苏杰
杨卓越
孙永庆
李文辉
曹呈祥
宁静
雍兮
胡家齐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Iron and Steel Research Institute
Original Assignee
Central Iron and Steel Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Iron and Steel Research Institute filed Critical Central Iron and Steel Research Institute
Priority to CN201810714496.7A priority Critical patent/CN108588582B/zh
Publication of CN108588582A publication Critical patent/CN108588582A/zh
Application granted granted Critical
Publication of CN108588582B publication Critical patent/CN108588582B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • B22F1/0003
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/34Process control of powder characteristics, e.g. density, oxidation or flowability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/366Scanning parameters, e.g. hatch distance or scanning strategy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/14Making metallic powder or suspensions thereof using physical processes using electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

一种低温服役环境下3D打印用高强不锈钢粉末及制备工艺,属于增材制造用金属材料领域。该粉末的化学成分按重量百分比为:C:≤0.02%、Si:≤0.5%、Mn:≤0.5%、P:≤0.01%、S:≤0.003%、Cr:10.0~12.5%、Ni:7.5~9.5%、Mo:2.5~3.5%、V:0.05~0.15%、Co:4.0~6.0%、O:≤0.015%、N:≤0.010%,余量为Fe及不可避免的杂质。制造工艺:母合金制备,等离子旋转电极制粉,粉末筛分与收集。优点在于,经SLM增材制造与配套热处理后,发明粉末制备的标准件具备了极为优异的综合力学性能,特别是低温韧性。可直接作为低温与航天工程领域3D打印用高性能复杂精密零件的粉末耗材,也可推广至医疗、海洋工程等相关领域,具有广阔的市场前景。

Description

低温服役环境下3D打印用高强不锈钢粉末及制备工艺
技术领域
本发明属于增材制造用金属材料领域,特别是提供了一种低温服役环境下3D打印用高强不锈钢粉末及制备工艺。
背景技术
增材制造(3D打印)具有不受零件复杂程度约束、材料利用率高与显著缩短研制周期等技术优势,已成为未来最具潜力的制造技术之一。但是相比于增材制造技术最为领先的美国而言,国内金属3D打印技术还有较大差距,其中3D打印金属粉末耗材供给不足已成为制约其在我国发展的最主要障碍之一。由于增材制造技术的特殊性,金属粉末耗材在整个制造过程中起到了决定性的作用。国内目前受制粉设备与技术所限,高球形度细粒径粉末制备困难,粉末的氧含量与杂质物含量较高,最终导致了3D打印制品性能较差。这已严重限制了增材制造产业在国内的做大做强,因此研制具有自主知识产权并具备批生产能力的高品质金属粉末耗材已迫在眉睫。
目前增材制造球形金属粉末的制备技术主要包括:惰性气体雾化(简称“气雾化”)、等离子旋转电极雾化(PREP)、旋转盘雾化、等离子熔丝雾化及等离子球化等。相比其他制粉技术,PREP法制备的球形金属粉末具有空心粉少、无气体夹杂、球形度高、流动性好等优点,是制备高品质球形金属粉末的最有效技术手段之一,非常适用于作为3D打印高性能复杂精密零件的粉末耗材。
发明内容
本发明的目的在于提供一种低温服役环境下3D打印用高强不锈钢粉末及制备工艺,通过合金成分、制粉工艺、打印工艺以及配套的热处理工艺设计,制造出一种低温服役环境下3D打印用高强不锈钢粉末,以解决国内增材制造领域,特别是低温服役环境下高品质金属粉末耗材的选材瓶颈问题。
本发明高强不锈钢粉末的化学成分按重量百分比为:C:≤0.02%、Si:≤0.5%、Mn:≤0.5%、P:≤0.01%、S:≤0.003%、Cr:10.0~12.5%、Ni:7.5~9.5%、Mo:2.5~3.5%、V:0.05~0.15%、Co:4.0~6.0%、O:≤0.015%、N:≤0.010%,余量为Fe及不可避免的杂质。
可见,相比于传统不锈钢金属粉末化学成分而言,本发明添加了合金元素钼、钒、钴,同时控制了极低的氧、氮含量。其主要作用及配比如下:
钼:钼元素一方面可以改善基体组织的耐蚀性,特别是材料的抗点蚀性能。另一方面,在时效过程中还可以析出Fe2Mo、Ni3Mo、Mo2C等纳米析出相,从而提高钢的回火稳定性与二次硬化效应。但过高的钼含量会促进δ铁素体的形成,对性能产生不利影响。综合考虑,本发明钼含量为2.5~3.5%。
钒:钒元素可以在高温形成VN粒子,从而钉扎晶界细化晶粒。同时在中温还可以析出纳米第二相,起到沉淀析出强化的作用,综合考虑,本发明钒含量为0.05~0.15%。
钴:钴元素是本发明金属粉末具有较高强度级别的最重要合金元素之一,其作用为抑制延缓马氏体位错亚结构回复,在保持基体强度的同时促进更多纳米析出相在时效过程中析出,但添加过多的钴,会造成金属粉末的成本显著提高。综合考虑,本发明的钴含量为4.0~6.0%。
氧和氮:金属粉末中有害的气体元素,造成较多空心粉形成的同时显著降低后期打印部件的塑韧性,特别是低温塑韧性。由于本发明的粉末母材采用真空感应+真空自耗双联超纯冶炼工艺冶炼,同时配合等离子旋转电极制粉技术,氧和氮含量可以分别控制在0.015%和0.010%以内。
基于上述合金成分配比的金属粉末作为选择性激光熔化(SLM)的粉末耗材进行力学性能标准件打印,配合相关热处理工艺后,打印件具备了十分优异的综合力学性能:在室温抗拉强度达到1300MPa,屈服强度达到1250MPa,延伸率超过17%,断面收缩率超过70%的前提下,发明钢的室温夏比U型冲击功达到160J以上,-196℃冲击功仍保持在80J以上。
本发明所涉及的3D高强不锈钢粉末及其制备工艺如下:
(1)母合金制备:采用真空感应冶炼(VIM)+真空自耗重熔(VAR)制备母合金,母合金成分为C:≤0.02%、Si:≤0.5%、Mn:≤0.5%、P:≤0.01%、S:≤0.003%、Cr:10.0~12.5%、Ni:7.5~9.5%、Mo:2.5~3.5%、V:0.05~0.15%、Co:4.0~6.0%、O:≤0.0025%、N:≤0.003%,余量为Fe及不可避免的杂质。随后将母合金锻造或轧制成φ50mm、φ75mm合金棒材,经过扒皮、打孔攻丝处理后制成PREP制粉用合金棒材。
(2)PREP制粉:雾化室抽真空后,向雾化室充入纯度99.995%以上的高纯氩气与99.995%以上高纯氦气的混合气体(氩和氦配比为4~8:1),制粉工艺参数为电机棒转速15000~20000r/min,等离子钨极枪加载1000~1800A电流起弧,等离子弧距控制在3~8cm,合金棒进料速度为0.5~2.0mm/s。所制备的金属粉末化学成为C:≤0.02%、Si:≤0.5%、Mn:≤0.5%、P:≤0.01%、S:≤0.003%、Cr:10.0~12.5%、Ni:7.5~9.5%、Mo:2.5~3.5%、V:0.05~0.15%、Co:4.0~6.0%、O:≤0.015%、N:≤0.010%,余量为Fe及不可避免的杂质。
(3)粉末筛分与收集:将集粉罐中的粉末进行机械振动筛分,15~53μm粉末用于激光选区熔化技术(Selective Laser Melting,SLM),50~100μm粉末用于电子束熔融技术(Electron Beam Melting,EBM)50~150μm粉末用于激光工程化净成形技术(LaserEngineered Net Shaping,LENS),同时对筛分好的金属粉末进行抽真空密封包装。
(4)基于SLM技术的标准件制备:将所发明的15~53μm粒度范围的高强度不锈钢金属粉末放入SLM激光增材制造设备中进行力学性能标准件制备,激光打印的工艺参数为:光斑直径70~100μm、激光功率200~300W、扫描速度800~1200mm/s,道次间距80~120μm,单层铺粉厚度20~30μm,此打印工艺可使零部件的致密度达到99.9%以上。
(5)标准件的热处理:增材制造后的标准件需经固溶+深冷+时效热处理。具体工艺如下:固溶温度为700~800℃,保温时间1~2小时,空冷或水冷至室温;深冷温度为-70~-80℃,保温时间2~4小时,空冷至室温;时效温度为480~540℃,保温时间为3~5小时,空冷到室温。
本发明与现有技术相比,优点在于:
(1)通过创新的合金体系设计与制粉工艺配合,本发明的高强不锈钢金属粉末气体含量极低(O:≤0.015%、N:≤0.010%)、粉末球形度高(>90%),松装密度高(>4.65g/cm3),休止角小(<25°),流动性极佳(≤14s/50g),这是造成后期3D打印标准件致密度与综合力学性能极佳的重要原因之一。
(2)针对所发明的高强不锈钢金属粉末物性特点,提出了与其相匹配的SLM激光打印的工艺参数与热处理制度,导致最终3D打印标准件具备了极为优异的综合力学性能:室温抗拉强度达到1300MPa,屈服强度达到1250MPa,延伸率超过15%,断面收缩率超过60%的前提下,发明钢的室温夏比U型冲击功达到160J以上,-196℃冲击功仍保持在80J以上。
本发明的金属粉末可直接应用于低温与航天工程领域3D打印用高性能复杂精密零件的粉末耗材,也可推广至医疗、海工等相关领域,具有广阔的市场前景。
附图说明
图1实施例2金属粉末的宏观形貌图。
图2实施例3单个金属粉末的微观形貌图,显示了粉末表面特征。
图3实施例3粉末的金相组织图,显示了粉末内部凝固组织特征。
图4实施例5经过SLM打印后零件示意图。
具体实施方式
实施例1
(1)合金棒制备:采用真空感应冶炼(VIM)+真空自耗重熔(VAR)双联冶炼工艺制备母合金,其化学成分为:C:0.017%、Si:0.18%、Mn:0.24%、P:0.0049%、S:0.0005%、Cr:10.90%、Ni:8.32%、Mo:2.72%、V:0.12%、Co:5.37%、O:0.0021%、N:0.0026%。将母合金锻造成φ75mm合金棒材,经过扒皮、打孔攻丝处理后制成PREP用合金棒材。
(2)PRPR制粉工艺:将φ75mm合金棒放在电机主轴上,对雾化室抽真空,当真空度小于0.05Pa,向雾化室充入纯度99.999%以上的高纯氩气与99.999%以上高纯氦气的混合气体(氩气和氦气配比4:1)。制粉工艺参数为电机棒转速18000r/min,等离子钨极枪加载1600A电流起弧,等离子弧距控制在4cm,合金棒进料速度为1.2mm/s。
(3)SLM打印工艺:将PREP制备的15~53μm粒度范围的金属粉末放入SLM激光增材制造设备中进行标准件制备,打印工艺参数为:光斑直径100μm、激光功率260W、扫描速度900mm/s,道次间距80μm,单层铺粉厚度30μm。
实施例2
实施例2与实施例1的合金棒制备与SLM打印工艺完全相同,区别在于PRPR制粉工艺,其详细工艺如下:将φ75mm合金棒放在电机主轴上,对雾化室抽真空,当真空度小于0.05Pa,向雾化室充入纯度99.995%以上的纯氩气与99.995%以上纯氦气的混合气体(氩气和氦气配比5:1)。制粉工艺参数为电机棒转速16000r/min,等离子钨极枪加载1500A电流起弧,等离子弧距控制在5cm,合金棒进料速度为1mm/s。
实施例3
实施例3与实施例1、2的合金棒制备与SLM打印工艺完全相同,区别在于PRPR制粉工艺,其详细工艺如下:将φ75mm合金棒放在电机主轴上,对雾化室抽真空,当真空度小于0.05Pa,向雾化室充入纯度99.995%以上的纯氩气与99.995%以上纯氦气的混合气体(氩气和氦气配比6:1)。制粉工艺参数为电机棒转速17000r/min,等离子钨极枪加载1600A电流起弧,等离子弧距控制在4cm,合金棒进料速度为1.1mm/s。
实施例4
实施例4与实施例3合金棒制备与PREP制粉工艺完全相同,区别在于SLM打印工艺,其详细工艺如下:将PREP制备的15~53μm粒度范围的金属粉末放入SLM激光增材制造设备中进行标准件制备,打印工艺参数为:光斑直径100μm、激光功率230W、扫描速度800mm/s,道次间距100μm,单层铺粉厚度30μm。
实施例5
实施例5与实施例3合金棒制备与PREP制粉工艺完全相同,区别在于SLM打印工艺,其详细工艺如下:将PREP制备的15~53μm粒度范围的金属粉末放入SLM激光增材制造设备中进行标准件制备,打印工艺参数为:光斑直径100μm、激光功率290W、扫描速度1000mm/s,道次间距100μm,单层铺粉厚度30μm。
表1给出了实施例1~3,经过母材冶炼、RREP制粉后,金属粉末的化学成分检测结果。可见,实施例除了气体氧、氮含量外,气体成分基本保持一致。表2给出了实施例1~3金属粉末的物性检测结果,可见,随着粉末中氧、氮含量的升高,其粉末的松装密度、流动性均不同程度的有所降低。这说明,气体含量对粉末的物性有着不利影响,在母材冶炼及粉末制备过程中应加以严格控制。表3给出了实施例1~5制备的金属粉末,经过SLM打印后的力学性能检测结果。实施例均采用750℃/1h水冷+-73℃/4h空冷+500℃/3h空冷热处理工艺。可见,经过简单的热处理后,实施例具备了极佳综合力学性能与强韧性匹配:室温抗拉强度达到1300MPa,屈服强度达到1250MPa,延伸率超过15%,断面收缩率超过60%的前提下,发明钢的室温夏比U型冲击功达到160J以上,-196℃冲击功仍保持在80J以上。
采用扫描电镜对实施例2金属粉末的宏观形貌分布进行了观察,其结果见图1所示。可见,实施例2的金属粉末表面光洁度高,球形度极好。图2给出了实施例3单个金属粉末的微观形貌图,显示了其表面形貌状态。图3为实施例3粉末的金相凝固组织形貌。可见,粉末内部多以柱状晶的凝固组织为主,同时粉末内部存在交叉的相界面。图4为实施例5经过SLM打印后零件图。
本发明以上描述只是部分实施例,但是本发明并不局限于上述的具体实施方式。上述的具体实施方式是示意性的,并不是限制性的。凡是采用本发明的材料和方法,在不脱离本发明宗旨和权利要求所保护的范围情况下,所有具体扩展均属本发明的保护范围之内。
表1本发明实施例化学成分(wt.%)
实施例 C Si Mn P S Cr Ni Mo V Co N O
实施例1 0.016 0.17 0.25 0.0049 0.0006 10.91 8.35 2.71 0.12 5.35 0.0048 0.0088
实施例2 0.017 0.18 0.24 0.0051 0.0007 10.92 8.36 2.72 0.12 5.36 0.0061 0.0114
实施例3 0.017 0.18 0.25 0.0048 0.0006 10.91 8.35 2.70 0.12 5.35 0.0064 0.0140
表2本发明实施例金属粉末物性检测
表3实施例粉末SLM打印后标准件的力学性能

Claims (2)

1.低温服役环境下3D打印用高强不锈钢粉末,其特征在于,该粉末的化学成分按重量百分比为:C:≤0.02%、Si:≤0.5%、Mn:≤0.5%、P:≤0.01%、S:≤0.003%、Cr:10.0~12.5%、Ni:7.5~9.5%、Mo:2.5~3.5%、V:0.05~0.15%、Co:4.0~6.0%、O:≤0.015%、N:≤0.010%,余量为Fe及不可避免的杂质;
基于上述粉末成分,经SLM增材制造与热处理后,标准件室温抗拉强度达到1300MPa,屈服强度达到1250MPa,延伸率超过15%,断面收缩率超过60%的前提下,室温夏比U型冲击功达到160J以上,-196℃冲击功仍保持在80J以上;
该低温服役环境下3D打印用高强不锈钢粉末的制备工艺如下:
(1)母合金制备:采用真空感应冶炼+真空自耗重熔制备母合金,母合金成分为C:≤0.02%、Si:≤0.5%、Mn:≤0.5%、P:≤0.01%、S:≤0.003%、Cr:10.0~12.5%、Ni:7.5~9.5%、Mo:2.5~3.5%、V:0.05~0.15%、Co:4.0~6.0%、O:≤0.0025%、N:≤0.003%,余量为Fe及不可避免的杂质;随后将母合金锻造或轧制成φ50mm、φ75mm合金棒材,经过扒皮、打孔攻丝处理后制成PREP制粉用合金棒材;
(2)PREP制粉:雾化室抽真空后,向雾化室充入纯度99.995%以上的高纯氩气与99.995%以上高纯氦气的混合气体,氩和氦配比为4~8:1,制粉工艺参数为电机棒转速15000~20000r/min,等离子钨极枪加载1000~1800A电流起弧,等离子弧距控制在3~8cm,合金棒进料速度为0.5~2.0mm/s;所制备的金属粉末化学成为C:≤0.02%、Si:≤0.5%、Mn:≤0.5%、P:≤0.01%、S:≤0.003%、Cr:10.0~12.5%、Ni:7.5~9.5%、Mo:2.5~3.5%、V:0.05~0.15%、Co:4.0~6.0%、O:≤0.015%、N:≤0.010%,余量为Fe及不可避免的杂质;
(3)粉末筛分与收集:将集粉罐中的粉末进行机械振动筛分,15~53μm粉末用于激光选区熔化,50~100μm粉末用于电子束熔融50~150μm粉末用于激光工程化净成形,同时对筛分好的金属粉末进行抽真空密封包装;
(4)基于SLM技术的标准件制备:将所发明的15~53μm粒度范围的高强度不锈钢金属粉末放入SLM激光增材制造设备中进行力学性能标准件制备,激光打印的工艺参数为:光斑直径70~100μm、激光功率200~300W、扫描速度800~1200mm/s,道次间距80~120μm,单层铺粉厚度20~30μm,此打印工艺可使零部件的致密度达到99.9%以上;
(5)标准件热处理:增材制造后的标准件需经固溶+深冷+时效热处理:固溶温度为700~800℃,保温时间1~2小时,空冷或水冷至室温;深冷温度为-70~-80℃,保温时间2~4小时,空冷至室温;时效温度为480~540℃,保温时间为3~5小时,空冷到室温。
2.一种权利要求1所述的低温服役环境下3D打印用高强不锈钢粉的制备工艺,其特征在于:
(1)母合金制备:采用真空感应冶炼+真空自耗重熔制备母合金,母合金成分为C:≤0.02%、Si:≤0.5%、Mn:≤0.5%、P:≤0.01%、S:≤0.003%、Cr:10.0~12.5%、Ni:7.5~9.5%、Mo:2.5~3.5%、V:0.05~0.15%、Co:4.0~6.0%、O:≤0.0025%、N:≤0.003%,余量为Fe及不可避免的杂质;随后将母合金锻造或轧制成φ50mm、φ75mm合金棒材,经过扒皮、打孔攻丝处理后制成PREP制粉用合金棒材;
(2)PREP制粉:雾化室抽真空后,向雾化室充入纯度99.995%以上的高纯氩气与99.995%以上高纯氦气的混合气体,氩和氦配比为4~8:1,制粉工艺参数为电机棒转速15000~20000r/min,等离子钨极枪加载1000~1800A电流起弧,等离子弧距控制在3~8cm,合金棒进料速度为0.5~2.0mm/s;所制备的金属粉末化学成为C:≤0.02%、Si:≤0.5%、Mn:≤0.5%、P:≤0.01%、S:≤0.003%、Cr:10.0~12.5%、Ni:7.5~9.5%、Mo:2.5~3.5%、V:0.05~0.15%、Co:4.0~6.0%、O:≤0.015%、N:≤0.010%,余量为Fe及不可避免的杂质;
(3)粉末筛分与收集:将集粉罐中的粉末进行机械振动筛分,15~53μm粉末用于激光选区熔化,50~100μm粉末用于电子束熔融50~150μm粉末用于激光工程化净成形,同时对筛分好的金属粉末进行抽真空密封包装;
(4)基于SLM技术的标准件制备:将所发明的15~53μm粒度范围的高强度不锈钢金属粉末放入SLM激光增材制造设备中进行力学性能标准件制备,激光打印的工艺参数为:光斑直径70~100μm、激光功率200~300W、扫描速度800~1200mm/s,道次间距80~120μm,单层铺粉厚度20~30μm,此打印工艺可使零部件的致密度达到99.9%以上;
(5)标准件热处理:增材制造后的标准件需经固溶+深冷+时效热处理:固溶温度为700~800℃,保温时间1~2小时,空冷或水冷至室温;深冷温度为-70~-80℃,保温时间2~4小时,空冷至室温;时效温度为480~540℃,保温时间为3~5小时,空冷到室温。
CN201810714496.7A 2018-06-29 2018-06-29 低温服役环境下3d打印用高强不锈钢粉末及制备工艺 Active CN108588582B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810714496.7A CN108588582B (zh) 2018-06-29 2018-06-29 低温服役环境下3d打印用高强不锈钢粉末及制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810714496.7A CN108588582B (zh) 2018-06-29 2018-06-29 低温服役环境下3d打印用高强不锈钢粉末及制备工艺

Publications (2)

Publication Number Publication Date
CN108588582A CN108588582A (zh) 2018-09-28
CN108588582B true CN108588582B (zh) 2019-11-22

Family

ID=63634984

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810714496.7A Active CN108588582B (zh) 2018-06-29 2018-06-29 低温服役环境下3d打印用高强不锈钢粉末及制备工艺

Country Status (1)

Country Link
CN (1) CN108588582B (zh)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018010079A1 (de) * 2018-12-20 2020-06-25 Messer Group Gmbh Verfahren zum Nachbehandeln eines mittels generativer Fertigung hergestelllten Werkstücks
CN109338192A (zh) * 2018-12-24 2019-02-15 南通金源智能技术有限公司 3d打印用磨具钢粉末
CN110090961B (zh) * 2019-04-29 2022-04-15 石家庄钢铁有限责任公司 一种轴承钢产品的加工工艺
CN110863154A (zh) * 2019-10-28 2020-03-06 上海毅速激光科技有限公司 一种新型的3d打印粉末材料及其制备工艺
CN111054924A (zh) * 2019-12-13 2020-04-24 上海镭镆科技有限公司 一种3d打印不锈钢材料热处理方法
CN111057922B (zh) * 2019-12-30 2021-05-07 钢铁研究总院 基于slm工艺用锰铜阻尼合金粉末及其制备方法
CN111266569A (zh) * 2020-02-19 2020-06-12 上海毅速激光科技有限公司 一种新型的3d打印粉末材料及其制备工艺
CN111519113B (zh) * 2020-05-21 2021-10-29 北京科技大学 一种电子产品用高强不锈钢粉末及制备工艺
CN111618310A (zh) * 2020-06-04 2020-09-04 四川容克斯科技有限公司 一种球形钒合金粉末及其制备方法、应用
CN111618301B (zh) * 2020-06-05 2022-08-26 西安建筑科技大学 一种激光选区熔化制备中碳钢的工艺
CN111644613A (zh) * 2020-06-30 2020-09-11 石家庄钢铁有限责任公司 一种高碳铬GCr15轴承钢球形粉末及其制备方法
CN112404420B (zh) * 2020-11-19 2022-01-04 中南大学 一种用于3d打印的高强度钢粉末、其制备方法、3d打印方法及制得的高强度钢
CN112191857B (zh) * 2020-12-04 2021-07-06 西安欧中材料科技有限公司 一种利用高能量密度等离子旋转电极制备铁基粉的方法
CN112609052A (zh) * 2020-12-11 2021-04-06 西安航天发动机有限公司 适于低温工况的激光选区熔化成形高强不锈钢热处理方法
CN112831721B (zh) * 2020-12-30 2022-01-11 上海交通大学 一种增材制造超高强塑积钢材料及其制备方法
CN112792349B (zh) * 2021-04-08 2021-06-29 西安欧中材料科技有限公司 一种降低高合金化镍基合金粉末中异形粉的方法
CN113263173A (zh) * 2021-05-11 2021-08-17 浙江工业大学 一种高强度耐氢脆增材制造不锈钢制造工艺
CN113263174A (zh) * 2021-05-11 2021-08-17 浙江工业大学 一种高强度耐腐蚀增材制造不锈钢制造工艺
CN114147216B (zh) * 2021-09-30 2022-11-15 钢铁研究总院 钢制品中添加低沸点易氧化金属元素的方法及打印装置
CN114393206B (zh) * 2021-11-30 2022-12-16 钢铁研究总院 一种slm用高强度不锈钢粉末、制备方法及其打印工艺
CN114682784B (zh) * 2022-03-31 2023-11-28 钢铁研究总院有限公司 一种SLM用1900MPa级超高强钢的低成本粉末制备方法与打印方法
CN114959493B (zh) * 2022-06-22 2023-04-28 钢铁研究总院有限公司 面向氧化物无害化增材制造超低温高强韧不锈钢
CN114959494A (zh) * 2022-06-22 2022-08-30 钢铁研究总院有限公司 1400MPa级增材制造超低温不锈钢及制备方法

Also Published As

Publication number Publication date
CN108588582A (zh) 2018-09-28

Similar Documents

Publication Publication Date Title
CN108588582B (zh) 低温服役环境下3d打印用高强不锈钢粉末及制备工艺
CN110592506B (zh) 一种gh4780合金坯料和锻件及其制备方法
CN101205595B (zh) 强韧性超高强度不锈钢及其制造方法
CN108517473A (zh) 基于slm工艺用高强度不锈钢粉末及其制备方法
CN100513019C (zh) 一种采用气雾化法制备含高氮不锈钢粉末的方法
CN104894483B (zh) 粉末冶金耐磨工具钢
CN102498227B (zh) 轴承钢
CN104480403B (zh) 低碳马氏体沉淀硬化不锈钢及其生产制造叶轮锻件的方法
CN106825587B (zh) 一种制备氧化物弥散强化铁基合金的方法
CN109136719A (zh) 一种时效强化型Ni-Cr基高温耐蚀合金及热处理方法
CN110373561A (zh) 一种粉末锻造制备高致密度细晶钛合金的方法
CN102925783A (zh) 一种过共晶高铬白口铸铁的制备方法
Zhang et al. The interface microstructure and tensile properties of direct energy deposited TC11/Ti2AlNb dual alloy
CN106435282B (zh) 一种钴基高温合金及其制备方法
CN108486410A (zh) 一种超高强塑积低成本钛合金及其制备方法与应用
CN112981231B (zh) 一种高锰氮奥氏体不锈钢粉末及其制备方法
CN104651657B (zh) 一种析出强化型铁镍钴基高温合金的制备方法
CN109967733A (zh) FeCrVTiMn高熵合金及使用其进行激光增材制造的方法
CN113832369B (zh) 增材制造的具有超高屈服强度和高塑性的亚稳态β钛合金
CN109609864B (zh) 一种高氮无镍不锈钢粉末及其制备方法
CN114561517A (zh) 一种低密度高塑韧性钢及其制备方法和应用
CN110293287A (zh) 一种超高强度沉淀硬化不锈钢的焊接工艺
CN103805909A (zh) 一种奥氏体热作模具钢的制备方法
CN104404356B (zh) 一种叶轮用马氏体不锈钢的返回料熔炼方法
CN113652591A (zh) 兼具高比强度、高塑性和高韧性的富Ti高熵合金及其制备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant