CN114959494A - 1400MPa级增材制造超低温不锈钢及制备方法 - Google Patents

1400MPa级增材制造超低温不锈钢及制备方法 Download PDF

Info

Publication number
CN114959494A
CN114959494A CN202210712971.3A CN202210712971A CN114959494A CN 114959494 A CN114959494 A CN 114959494A CN 202210712971 A CN202210712971 A CN 202210712971A CN 114959494 A CN114959494 A CN 114959494A
Authority
CN
China
Prior art keywords
equal
less
temperature
stainless steel
additive manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210712971.3A
Other languages
English (en)
Inventor
刘赓
苏杰
杨卓越
丁雅莉
宁静
高齐
王敖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Iron and Steel Research Institute
Original Assignee
Central Iron and Steel Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Iron and Steel Research Institute filed Critical Central Iron and Steel Research Institute
Priority to CN202210712971.3A priority Critical patent/CN114959494A/zh
Publication of CN114959494A publication Critical patent/CN114959494A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/14Making metallic powder or suspensions thereof using physical processes using electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/04Hardening by cooling below 0 degrees Celsius
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0026Matrix based on Ni, Co, Cr or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0285Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

一种1400MPa级增材制造超低温不锈钢及制备方法,属于增材制造金属材料技术领域。该不锈钢母合金成分重量百分数为:C≤0.03%、Mn≤0.03、Si≤0.5%、Cr:10.5~12.0%、Ni:7.5~9.0%、Co:4.0~5.5%、Mo:1.8~2.2%、V≤0.1%、Ti:0.02~0.1%、Al≤0.01%,N≤40ppm,H≤2ppm,O≤20ppm,P≤0.01%,S≤0.003%:余量为Fe和不可避免杂质。优点在于,通过利用Ti元素代替Al元素作为母合金脱氧剂,将选区激光熔化条件下制备样品中氧化物尺寸由平均80nm降低至20nm,显著降低氧化物对材料冲击性能的影响,进一步提高材料强度。该材料仅需匹配低温固溶热处理制度,制备的零部件就可获得室温强度Rm≥1400MPa和‑193℃韧性Ku2≥80J匹配。

Description

1400MPa级增材制造超低温不锈钢及制备方法
技术领域
本发明属于材料设计及热处理技术领域,特别涉及一种利用氧化物强化的增材制造超低温高强韧不锈钢及其制备方法
背景技术
Fe-Cr-Ni-Co-Mo超低温用钢是一种马氏体基高强高韧不锈钢,其通过在马氏体基础上设计得到少量奥氏体以及大量弥散分布的纳米析出,获得高强高韧的性能组合。这类高强不锈钢在制备时需对N、H、O气体元素有着严格的控制,以防止基体中生成大量的粗大氧化物、碳氮化物,导致材料抗冲击性能下降。同时也因此,该合金的铸锻材中也需要避免Ti元素的加入,因为凝固过程中Ti元素易与C、N元素结合形成粗大的 Ti(C、N)。
低温用高强不锈钢在满足现有强韧性的基础上,结构减重及高效制备成为目前发展的热点。近年来,增材制造技术因其能够直接制造出近净成形的部件而获得了广泛的关注。选择性激光熔化(Selective Laser Melting,SLM)由于熔池尺寸较小,冷却速度高,可实现较精密的壳体、空心件、拓扑结构件的精准成形,是目前增材制造领域主要的制备手段。
相对于原始铸锻件材料,增材材料制粉及打印过程中会有明显的氧输入。在增材过程中,该部分氧元素将与合金元素形成氧化物,变形过程中加速裂纹萌生和扩展,恶化材料塑韧性。本发明原铸锻材的炼制过程中,由于如上文所述对Ti等元素的添加有限制,因此通常采用Al元素作为脱氧剂。冶金过程可以大幅降低母合金氧含量,铸锻材中多余的 Al元素可以固溶在基体或是形成NiAl析出,对基体组织强韧化无不良影响。采用对应成分进行增材制造时,Al元素极易与氧元素结合,在金属处于熔融态时形成Al2O3氧化物,氧化物颗粒在凝固过程中将显著长大,形成大颗粒氧化物。对增材组织的塑韧性产生不利影响。
发明内容
本发明的目的在于提供一种1400MPa级增材制造超低温不锈钢及其制备方法,通过添加原本对铸锻材原合金力学性能不利的Ti元素,利用 Ti的氧化物以及Ti/Al复合氧化物长大速率相较于Al的氧化物较低的特点,在增材制造的合金中实现了氧化物纳米化,克服了氧化物夹杂对材料韧性的不利影响,同时利用氧化物弥散强化提高了材料强度。
通过在Fe-Cr-Ni-Co-Mo合金中添加原本对铸锻件有害元素Ti元素,匹配旋转电极法制粉技术、选择激光熔化(SLM)增材技术、及热处理技术,制备的零部件具有优异强度(Rm≥1400MPa)和低温(-193℃)韧性(Ku2≥80J)匹配。所制得零部件可用于航天、航空、海洋工程等领域。
本发明母合金成分重量百分数为:C≤0.03%、Mn≤0.03、Si≤0.5%、 Cr:10.5~12.0%、Ni:7.5~9.0%、Co:4.0~5.5%、Mo:1.8~2.2%、V ≤0.1%、Ti:0.02~0.1%、Al≤0.01%,N≤40ppm,H≤2ppm,O≤20ppm, P≤0.01%,S≤0.003%:余量为Fe和不可避免杂质。
本发明的不锈钢制备主要步骤包括:
1.采用真空感应/真空自耗重熔工艺或真空感应/真空电渣重熔工艺进行熔炼获得高洁净度母合金;
2.采用等离子旋转电极法(PREP)制粉;
3.采用选区激光熔覆(SLM)对零部件进行增材制造;
4.对增材后材料进行热处理。制备的零部件屈服强度可达到 1350MPa,抗拉强度达到1400MPa,延伸率大于14%,断面收缩率超过 65%,低温-193℃冲击功(Ku2)大于80J。
上述合金元素的选择主要于采用Ti元素做为母合金炼制的主要脱氧元素,严格控制Al元素的含量,其中Ti元素含量:0.02~0.1wt.%,Al元素含量≤0.01wt.%。
本发明的制备方法采用等离子旋转电极法(PREP)制粉,用于SLM增材制造粉末粒径为15-53μm,与母合金氧含量相比粉末绝对氧增量不高于250ppm,所制备的粉末总体氧含量小于270ppm。具体工艺步骤及控制的技术参数如下:
(1)采用真空感应/真空自耗重熔工艺或真空感应/真空电渣重熔工艺进行熔炼获得高洁净度母合金,在真空感应熔炼时,需采用高纯铁合金进行熔炼,保证Al含量控制小于0.1%,之后的真空自耗及真空电渣重熔工艺实现Ti元素的适量控制。
(2)采用等离子旋转电极法(PREP)对母合金的锻材或铸材进行粉末制备,相比于常用的气雾化制粉(VIGA),PREP制备得到的粉末球形度高,卫星粉少,绝对氧增量较低。制得粉末后,筛分出粒径为15-53 μm的粉末。一般可控制氧增量小于250ppm,所制备的粉末总体氧含量小于270ppm。通常情况下粉末氧含量为150-200ppm。
(3)采用选区激光熔化(SLM)对零部件进行增材制造,优选打印工艺为激光功率为150~400W,扫描速度为600-1400mm/s,优选150-250 W,扫描速度为800-1000mm/s,采用高纯氩气作为保护气体。选用合理此打印工艺单层沉积厚度20-50μm,扫描间距50-140μm,此打印工艺使零部件致密度达到99.9%以上,且不产生热裂纹。利用发明中的合金成分增材制备得到的沉积态组织中,氧元素可实现100~250ppm的含量,氧化物颗粒尺寸不高于50nm,平均尺寸可细化至20nm。
(4)增材制造材料热处理工艺步骤主要包括增材制造后的零部件需经过低温固溶+深冷处理+时效的热处理工艺:固溶温度为730-750℃,固溶时间为1-2h;冷处理制度为-70--80℃,冷处理时间为2-5h,时效温度为480-520℃,时效时间为3-5h,最后空冷至室温。其中,较低的固溶温度可极大限度的避免打印件因热胀冷缩导致变形,该步骤需保证其发生完全奥氏体化,打印生成的部分胞状组织仍可保留在基体中,该胞状组织已被证明具有高位错密度,可产生强化效果。材料低温处理后,固溶后的奥氏体相大部分发生马氏体转变,但基体中仍可保持约5~15%的残余奥氏体。奥氏体的保留有利于变形过程中抑制裂纹扩展。在时效过程中,大量弥散的(Fe,Cr)2Mo相生成,可进一步产生强化效果。同时逆转变奥氏体会沿着残余奥氏体和马氏体界面推进,进一步提高奥氏体体积分数。
相比于无Ti元素添加的原始成分,发明材料沉积态组织中,室温抗拉强度可由1250~1320MPa提高至1400~1420MPa,屈服强度由1250MPa 等级提升至1350MPa等级,液氮U型冲击功维持在80-100J左右。冲击断口韧窝呈现细小均匀且有二次韧窝的典型特征,说明氧化物夹杂的细化可有效改善冲击裂纹的萌生,且起到一定的强化效果。
本发明针对增材制造马氏体时效不锈钢,通过合金的优化,设计得到了具有氧化物弥散强化效果的含Ti高强韧材料,较未添加Ti元素的材料屈服、抗拉强度均提高约100MPa。对于一般铸锻件,Ti元素极易与 C、N元素形成大尺寸Ti(C、N)颗粒,降低组织强韧性。相比于Al元素,Ti元素的添加在选区激光熔化工艺下对低温高强韧不锈钢中的作用主要有两点:一是利用其较低的氧化物长大动力学,实现氧化物颗粒纳米化;二是作为弥散强化的析出物对基体组织起到显著的强韧化效果。
本发明的优点在于,通过利用Ti元素代替Al元素作为母合金脱氧剂,可将选区激光熔化条件下制备样品中氧化物尺寸由平均80nm降低至 20nm,显著降低氧化物对材料冲击性能的影响,且产生氧化物弥散强化效果,进一步提高材料强度。该材料仅需匹配低温固溶热处理制度,制备的零部件就可获得优异室温强度(Rm≥1400MPa)和低温-193℃韧性(Ku2≥80J)匹配。
附图说明
图1为母合金制得粉末形貌图。
图2为实施例1对应沉积后零件外观图。
图3为对比例1中铝氧化物形貌图。
图4为实施例2中钛氧化物形貌图。
图5为实施例1沉积态微观组织SEM图。
图6为实施例2热处理后微观组织EBSD图。
具体实施方式
下面对本发明的实施例作详细说明,本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体操作过程,但本发明的保护范围不限于下述的实施例。
选用原材料母合金化学成分如表1所示成分1,其余量为Fe和不可避免杂质,合金采用真空感应炉+真空自耗重熔工艺进行熔炼,熔炼后锻造成为φ55的棒材进行旋转电极法(PREP)金属粉末制备,对所得粉末中15-53μm粒径粉末进行收集,所制备得到的粉末成分如表1成分1所示。所制得粉末主要为球形,几乎没有卫星粉,且粉末表面没有明显缺陷,如图1所示。后采用选区激光熔化(SLM)对零部件进行增材制造,如图2所示。在SLM制备过程中,激光功率为150W,扫描速度为1000mm/s。同时在打印过程中采用氩气作为保护气体,提供密闭氩气环境从而最大程度地减少氧化在打印过程中发生。沉积态样品经阿基米德排水法检测致密度均大于99.9%。沉积态组织中有较明显的粗大Al2O3氧化物颗粒,粒径约为80nm,如图3所示。对含Ti材料(成分2)进行相同工艺下得选区激光熔化制备,并对所制备的材料进行热处理。在所实现的材料沉积态组织中可观察到显著细化的Ti的氧化物,粒径细化至20nm。
对比表2和表3相关的成分-热处理工艺-和材料性能可以看出,添加Ti元素后,未对材料低温冲击韧性产生不良影响。相比于原始成分制得的材料,其抗拉强度增加了约100MPa,屈服强度增加了约100MPa。
本材料对应的热处理工艺同样是经过优选的结果。通常对于类似合金的锻态组织,一般要进行高温固溶处理(950-1100℃),使得材料发生再结晶后,再进行低温固溶处理。本发明中的优选工艺为直接进行低温固溶处理的原因在于,增材制造过程中的快速熔凝使基体累积了大量位错,该位错密度远超材料再结晶后发生马氏体相变所累积的位错。仅通过低温固溶处理可以有效利用沉积态组织特征,进一步实现强化效果。
以上结果说明,在新成分下增材制造的低温高强韧不锈钢的强度得到明显提升,细化后的纳米氧化物对材料塑韧性没有不良影响,新材料有着良好的强韧性匹配。
表1本发明对比例和实施例化学成分(wt.%)余量Fe
Figure BDA0003708708060000061
表2热处理工艺
Figure BDA0003708708060000062
表3不同材料工艺条件下材料性能
Figure BDA0003708708060000063
Figure BDA0003708708060000071

Claims (3)

1.一种1400MPa级增材制造超低温不锈钢,其特征在于:该不锈钢母合金成分重量百分数为:C≤0.03%、Mn≤0.03、Si≤0.5%、Cr:10.5~12.0%、Ni:7.5~9.0%、Co:4.0~5.5%、Mo:1.8~2.2%、V≤0.1%、Ti:0.02~0.1%、Al≤0.01%,N≤40ppm,H≤2ppm,O≤20ppm,P≤0.01%,S≤0.003%:余量为Fe和不可避免杂质;该不锈钢制备工艺步骤包括:
(1)采用真空感应/真空自耗重熔工艺或真空感应/真空电渣重熔工艺进行熔炼获得高洁净度母合金;
(2)采用等离子旋转电极法PREP制粉;
(3)采用选区激光熔覆SLM对零部件进行增材制造;
(4)对增材后材料进行热处理:制备的零部件屈服强度可达到1350MPa,抗拉强度达到1400MPa,延伸率大于14%,断面收缩率超过65%,低温-193℃冲击功(Ku2)大于80J。
2.权利要求1所述的1400MPa级增材制造超低温不锈钢的制备方法,其特征在于,工艺步骤及控制的技术参数如下:
(1)采用真空感应/真空自耗重熔工艺或真空感应/真空电渣重熔工艺进行熔炼获得高洁净度母合金,在真空感应熔炼时,需采用高纯铁合金进行熔炼,保证Al含量控制小于0.1%,之后的真空自耗及真空电渣重熔工艺实现Ti元素的适量控制;
(2)采用等离子旋转电极法PREP对母合金的锻材或铸材进行粉末制备,制得粉末后,筛分出粒径为15-53μm的粉末;控制氧增量小于250ppm,所制备的粉末总体氧含量为150-200ppm。
(3)采用选区激光熔化SLM对零部件进行增材制造,打印工艺激光功率为150~400W,扫描速度为600-1400mm/s,采用高纯氩气作为保护气体;单层沉积厚度20-50μm,扫描间距50-140μm,此打印工艺使零部件致密度达到99.9%以上,且不产生热裂纹;利用合金成分增材制备得到的沉积态组织中,氧元素实现100~250ppm的含量,氧化物颗粒尺寸不高于50nm,平均尺寸细化至20nm;
(4)增材制造材料热处理工艺步骤包括增材制造后的零部件需经过低温固溶+深冷处理+时效的热处理工艺:固溶温度为730-750℃,固溶时间为1-2h;冷处理制度为-70--80℃,冷处理时间为2-5h,时效温度为480-520℃,时效时间为3-5h,最后空冷至室温;其中,较低的固溶温度极大限度的避免打印件因热胀冷缩导致变形,该步骤需保证其发生完全奥氏体化,打印生成的部分胞状组织仍保留在基体中,该胞状组织已被证明具有高位错密度,产生强化效果;材料低温处理后,固溶后的奥氏体相大部分发生马氏体转变,但基体中仍保持约5~15%的残余奥氏体,奥氏体的保留有利于变形过程中抑制裂纹扩展;在时效过程中,大量弥散的(Fe,Cr)2Mo相生成,进一步产生强化效果;同时逆转变奥氏体会沿着残余奥氏体和马氏体界面推进,进一步提高奥氏体体积分数。
3.根据权利要求2所述的1400MPa级增材制造超低温不锈钢的制备方法,其特征在于,步骤(3中)打印工艺激光功率为150-250W,扫描速度为800-1000mm/s。
CN202210712971.3A 2022-06-22 2022-06-22 1400MPa级增材制造超低温不锈钢及制备方法 Pending CN114959494A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210712971.3A CN114959494A (zh) 2022-06-22 2022-06-22 1400MPa级增材制造超低温不锈钢及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210712971.3A CN114959494A (zh) 2022-06-22 2022-06-22 1400MPa级增材制造超低温不锈钢及制备方法

Publications (1)

Publication Number Publication Date
CN114959494A true CN114959494A (zh) 2022-08-30

Family

ID=82964869

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210712971.3A Pending CN114959494A (zh) 2022-06-22 2022-06-22 1400MPa级增材制造超低温不锈钢及制备方法

Country Status (1)

Country Link
CN (1) CN114959494A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116288027A (zh) * 2022-11-29 2023-06-23 清华大学 一种激光增材制造低密度马氏体时效钢及其制备方法
CN117403145A (zh) * 2023-10-07 2024-01-16 清华大学 增材制造的超高强度钢及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106868383A (zh) * 2015-12-14 2017-06-20 东北大学 用3d打印技术制备纳米结构氧化物弥散强化钢工件的方法
CN108588582A (zh) * 2018-06-29 2018-09-28 钢铁研究总院 低温服役环境下3d打印用高强不锈钢粉末及制备工艺
DE102020115049A1 (de) * 2020-06-05 2021-12-09 Deutsche Edelstahlwerke Specialty Steel Gmbh & Co. Kg Stahlmaterial zum Formen von Bauteilen durch additive Fertigung und Verwendung eines solchen Stahlmaterials
CN114012101A (zh) * 2021-09-30 2022-02-08 山西省化工研究所(有限公司) 一种选区激光熔化增材制造用高强高韧不锈钢粉末的制备方法
CN114561595A (zh) * 2022-02-21 2022-05-31 上海交通大学 纳米析出相和氧化物复合弥散强化合金及其制备与应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106868383A (zh) * 2015-12-14 2017-06-20 东北大学 用3d打印技术制备纳米结构氧化物弥散强化钢工件的方法
CN108588582A (zh) * 2018-06-29 2018-09-28 钢铁研究总院 低温服役环境下3d打印用高强不锈钢粉末及制备工艺
DE102020115049A1 (de) * 2020-06-05 2021-12-09 Deutsche Edelstahlwerke Specialty Steel Gmbh & Co. Kg Stahlmaterial zum Formen von Bauteilen durch additive Fertigung und Verwendung eines solchen Stahlmaterials
CN114012101A (zh) * 2021-09-30 2022-02-08 山西省化工研究所(有限公司) 一种选区激光熔化增材制造用高强高韧不锈钢粉末的制备方法
CN114561595A (zh) * 2022-02-21 2022-05-31 上海交通大学 纳米析出相和氧化物复合弥散强化合金及其制备与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
姜越: "《新型马氏体时效不锈钢及其强韧性》", 31 January 2017, 哈尔滨工业大学出版社 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116288027A (zh) * 2022-11-29 2023-06-23 清华大学 一种激光增材制造低密度马氏体时效钢及其制备方法
CN116288027B (zh) * 2022-11-29 2023-09-12 清华大学 低密度马氏体时效钢及其制备方法
CN117403145A (zh) * 2023-10-07 2024-01-16 清华大学 增材制造的超高强度钢及其制备方法
CN117403145B (zh) * 2023-10-07 2024-06-11 清华大学 增材制造的超高强度钢及其制备方法

Similar Documents

Publication Publication Date Title
CN111500917B (zh) 一种高强韧性中熵高温合金及其制备方法
CN109136652B (zh) 核电关键设备用镍基合金大截面棒材及其制造方法
CN114959494A (zh) 1400MPa级增材制造超低温不锈钢及制备方法
WO2014139453A1 (zh) 富Cu纳米团簇强化的超高强度铁素体钢及其制造方法
CN113249645B (zh) 一种高延性超高强韧钢及其制备方法
CN102477518A (zh) 一种汽轮机叶片用钢及其制造方法
KR101377251B1 (ko) 저온인성이 우수한 탄질소 복합첨가 오스테나이트계 스테인리스강 및 이의 제조방법
CN104630597A (zh) 一种铁镍铬基高温合金及其制造方法
CN109763066B (zh) 一种超高参数汽轮机关键热端部件用耐热钢
CN113667904B (zh) 低合金超高强度钢及其制备方法
CN114622133B (zh) 一种超超临界汽轮机转子锻件用耐热钢及其制备方法
CN114231765B (zh) 一种高温合金棒材的制备方法与应用
CN109554629A (zh) 一种超超临界火电机组用钢及其制备方法
CN113774281A (zh) 一种2000MPa级高塑韧性高耐蚀马氏体时效不锈钢及其制备方法
CN111321348B (zh) 一种lng船用肋板l型钢及其制造方法
CN114032440A (zh) 一种Laves相强化奥氏体耐热钢及其制备方法
CN114959493B (zh) 面向氧化物无害化增材制造超低温高强韧不锈钢
CN103805909A (zh) 一种奥氏体热作模具钢的制备方法
CN114855092B (zh) 一种增材制造高强韧不锈钢及其制备工艺
CN114480984B (zh) 一种Ti合金化低密度高强钢及其制备方法
CN114045384B (zh) 改善低镍铁素体-奥氏体型不锈钢低温冲击韧性的方法
CN114086086B (zh) 纳米相碳氮复合颗粒增强型因瓦合金线材及其制备方法
CN112322987B (zh) 一种电弧增材制造用超高强钢丝材及制备方法
CN104862572A (zh) 一种高强度高延伸率的高合金钢及其制造方法
CN116426836B (zh) 一种Fe-Mn-Al-C-Nb-V奥氏体轻质钢及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20220830