CN111057922B - 基于slm工艺用锰铜阻尼合金粉末及其制备方法 - Google Patents

基于slm工艺用锰铜阻尼合金粉末及其制备方法 Download PDF

Info

Publication number
CN111057922B
CN111057922B CN201911399302.XA CN201911399302A CN111057922B CN 111057922 B CN111057922 B CN 111057922B CN 201911399302 A CN201911399302 A CN 201911399302A CN 111057922 B CN111057922 B CN 111057922B
Authority
CN
China
Prior art keywords
powder
percent
slm
preparing
equal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911399302.XA
Other languages
English (en)
Other versions
CN111057922A (zh
Inventor
王长军
孙永庆
刘振宝
梁剑雄
杨志勇
苏杰
王春旭
李文辉
马聪慧
胡家齐
厉勇
韩顺
宁静
高齐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Iron and Steel Research Institute
Original Assignee
Central Iron and Steel Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Iron and Steel Research Institute filed Critical Central Iron and Steel Research Institute
Priority to CN201911399302.XA priority Critical patent/CN111057922B/zh
Publication of CN111057922A publication Critical patent/CN111057922A/zh
Priority to AU2020101822A priority patent/AU2020101822A4/en
Priority to US17/136,085 priority patent/US20210197277A1/en
Application granted granted Critical
Publication of CN111057922B publication Critical patent/CN111057922B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/34Process control of powder characteristics, e.g. density, oxidation or flowability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/66Treatment of workpieces or articles after build-up by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/10Pre-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/003General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals by induction
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/04Refining by applying a vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C22/00Alloys based on manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0824Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0844Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid in controlled atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0848Melting process before atomisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/086Cooling after atomisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种基于SLM工艺用锰铜阻尼合金粉末及其制备方法,属于增材制造用金属材料技术领域。该粉末的化学成分按重量百分比为C:≤0.15%、Ni:4.9~5.2%、Si:≤0.15%、Fe:1.8~5.0%、Cu:20~23%、P:≤0.03%、S:≤0.06%,余量为Mn及不可避免的杂质元素。制造工艺包括:母合金制备,真空感应熔炼气雾化法VIGA制粉,惰性气体保护下机械振动与气流分级筛粉与收集。与现有技术相比,该粉末球形度高,松装密度高,休止角小,流动性好且15~53μm的细粉收得率较高,可应用于航空航天、船舶增材制造领域用减震阻尼的零部件,也可推广至交通、核电的精密电子仪器的增材制造领域,具有广阔的市场前景。

Description

基于SLM工艺用锰铜阻尼合金粉末及其制备方法
技术领域
本发明属于增材制造用金属材料技术领域,具体涉及一种基于SLM工艺用锰铜阻尼合金粉末及其制备方法。
背景技术
随着科技大发展和人们生活水平的提高,减振降噪问题已越发的受到个人,企业的关注。尤其伴随航空、船舶、汽车领域装备的发展日趋高速化和大功率化,由此产生的宽频带随机激振会引起结构的多共振峰响应,从而使电子器件失效,仪器仪表失灵,严重时甚至造成灾难性后果,为了解决振动和噪音问题,针对特定的振动和噪声源,采用具有高阻尼性能的材料制备阻尼元件,将振动能大部分转变为热能,从而获得减振降噪的效果。因此,高阻尼减振合金材料的研究与应用,不仅具有学术意义而且具有广阔的市场应用前景。
金属材料基阻尼合金作为一类新颖的功能结构材料,可实现振源即承载部件与阻尼构件一体化,与传统减振降噪对策相比,具有工艺简便、成本低、适用范围广及技术先进、效果好等优点,已开始应用于多个领域。其中典型的孪晶型阻尼锰铜合金与其它的阻尼合金相比,因为具有优良的阻尼性能和较好的力学性能,在航天、舰船,精密电子仪表仪器领域有着广泛应用。但由于其热加工性能一般,多数以铸造或复杂精密锻造方式成型。相对而言,增材制造(3D打印)具有不受零件复杂程度约束、材料利用率高与制造周期短等技术优势,已成为未来最具潜力的制造技术之一。其中SLM技术要求的金属粉末粒度范围较小(15~53μm),因而目前国内外多数以气雾化制粉为主。而真空感应熔炼气雾化法(VIGA)是唯一能够高效、大批量、低成本的进行SLM技术用金属粉末制备的方法,其制备的雾化粉末具有球形度高、粉末粒度可控、氧含量低、生产成本低以及适应多种金属粉末的生产等优点,已成为高性能及特种合金粉末制备技术的主要发展方向。
发明内容
本发明的目的在于提供基于SLM工艺用锰铜阻尼合金粉末及其制备方法,通过合金成分、制粉工艺以及匹配的3D打印与后处理工艺,制造一种适用于增材制造(SLM)工艺的锰铜阻尼合金粉末,提供除了铸造与精密锻造外,另一种增材制造锰铜阻尼合金零部件的制造方法与金属粉末耗材。
本发明锰铜粉末的化学成分按重量百分比为C:≤0.15%、Ni:4.9~5.2%、Si:≤0.15%、Fe:1.8~5.0%、Cu:20~23%、P:≤0.03%、S:≤0.06%,余量为Mn及不可避免的杂质元素。本发明各元素的作用及配比依据如下:
碳:碳作为间隙固溶原子,虽可以提高合金基体强度,但会损害钢的塑韧性与SLM打印成形性。碳可以扩大γ相区,但不能无限固溶,与基体元素形成碳化物对锰铜合金性能不利,故综合考虑本发明锰铜合金的碳控制在0.15%以内。
镍:锰铜阻尼合金因锰含量高,耐蚀性能差,故通过添加镍等合金元素降低锰含量,改善材料的力学性能,熔铸工艺和耐蚀性,以达到使用要求。一般认为固溶体中的Ni会稳定γ相,导致富锰区缓慢形成,但对阻尼性能不利,故本发明锰铜合金的镍控制在4.9~5.2%以内。
硅:Si是锰铜合金中的有害元素,会形成氧化物夹杂,对力学性能影响较大。本发明锰铜合金的硅控制在0.15%以内。
铁:Fe元素可作为应力诱发马氏体的胚核,促进合金中大量的γ马氏体的形成。同时Fe还可以促进Mn合金的调幅分解,产生贫Mn或富Mn区,促进晶界的析出,提高合金的阻尼性能。综合考虑,本发明锰铜合金的铁控制在1.8~5.0%以内。
铜:Cu基体元素,可显著提高锰铜合金的阻尼性能和冷热加工性能,其机理在于铜在固溶状态下随温度变化发生晶体结构的转变,产生大量的晶体界面,在界面移动过程中会吸收许多振动能量。综合考虑,本发明锰铜合金的铜控制在20~23%以内。
磷和硫:钢中杂质元素,显著降低合金塑韧性和SLM打印成形性,由于本发明采用真空感应冶炼工艺冶炼母合金,磷和硫含量可以分别控制在0.03%和0.06%以内。
锰:Mn作为基体元素,对阻尼性能有着显著影响。经研究发现,当Mn含量在60~70%左右时,合金具有最高的阻尼性能。继续升高Mn含量会导致合金金属液流动性降低,从而影响雾化制粉效果。同时合金耐腐蚀性能与强度也随Mn含量的增加而降低。综合考虑,本发明锰铜合金的锰控制在60~70%之间。
本发明能够高效制备出满足要求的SLM打印用锰铜阻尼合金粉末,其粒径可控,球形度高,制造成本低,金属粉末收得率高,适合工业化生产。
本发明所涉及的锰铜合金粉末及其制备方法如下:
(1)母合金制备:采用真空感应冶炼(VIM)制备母合金,母合金成分控制范围为C:≤0.15%、Ni:4.9~5.2%、Si:≤0.15%、Fe:1.8~5.0%、Cu:20~23%、P:≤0.03%、S:≤0.06%,余量为Mn及不可避免的杂质元素。
(2)VIGA制粉:将母合金放入熔炼坩埚后,对熔炼室进行抽真空,当压力降至0.1Pa以下时,充入99.999%以上高纯氩气直至熔炼室压力恢复标准大气压后,对母合金进行感应加热,加热温度至1300~1500℃,待母合金完全熔化后,将金属液倒入氧化镁中间包,进行超声速气雾化制粉:雾化介质为99.999%高纯氩气,雾化压力为6.0~8.0MPa,雾化金属粉末在冷却室中冷却,并直接收集至位于旋风分离器下面的密封容器中。
(3)粉末筛分与收集:在惰性气体保护下,将集粉罐中的金属粉末进行机械振动与气流分级筛分,对筛分好的15~53μm粒度区间的用于选区激光熔化技术(SLM)的金属粉末进行抽真空密封包装。
(4)基于SLM技术的标准件制备:将所发明的15~53μm粒度范围的锰铜阻尼合金粉末放入SLM激光增材制造设备中进行力学性能标准件制备,激光打印的工艺参数为:光斑直径70~100μm、激光功率200~280W、扫描速度900~1100mm/s,道次间距100~150μm,单层铺粉厚度20~30μm,此打印工艺可使零部件的致密度达到99.5%以上。
(5)标准件的热处理:增材制造后的标准件需经热等静压+固溶+时效热处理。具体工艺如下:热等静压工艺:温度为800~950℃,压力≥100MPa,保温保压时间2~4小时,炉冷至室温;固溶温度880℃~920℃,保温时间2~4小时,水冷至室温;时效温度为400~450℃,保温时间为3~6小时,空冷到室温。
与现有技术相比,本发明的优点在于:
(1)通过创新的合金体系设计与制粉工艺配合,本发明的锰铜阻尼合金粉末球形度高(>90%),松装密度高(>3.8g/cm3),休止角小(<34°),流动性好且15~53μm的细粉收得率较高,这对于后期3D打印标准件具备优异的综合力学性能与阻尼性能起到了至关重要的影响。
(2)针对所发明的锰铜阻尼合金粉末物性特点,提出了与其相匹配的SLM激光打印的工艺参数与后处理制度,导致最终3D打印标准件具备了极为优异的综合力学性能与阻尼性能:室温抗拉强度>560MPa,屈服强度>300MPa,延伸率超过20%,室温的阻尼性能Q-1达到0.028以上。
本发明的锰铜阻尼合金粉末可应用于航空航天、船舶增材制造领域用减振阻尼零部件,也可推广至交通、核电的精密电子仪器的增材制造领域,具有广阔的市场前景。
附图说明
图1实施例1金属粉末的粒径分布曲线图。
图2实施例2金属粉末宏观形貌图。
图3实施例3金属粉末内部组织形貌图。
图4实施例1打印件经HIP850、HIP920热处理工艺后温度和阻尼性能关系图。
图5实施例2打印件热处理后((a)HIP850)的金相组织图。
图6实施例2打印件热处理后((b)HIP920)的金相组织图。
图7实施例3打印件经HIP850制度处理后试样的透射(TEM)组织形貌图。
图8实施例3打印件经HIP850制度处理后试样的透射(TEM)另一种组织形貌图。
具体实施方式
实施例1
(1)母合金制备:实施例均采用真空感应炉制备母合金,其母合金化学成分为C:0.05%、Ni:5.19%、Si:0.05%、P:0.008%、S:0.016%,Fe:4.13%,Cu:20.4%,余量为Mn及不可避免的杂质。
(2)VIGA制粉:将母合金放入熔炼坩埚后,对熔炼室进行抽真空,当压力降至0.1Pa以下时,充入99.999%以上高纯氩气直至熔炼室压力恢复标准大气压后,对母合金进行感应加热,加热温度至1400℃,待母合金完全熔化后,将金属液倒入氧化镁中间包,进行超声速气雾化制粉:雾化介质为99.999%高纯氩气,雾化压力为6.5MPa,雾化金属粉末在冷却室中冷却,并直接收集至位于旋风分离器下面的密封容器中,在惰性气体保护下,将集粉罐中的金属粉末进行机械振动与气流分级筛分,并将15~53μm粒度区间的用于选区激光熔化技术(SLM)的金属粉末进行抽真空密封包装。
(3)基于SLM技术的标准件制备:将所发明的15~53μm粒度范围的锰铜阻尼合金粉末放入SLM激光增材制造设备中进行力学性能标准件制备,激光打印的工艺参数为:光斑直径80μm、激光功率250W、扫描速度1000mm/s,道次间距150μm,单层铺粉厚度30μm。
实施例2
(1)母合金制备:实施例均采用真空感应炉制备母合金,其母合金化学成分为C:0.028%、Ni:4.93%、Si:0.03%、P:0.007%、S:0.058%,Fe:2.18%,Cu:22.5%,余量为Mn及不可避免的杂质。
(2)VIGA制粉:将母合金放入熔炼坩埚后,对熔炼室进行抽真空,当压力降至0.1Pa以下时,充入99.999%以上高纯氩气直至熔炼室压力恢复标准大气压后,对母合金进行感应加热,加热温度至1450℃,待母合金完全熔化后,将金属液倒入氧化镁中间包,进行超声速气雾化制粉:雾化介质为99.999%高纯氩气,雾化压力为7.0MPa,雾化金属粉末在冷却室中冷却,并直接收集至位于旋风分离器下面的密封容器中,在惰性气体保护下,将集粉罐中的金属粉末进行机械振动与气流分级筛分,并将15~53μm粒度区间的用于选区激光熔化技术(SLM)的金属粉末进行抽真空密封包装。
(3)基于SLM技术的标准件制备:将所发明的15~53μm粒度范围的锰铜阻尼合金粉末放入SLM激光增材制造设备中进行力学性能标准件制备,激光打印的工艺参数为:光斑直径80μm、激光功率230W、扫描速度950mm/s,道次间距120μm,单层铺粉厚度30μm。
实施例3
(1)母合金制备:实施例均采用真空感应炉制备母合金,其母合金化学成分为C:0.11%、Ni:5.14%、Si:0.06%、P:0.018%、S:0.037%,Fe:4.86%,Cu:22.4%,余量为Mn及不可避免的杂质。
(2)VIGA制粉:将母合金放入熔炼坩埚后,对熔炼室进行抽真空,当压力降至0.1Pa以下时,充入99.999%以上高纯氩气直至熔炼室压力恢复标准大气压后,对母合金进行感应加热,加热温度至1480℃,待母合金完全熔化后,将金属液倒入氧化镁中间包,进行超声速气雾化制粉:雾化介质为99.999%高纯氩气,雾化压力为7.5MPa,雾化金属粉末在冷却室中冷却,并直接收集至位于旋风分离器下面的密封容器中,在惰性气体保护下,将集粉罐中的金属粉末进行机械振动与气流分级筛分,并将15~53μm粒度区间的用于选区激光熔化技术(SLM)的金属粉末进行抽真空密封包装。
(3)基于SLM技术的标准件制备:将所发明的15~53μm粒度范围的锰铜阻尼合金粉末放入SLM激光增材制造设备中进行力学性能标准件制备,激光打印的工艺参数为:光斑直径80μm、激光功率260W、扫描速度1100mm/s,道次间距150μm,单层铺粉厚度25μm。
表1与表2分别给出了实施例1~3金属粉末的合金成分与粒度分布区间和15~53μm粒度范围的细粉收得率。可见,本发明经真空气雾化法制备的锰铜粉末细粉含量较多,对应的15~53μm范围的细粉收得率高,非常适合工业生产与推广应用。表3给出了实施例1~3金属粉末的物性检测结果,可见本发明的锰铜阻尼松装密度高(>3.8g/cm3),休止角小(<34°),流动性指数好(>85%),粉末综合性能极好,这对于后期3D打印标准件具备优异的综合力学性能与阻尼性能起到了至关重要的作用。
表4给出了实施例1~3制备的金属粉末,经过SLM打印后的及配套热处理后的力学性能与阻尼性能检测结果。实施例均分别采用了HIP850制度:850℃/3h(压力120MPa)炉冷+880℃/2h水冷+425℃/4h空冷;HIP920制度:920℃/3h(压力120MPa)炉冷+900℃/2h水冷+425℃/4h空冷两种后处理工艺。可见,经过两种热处理制度后,实施例极为优异的力学性能与阻尼性能匹配:室温抗拉强度>560MPa,屈服强度>300MPa,延伸率超过20%,室温的阻尼性能Q-1达到0.028以上。
图1给出了实施例1金属粉末的粒径分布曲线。采用扫描电镜对实施例2进行了金属粉末宏观形貌表征,其结果见图2所示。可见,本发明专利研发的锰铜阻尼合金粉末表面光洁度高,球形度佳。图3给出了实施例3金属粉末内部组织形貌,可见,粉末内部多以柱状晶+等轴晶凝固组织为主,同时粉末内部存在交叉的相界面。图4给出了实施例1打印件经HIP850、HIP920热处理工艺后温度和阻尼性能关系,可见本专利所研发的粉末,经打印与热处理后具备了优异的阻尼性能。图5和图6分别给出了实施例2打印件经过HIP850与HIP920的金相组织图,可见,马氏体基体组织中存在大量的孪晶组织,这是造成本发明专利具备优良阻尼性能与力学性能的最重要原因。图7和图8为实施例3打印件经HIP850制度处理后试样的透射(TEM)组织形貌图。
本发明以上描述只是部分实施例,但是本发明并不局限于上述的具体实施方式。上述的具体实施方式是示意性的,并不是限制性的。凡是采用本发明的材料和方法,在不脱离本发明宗旨和权利要求所保护的范围情况下,所有具体扩展均属本发明的保护范围之内。
表1实施例金属粉末的合金成分(wt.%)
实施例 C Si P S Ni Cu Fe Mn
实施例1 0.021 0.042 <0.005 0.012 5.14 20.17 3.85 70
实施例2 0.014 0.018 <0.005 0.058 4.78 22.71 1.96 65.11
实施例3 0.074 0.043 0.016 0.03 5.1 22.62 4.46 66.1
表2实施例的粒度分布与15~53μm细粉收得率
Figure BDA0002347095060000081
Figure BDA0002347095060000091
表3实施例的物性检测结果
Figure BDA0002347095060000092
表4实施例打印件经热处理后的力学性能与阻尼性能
实施例1 抗拉强度,Mpa 屈服强度,MPa 延伸率,% 室温阻尼性能Q<sup>-1</sup>
HIP850 641 388 20.5 0.030
HIP920 602 318 30.5 0.029
实施例2 抗拉强度,Mpa 屈服强度,MPa 延伸率,% 室温阻尼性能Q<sup>-1</sup>
HIP850 625 375 21.5 0.031
HIP920 578 308 34.5 0.028
实施例3 抗拉强度,Mpa 屈服强度,MPa 延伸率,% 室温阻尼性能Q<sup>-1</sup>
HIP850 628 380 22.0 0.029
HIP920 580 311 31.5 0.029

Claims (2)

1.一种基于SLM工艺用锰铜阻尼合金粉末,其特征在于,该粉末的化学成分按重量百分比为C:≤0.15%、Ni:4.9~5.2%、Si:≤0.15%、Fe:1.8~5.0%、Cu:20~23%、P:≤0.03%、S:≤0.06%,余量为Mn及不可避免的杂质元素;基于上述成分配比,经SLM增材制造与热处理后,3D打印标准件具备了极为优异的综合力学性能与阻尼性能:室温抗拉强度>560MPa,屈服强度>300MPa,延伸率超过20%,室温的阻尼性能Q-1达到0.028以上;
该粉末的准备方法如下:
采用真空感应冶炼VIM制备母合金;
VIGA制粉:将母合金放入熔炼坩埚后,对熔炼室进行抽真空,当压力降至0.1Pa以下时,充入99.999%以上高纯氩气直至熔炼室压力恢复标准大气压后,对母合金进行感应加热,加热温度至1300~1500℃,待母合金完全熔化后,将金属液倒入氧化镁中间包,进行超声速气雾化制粉:雾化介质为99.999%高纯氩气,雾化压力为6.0~8.0MPa,雾化金属粉末在冷却室中冷却,并直接收集至位于旋风分离器下面的密封容器中;
在惰性气体保护下,将集粉罐中的金属粉末进行机械振动与气流分级筛分,对筛分好的15~53μm粒度区间的用于选区激光熔化技术SLM的金属粉末进行抽真空密封包装;
所述的SLM增材制造与热处理的工艺如下:
基于SLM技术的标准件制备:将15~53μm粒度范围的锰铜阻尼合金粉末放入SLM激光增材制造设备中进行力学性能标准件制备,激光打印的工艺参数为:光斑直径70~100μm、激光功率200~280W、扫描速度900~1100mm/s,道次间距100~150μm,单层铺粉厚度20~30μm,此打印工艺使零部件的致密度达到99.5%以上;
标准件的热处理:增材制造后的标准件需经热等静压+固溶+时效热处理:热等静压工艺:温度为800~950℃,压力≥100MPa,保温保压时间2~4小时;固溶温度880℃~920℃,保温时间2~4小时,水冷至室温;时效温度为400~450℃,保温时间为3~6小时,空冷到室温。
2.一种权利要求1所述的基于SLM工艺用锰铜阻尼合金粉末的制备方法,其特征在于:工艺步骤及控制的技术参数如下:
(1)母合金制备:采用真空感应冶炼VIM制备母合金,母合金成分控制范围为C:≤0.15%、Ni:4.9~5.2%、Si:≤0.15%、Fe:1.8~5.0%、Cu:20~23%、P:≤0.03%、S:≤0.06%,余量为Mn及不可避免的杂质元素;
(2)VIGA制粉:将母合金放入熔炼坩埚后,对熔炼室进行抽真空,当压力降至0.1Pa以下时,充入99.999%以上高纯氩气直至熔炼室压力恢复标准大气压后,对母合金进行感应加热,加热温度至1300~1500℃,待母合金完全熔化后,将金属液倒入氧化镁中间包,进行超声速气雾化制粉:雾化介质为99.999%高纯氩气,雾化压力为6.0~8.0MPa,雾化金属粉末在冷却室中冷却,并直接收集至位于旋风分离器下面的密封容器中;
(3)粉末筛分与收集:在惰性气体保护下,将集粉罐中的金属粉末进行机械振动与气流分级筛分,对筛分好的15~53μm粒度区间的用于选区激光熔化技术SLM的金属粉末进行抽真空密封包装;
(4)基于SLM技术的标准件制备:将15~53μm粒度范围的锰铜阻尼合金粉末放入SLM激光增材制造设备中进行力学性能标准件制备,激光打印的工艺参数为:光斑直径70~100μm、激光功率200~280W、扫描速度900~1100mm/s,道次间距100~150μm,单层铺粉厚度20~30μm,此打印工艺使零部件的致密度达到99.5%以上;
(5)标准件的热处理:增材制造后的标准件需经热等静压+固溶+ 时效热处理:热等静压工艺:温度为800~950℃,压力≥100MPa,保温保压时间2~4小时;固溶温度880℃~920℃,保温时间2~4小时,水冷至室温;时效温度为400~450℃,保温时间为3~6小时,空冷到室温。
CN201911399302.XA 2019-12-30 2019-12-30 基于slm工艺用锰铜阻尼合金粉末及其制备方法 Active CN111057922B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201911399302.XA CN111057922B (zh) 2019-12-30 2019-12-30 基于slm工艺用锰铜阻尼合金粉末及其制备方法
AU2020101822A AU2020101822A4 (en) 2019-12-30 2020-08-14 Mn-Cu-based damping alloy powder for use in selective laser melting process and preparation method thereof
US17/136,085 US20210197277A1 (en) 2019-12-30 2020-12-29 MN-CU-Based Damping Alloy Powder For Use In Selective Laser Melting Process And Preparation Method Thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911399302.XA CN111057922B (zh) 2019-12-30 2019-12-30 基于slm工艺用锰铜阻尼合金粉末及其制备方法

Publications (2)

Publication Number Publication Date
CN111057922A CN111057922A (zh) 2020-04-24
CN111057922B true CN111057922B (zh) 2021-05-07

Family

ID=70305020

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911399302.XA Active CN111057922B (zh) 2019-12-30 2019-12-30 基于slm工艺用锰铜阻尼合金粉末及其制备方法

Country Status (3)

Country Link
US (1) US20210197277A1 (zh)
CN (1) CN111057922B (zh)
AU (1) AU2020101822A4 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111922347B (zh) * 2020-07-31 2021-12-24 飞而康快速制造科技有限责任公司 一种3d打印铝合金的热处理方法
CN111761064B (zh) * 2020-08-13 2022-01-11 飞而康快速制造科技有限责任公司 一种用于锰铜合金成型的激光选区熔化的增材制造方法及增材制造装置
CN114632938B (zh) * 2020-11-30 2024-03-22 中国科学院金属研究所 一种抗II型热腐蚀CoCrAlY合金粉末的制备方法
CN112338190B (zh) * 2020-11-30 2023-01-31 中国航发动力股份有限公司 一种高温合金增材制造件的热处理工艺方法
CN113186429B (zh) * 2021-04-15 2022-11-01 西安斯瑞先进铜合金科技有限公司 锰镍中间合金铸锭、铜锰镍合金铸锭及其制备方法和应用
CN113426996B (zh) * 2021-06-11 2022-10-11 武汉大学 形状记忆合金基复合智能材料及其制备方法
CN114657429B (zh) * 2022-03-23 2023-03-17 西南交通大学 一种用于制备动车车窗窗框的高阻尼Mn-Cu基合金材料及其制备方法
CN114682784B (zh) * 2022-03-31 2023-11-28 钢铁研究总院有限公司 一种SLM用1900MPa级超高强钢的低成本粉末制备方法与打印方法
CN114774807B (zh) * 2022-04-25 2023-10-10 北京动力机械研究所 一种用于激光增材制造的17-4ph原料粉末及其制备方法及其不锈钢的制备方法
CN117206544B (zh) * 2023-11-09 2024-02-20 四川工程职业技术学院 一种Zn-Cu-Mn-Mg合金多孔结构激光选区熔化成形方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3807328B2 (ja) * 2002-03-04 2006-08-09 大同特殊鋼株式会社 制振合金およびその製造方法ならびにこれを用いた制振部品など
JP2006009142A (ja) * 2004-05-27 2006-01-12 Bridgestone Corp 制振型筐体
CN104762540B (zh) * 2014-05-21 2017-07-04 北京北冶功能材料有限公司 一种高阻尼锰铜减振合金及其制造方法
CN104152764B (zh) * 2014-08-31 2016-02-03 中南大学 一种粉末冶金多孔锰铜阻尼材料及其制备方法
CN106498220B (zh) * 2016-12-12 2017-12-01 中南大学 碳酸镍用于改善烧结锰铜阻尼合金性能的方法
CN106424716B (zh) * 2016-12-12 2018-04-27 中南大学 用草酸亚铁改善锰铜阻尼烧结合金性能的方法
CN108517473B (zh) * 2018-06-29 2019-12-24 钢铁研究总院 基于slm工艺用高强度不锈钢粉末及其制备方法
CN108588582B (zh) * 2018-06-29 2019-11-22 钢铁研究总院 低温服役环境下3d打印用高强不锈钢粉末及制备工艺
CN109777998A (zh) * 2019-03-25 2019-05-21 西南交通大学 一种高强高阻尼Mn-Cu基合金及其制备方法

Also Published As

Publication number Publication date
AU2020101822A4 (en) 2020-09-24
CN111057922A (zh) 2020-04-24
US20210197277A1 (en) 2021-07-01

Similar Documents

Publication Publication Date Title
CN111057922B (zh) 基于slm工艺用锰铜阻尼合金粉末及其制备方法
Zhang et al. A review on microstructures and properties of high entropy alloys manufactured by selective laser melting
Zhang et al. Recent progress in high-entropy alloys
US20190309402A1 (en) Aluminum alloy products having fine eutectic-type structures, and methods for making the same
JP6794478B2 (ja) ナノ金属間化合物強化超高強度フェライト鋼およびその作製方法
CN108517473B (zh) 基于slm工艺用高强度不锈钢粉末及其制备方法
US20230193424A1 (en) Nickel-Based Superalloy and Manufacturing Method Therefor, and Component and Application
CN104674038B (zh) 一种高强韧合金材料及其半固态烧结制备方法和应用
CN112391556B (zh) 一种双峰晶粒尺寸、双尺度纳米相强化的高强高导Cu-Cr-Nb合金
Razumov et al. Thermal plasma spheroidization of high-nitrogen stainless steel powder alloys synthesized by mechanical alloying
CN114107827B (zh) 一种3d打印用双相不锈钢粉末及其制备和打印方法
KR20190143164A (ko) 금속간화합물 강화된 고엔트로피 합금, 및 그 제조방법
CN114134385B (zh) 一种难熔中熵合金及其制备方法
Karthik et al. Architectured multi-metal CoCrFeMnNi-Inconel 718 lamellar composite by high-pressure torsion
CN110592412A (zh) 纳米AlN颗粒增强混晶耐热铝基复合材料及制备方法
CN115261686B (zh) 3d打印铝镁合金粉末及其制备方法与应用
CN111644619B (zh) 一种3d打印铝合金的制备方法
CN114939654A (zh) 一种用于激光增材制造的高熵合金粉末及其制备方法、应用
CN112375953A (zh) 一种Fe-Mn-Al-C-M多主元轻质高强合金及其制备方法
CN105624536A (zh) Fe-Al-Mn-C合金的制备方法
CN113523282A (zh) 一种通过3d打印制备细小等轴晶钛合金的方法
CN111676409B (zh) 一种低密度低成本Fe-Mn-Al-C中熵合金的制备方法
Liu et al. Microstructure and mechanical properties of CoCrCuFeNi high-entropy alloys synthesized by powder metallurgy and spark plasma sintering
US11035029B2 (en) Material for forming metal matrix composite and metal matrix composite bulk
Feng et al. Effect of Cr content and cooling rate on the primary phase of Al-2.5 Mn alloy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant