CN108558384B - 超低功率损耗软磁铁氧体材料及磁芯制备方法和应用 - Google Patents

超低功率损耗软磁铁氧体材料及磁芯制备方法和应用 Download PDF

Info

Publication number
CN108558384B
CN108558384B CN201810388345.7A CN201810388345A CN108558384B CN 108558384 B CN108558384 B CN 108558384B CN 201810388345 A CN201810388345 A CN 201810388345A CN 108558384 B CN108558384 B CN 108558384B
Authority
CN
China
Prior art keywords
ferrite material
soft magnetic
temperature
magnetic ferrite
loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810388345.7A
Other languages
English (en)
Other versions
CN108558384A (zh
Inventor
郭皓
黄刚
李崇华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Magnetic Electronic Technology Co ltd
Original Assignee
China Magnetic Electronic Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Magnetic Electronic Technology Co ltd filed Critical China Magnetic Electronic Technology Co ltd
Priority to CN201810388345.7A priority Critical patent/CN108558384B/zh
Publication of CN108558384A publication Critical patent/CN108558384A/zh
Application granted granted Critical
Publication of CN108558384B publication Critical patent/CN108558384B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2658Other ferrites containing manganese or zinc, e.g. Mn-Zn ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Magnetic Ceramics (AREA)

Abstract

本发明提出了一种超低功率损耗软磁铁氧体材料及磁芯制备方法和应用,优选主配方和有效的掺杂,开发超低功率损耗的软磁铁氧体材料,最终产品晶粒尺寸为3~5μm,起始磁导率ui达到2400以上,高温100℃、100kHz、200mT条件下功率损耗在280kW/m3以下,100℃Bs值在410mT以上;采用多段式平衡气氛烧结方法,控制铁氧体材料的密度、晶粒尺寸、气孔率以及它们在晶粒内部和晶粒之间的分布,使软磁铁氧体的微观结构得到更有效地控制,从而确保材料的主要特性参数达到和谐的统一;最终产品高温体积损耗将达到250kw/m3,高温损耗值降低20~31.7%。

Description

超低功率损耗软磁铁氧体材料及磁芯制备方法和应用
技术领域
本发明涉及软磁铁氧体材料,尤其涉及一种超低功率损耗软磁铁氧体材料及磁芯制备方法和应用。
背景技术
软磁铁氧体材料自1935年由荷兰菲利普实验室研发成功后,至今已有80多年历史,由于铁氧体的磁性来源于亚铁磁性,其饱和磁化强度Ms较金属磁低,但比金属磁的电阻率ρ又高得多,故具备良好的高频特性。在弱电高频技术领域,软磁铁氧体具有独特的优点。用这类材料制作的磁芯是各种电感器、电子变压器、扼流线圈、抑制器、滤波器等的核心部件。软磁铁氧体材料作为电子信息技术基础材料被列入国家发改委等部门公布的《当前优先发展的高新技术产业化重点领域指南(2011年度)》以及国家科技部公布的《国家重点支持的高新技术领域目录(2015)》。广泛应用于计算机、家用电器、节能灯及LED、网络通讯、汽车及电动车、高铁、风力和核力发电等支柱产业及新兴产业。
随着智能手机的日益普及,人们日常生活中对智能手机的依赖度也日益增加,各种应用功能也不断加强,手机电池显得越来越不够用,而高容量电池技术进步缓慢,于是快速充电技术应运而生。
目前手机快速充电主要分为两大类:低压快充和高压快速充电技术。手机快速充电技术主要有四种:VOOC闪充、Fast Charge、Quick Charge、Pump Express。其中VOOC闪充手机快速充电技术较为成熟,高通、联发科快速充电技术还在发展中。国内OPPO手机的VOOC闪充系统采用了增加microUSB接口针数和电池金属触点数的方式实现了快速充电技术。
要实现智能手机快速充电,须要满足三要素:充电器、电池、charge IC。充电器需要满足足够的输出电流以及输出电压,一般充电器的走线都会有很大的寄生电阻,而快充功能充电器若要实现较大的充电电流,其带载输出电压需要更高,所以必须提高充电器功率至18W及以上。因此,需要将软磁铁氧体材料在高温工作点的损耗大幅降低,而损耗的大幅降低利于大功率元器件对于温升的控制要求,从而可以实现磁芯、电子元器件和电子整机设备的小型化。
发明内容
有鉴于此,本发明提出了一种超低功率损耗软磁铁氧体材料及磁芯制备方法和应用。
本发明的技术方案是这样实现的:
一方面,本发明提供了一种超低功率损耗软磁铁氧体材料,该铁氧体粉料包括主成分和添加物成分,其中,
各主成分的配比分别为:
Fe2O3 70~72mol%
MnO 20~22mol%
ZnO 7~9mol%
各主成分的配比总计为100mol%;
相对所述主成分总量,各添加物成分的重量百分比分别为:
Figure BDA0001642819240000021
在以上技术方案的基础上,优选的,所述纳米SiO2的颗粒尺寸范围为50~200nm。
另一方面,本发明提供了一种超低功率损耗软磁铁氧体磁芯的制备方法,包括以下步骤,
S1,将各主成分和各添加物成分混合,经球磨、造粒、预烧得到锰锌铁氧体材料;
S2,对步骤S1得到的锰锌铁氧体材料进行模压成型、烧结、研磨,得到最终产品。
在以上技术方案的基础上,优选的,所述步骤S1中,球磨工序中加入纯水、分散剂、粘合剂和消泡剂,控制粒度分布100~300μm,含水的重量百分比为0.15~0.25%。
在以上技术方案的基础上,优选的,所述步骤S1中,造粒时添加7wt%~10wt%的PVA溶液,并采用喷雾干燥。
在以上技术方案的基础上,优选的,所述步骤S1中,预烧温度为950~1050℃,预烧时间为30~90min。
在以上技术方案的基础上,优选的,所述步骤S2中,所述步骤S2中,烧结过程包括,S2-1,在大气气氛中,以0.5~2.0℃/min的升温速率从室温升至900℃;
S2-2,调整氧分压为0.4~0.5%,以1.0~3.0℃/min的升温速率从900℃升至1200℃;
S2-3,调整氧分压为5~7%,以3~10℃/min的升温速率从1200℃升至1360~1370℃,保温4.2~7h;
S2-4,在平衡氧分压条件下降温,得到烧结密度为4.75~4.90kg/m3的磁芯。
在以上技术方案的基础上,优选的,步骤S2-4中,先从最高烧结温度降到900℃,降温速率为2.5~5℃/min,氧分压控制在0.02%~0.5%;然后再从900℃至室温,降温速率为1.5~4℃/min,氧分压控制在0~0.005%。
在以上技术方案的基础上,优选的,最终产品晶粒尺寸为3~5μm,起始磁导率ui达到2400以上,高温100℃、100kHz、200mT条件下功率损耗在280以下,100℃Bs值在410mT以上。
第三方面,本发明提供了第一方面所述超低功率损耗软磁铁氧体材料在快速充电充电器领域的应用。
本发明的超低功率损耗软磁铁氧体材料及磁芯制备方法和应用相对于现有技术具有以下有益效果:
(1)优选主配方和有效的掺杂,开发超低功率损耗的软磁铁氧体材料,最终产品晶粒尺寸为3~5μm,起始磁导率ui达到2400以上,高温100℃、100kHz、200mT条件下功率损耗在280kW/m3以下,100℃Bs值在410mT以上;
(2)采用多段式平衡气氛烧结方法,控制铁氧体材料的密度、晶粒尺寸、气孔率以及它们在晶粒内部和晶粒之间的分布,使软磁铁氧体的微观结构得到更有效地控制,从而确保材料的主要特性参数达到和谐的统一;
(3)最终产品高温体积损耗将达到250kw/m3,高温损耗值降低20~31.7%,材料在高温工作点的损耗大幅降低,而损耗的大幅降低利于大功率元器件对于温升的控制要求,从而可以实现磁芯、电子元器件和电子整机设备的小型化,节省组装空间同时满足实现大功率输出,在电子设备快速充电领域应用前景广阔,生产成本降低20%以上。
具体实施方式
下面将结合本发明实施方式,对本发明实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式仅仅是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。
实施例1
本实施例的软磁铁氧体材料,包括主成分和添加物成分,其中,
各主成分的配比分别为:
Fe2O3 70mol
MnO 22mol
ZnO 8mol
相对所述主成分总量,各添加物成分的重量比率分别为:
Figure BDA0001642819240000051
颗粒尺寸范围为50~100nm的纳米SiO2 50PPM。
高Bs值、低功率损耗软磁铁氧体磁芯的制备步骤如下:
首先,称量各主成分和各添加物成分,混合均匀。
其次,将混合物料中加入纯水、分散剂、粘合剂和消泡剂,进行球磨,控制粒度分布100~300μm,含水的重量百分比为0.15%。
然后,对球磨得到的粉料添加7wt%的PVA溶液,并采用喷雾干燥造粒。
接着,在空气气氛下,在950℃预烧,预烧时间为30min,得到锰锌铁氧体材料。
最后,对预烧得到的锰锌铁氧体材料进行模压成型,然后在以下条件下进行烧结,得到最终产品:
S2-1,在大气气氛中,以0.5℃/min的升温速率从室温升至900℃;
S2-2,调整氧分压为0.4%,以1.0℃/min的升温速率从900℃升至1200℃;
S2-3,调整氧分压为5%,以3℃/min的升温速率从1200℃升至1350℃,保温4.2h;
S2-4,先从最高烧结温度降到900℃,降温速率为2.5℃/min,氧分压控制在0.02%~0.5%;然后再从900℃至室温,降温速率为1.5℃/min,氧分压控制在0~0.005%,得到烧结密度为4.75kg/m3的磁芯。
实施例2
本实施例的软磁铁氧体材料,包括主成分和添加物成分,其中,
各主成分的配比分别为:
Fe2O3 71mol
MnO 21mol
ZnO 8mol
相对所述主成分总量,各添加物成分的重量比率分别为:
Figure BDA0001642819240000061
颗粒尺寸范围为100~200nm的纳米SiO2 70PPM。
高Bs值、低功率损耗软磁铁氧体磁芯的制备步骤如下:
首先,称量各主成分和各添加物成分,混合均匀。
其次,将混合物料中加入纯水、分散剂、粘合剂和消泡剂,进行球磨,控制粒度分布100~300μm,含水的重量百分比为0.2%。
然后,对球磨得到的粉料添加8wt%的PVA溶液,并采用喷雾干燥造粒。
接着,在空气气氛下,在1000℃预烧,预烧时间为60min,得到锰锌铁氧体材料。
最后,对预烧得到的锰锌铁氧体材料进行模压成型,然后在以下条件下进行烧结,得到最终产品:
S2-1,在大气气氛中,以1.5℃/min的升温速率从室温升至900℃;
S2-2,调整氧分压为0.4~0.5%,以2℃/min的升温速率从900℃升至1200℃;
S2-3,调整氧分压为5~7%,以6℃/min的升温速率从1200℃升至1368℃,保温5.5h;
S2-4,先从最高烧结温度降到900℃,降温速率为3.5℃/min,氧分压控制在0.02%~0.5%;然后再从900℃至室温,降温速率为3℃/min,氧分压控制在0~0.005%,得到烧结密度为4.85kg/m3的磁芯。
实施例3
本实施例的软磁铁氧体材料,包括主成分和添加物成分,其中,
各主成分的配比分别为:
Fe2O3 72mol
MnO 21mol
ZnO 7mol
相对所述主成分总量,各添加物成分的重量比率分别为:
Figure BDA0001642819240000071
颗粒尺寸范围为50~200nm的纳米SiO2 100PPM。
高Bs值、低功率损耗软磁铁氧体磁芯的制备步骤如下:
首先,称量各主成分和各添加物成分,混合均匀。
其次,将混合物料中加入纯水、分散剂、粘合剂和消泡剂,进行球磨,控制粒度分布100~300μm,含水的重量百分比为0.25%。
然后,对球磨得到的粉料添加10wt%的PVA溶液,并采用喷雾干燥造粒。
接着,在空气气氛下,在1050℃预烧,预烧时间为90min,得到锰锌铁氧体材料。
最后,对预烧得到的锰锌铁氧体材料进行模压成型,然后在以下条件下进行烧结,得到最终产品:
S2-1,在大气气氛中,以2.0℃/min的升温速率从室温升至900℃;
S2-2,调整氧分压为0.4~0.5%,以3.0℃/min的升温速率从900℃升至1200℃;
S2-3,调整氧分压为7%,以10℃/min的升温速率从1200℃升至1370℃,保温7h;
S2-4,先从最高烧结温度降到900℃,降温速率为5℃/min,氧分压控制在0.02%~0.5%;然后再从900℃至室温,降温速率为4℃/min,氧分压控制在0~0.005%,得到烧结密度为4.90kg/m3的磁芯。
对实施例2得到的磁芯进行测试,得到以下结果:
Figure BDA0001642819240000081
可以看出,最终产品晶粒尺寸为3~4μm,起始磁导率ui达到2400以上,100℃、100kHz、20mT条件下下功率损耗在280kW/m3以下,100℃Bs值在410mT以上。
以上所述仅为本发明的较佳实施方式而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种超低功率损耗软磁铁氧体材料,其特征在于:铁氧体粉料包括主成分和添加物成分,其中,
各主成分的配比分别为:
Fe2O3 70~72 mol%
MnO 20~22mol%
ZnO 7~9mol%
各主成分的配比总计为100mol%;
相对所述主成分总量,各添加物成分的重量百分比分别为:
CaCO3 100~1000PPM
SnO2 100~500PPM
MoO3 50~100PPM
ZrO2 100~500PPM
Bi2O3 50~100PPM
纳米SiO2 50~100PPM。
2.如权利要求1所述的超低功率损耗软磁铁氧体材料的制备方法,其特征在于:所述纳米SiO2的颗粒尺寸范围为50~100nm。
3.权利要求1所述的超低功率损耗软磁铁氧体材料制备磁芯的方法,其特征在于:包括以下步骤,
S1,将各主成分和各添加物成分混合,经球磨、造粒、预烧得到锰锌铁氧体材料;
S2,对步骤S1得到的锰锌铁氧体材料进行模压成型、烧结、研磨,得到最终产品。
4.如权利要求3所述的方法,其特征在于:所述步骤S1中,球磨工序中加入纯水、分散剂、粘合剂和消泡剂,控制粒度分布100~300μm,含水的重量百分比为0.15~0.25%。
5.如权利要求3所述的方法,其特征在于:所述步骤S1中,造粒时添加7wt%~10wt%的PVA溶液,并采用喷雾干燥。
6.如权利要求3所述的方法,其特征在于:所述步骤S1中,预烧温度为950~1050℃,预烧时间为30~90min。
7.如权利要求3所述的方法,其特征在于:最终产品晶粒尺寸为3~5μm,起始磁导率ui达到2400以上,高温100℃、100kHz、200mT 条件下功率损耗在280 kW/m3以下,100℃Bs值在410mT以上。
8.如权利要求1所述的超低功率损耗软磁铁氧体材料在快速充电充电器领域的应用。
CN201810388345.7A 2018-04-26 2018-04-26 超低功率损耗软磁铁氧体材料及磁芯制备方法和应用 Active CN108558384B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810388345.7A CN108558384B (zh) 2018-04-26 2018-04-26 超低功率损耗软磁铁氧体材料及磁芯制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810388345.7A CN108558384B (zh) 2018-04-26 2018-04-26 超低功率损耗软磁铁氧体材料及磁芯制备方法和应用

Publications (2)

Publication Number Publication Date
CN108558384A CN108558384A (zh) 2018-09-21
CN108558384B true CN108558384B (zh) 2021-03-02

Family

ID=63537006

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810388345.7A Active CN108558384B (zh) 2018-04-26 2018-04-26 超低功率损耗软磁铁氧体材料及磁芯制备方法和应用

Country Status (1)

Country Link
CN (1) CN108558384B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109851345A (zh) * 2018-12-04 2019-06-07 天长市昭田磁电科技有限公司 铁氧体磁芯材料加工方法
CN109704749B (zh) * 2019-02-12 2021-11-02 湖北华磁电子科技有限公司 超高频低损耗软磁铁氧体材料及磁芯的制备方法和应用
CN111470857B (zh) * 2020-03-16 2021-08-20 横店集团东磁股份有限公司 一种高频锰锌铁氧体材料及其制备方法
CN111933440A (zh) * 2020-07-28 2020-11-13 安徽中富磁电有限公司 一种高频变压器用铁氧体磁芯制造方法
CN113292327B (zh) * 2021-05-25 2022-01-07 湖北华磁电子科技有限公司 一种具有宽温性质的软磁铁氧体材料及其生产工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000331817A (ja) * 1999-05-25 2000-11-30 Kawasaki Steel Corp フェライト
CN101409124A (zh) * 2008-08-02 2009-04-15 广东风华高新科技股份有限公司 一种MnZn铁氧体材料及其制备磁芯的方法
CN102936131A (zh) * 2012-11-07 2013-02-20 天通控股股份有限公司 一种电涡流式接近开关用锰锌铁氧体材料、镀膜磁心及其制备方法
CN103755335A (zh) * 2014-01-06 2014-04-30 苏州冠达磁业有限公司 高强度低损耗高q值汽车加热用磁条
CN105565790A (zh) * 2014-10-09 2016-05-11 桐乡市耀润电子有限公司 Yr950宽温高直流叠加低功耗锰锌铁氧体材料及其制备方法
CN107352992A (zh) * 2017-07-04 2017-11-17 浙江大学 一种宽频宽温低损耗锰锌铁氧体的粉末粒度控制方法
CN107573049A (zh) * 2017-08-29 2018-01-12 海宁联丰磁业股份有限公司 一种超低损耗高Bs软磁铁氧体材料及制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000331817A (ja) * 1999-05-25 2000-11-30 Kawasaki Steel Corp フェライト
CN101409124A (zh) * 2008-08-02 2009-04-15 广东风华高新科技股份有限公司 一种MnZn铁氧体材料及其制备磁芯的方法
CN102936131A (zh) * 2012-11-07 2013-02-20 天通控股股份有限公司 一种电涡流式接近开关用锰锌铁氧体材料、镀膜磁心及其制备方法
CN103755335A (zh) * 2014-01-06 2014-04-30 苏州冠达磁业有限公司 高强度低损耗高q值汽车加热用磁条
CN105565790A (zh) * 2014-10-09 2016-05-11 桐乡市耀润电子有限公司 Yr950宽温高直流叠加低功耗锰锌铁氧体材料及其制备方法
CN107352992A (zh) * 2017-07-04 2017-11-17 浙江大学 一种宽频宽温低损耗锰锌铁氧体的粉末粒度控制方法
CN107573049A (zh) * 2017-08-29 2018-01-12 海宁联丰磁业股份有限公司 一种超低损耗高Bs软磁铁氧体材料及制备方法

Also Published As

Publication number Publication date
CN108558384A (zh) 2018-09-21

Similar Documents

Publication Publication Date Title
CN108558384B (zh) 超低功率损耗软磁铁氧体材料及磁芯制备方法和应用
CN108558385B (zh) 宽温高效率软磁铁氧体材料及磁芯制备方法和应用
CN108640670B (zh) 高Bs值、低功率损耗软磁铁氧体材料及磁芯的制备方法
CN105565790B (zh) Yr950宽温高直流叠加低功耗锰锌铁氧体材料及其制备方法
CN101236819B (zh) 一种镍铜锌铁氧体及其制造方法
CN102219487B (zh) 一种宽温低损耗MnZn铁氧体材料及其制造方法
CN103058643B (zh) 宽温高叠加低功耗Mn-Zn软磁铁氧体材料及制备方法
CN101388268B (zh) 一种高磁导率低温烧结NiCuZn铁氧体材料
CN103951411A (zh) 宽温低功耗高居里温度锰锌铁氧体材料及制备方法
CN101206941A (zh) 一种高磁导率低温共烧NiCuZn铁氧体的制备方法
CN112979301B (zh) 高频高温低损耗MnZn功率铁氧体材料及其制备方法
CN110204325B (zh) 铁氧体材料及其制备方法
CN101857426A (zh) 一种宽频高阻抗MnZn铁氧体材料及其制造方法
CN108395233A (zh) 大功率低功耗高频变压器用锰锌铁氧体材料及制备方法
CN102751065A (zh) 宽温宽频低损耗MnZn功率铁氧体材料及其制备方法
CN112694323A (zh) 一种宽温高Bs锰锌铁氧体磁性材料及其制备方法
CN104944933A (zh) 高频变压器用高电感值高磁导率铁氧体磁芯的制备方法
CN112479699A (zh) 一种低损耗纳米铁氧体磁性材料及其制备方法
US11958779B2 (en) MnZn ferrite material with wide temperature range and low consumption, and preparation method thereof
KR20120053920A (ko) 세라믹 전자부품용 자성체 조성물, 그 제조방법 및 이를 이용한 세라믹 전자부품
CN103664158A (zh) 一种高Bs低功耗锰锌功率铁氧体材料及其制造方法
CN101241792A (zh) Mn-Zn系软磁铁氧体及生产工艺
CN109704749B (zh) 超高频低损耗软磁铁氧体材料及磁芯的制备方法和应用
CN112661501A (zh) 一种高频功率转换用NiZn铁氧体材料及制备方法
JP4404408B2 (ja) 高飽和磁束密度フェライト材料及びこれを用いたフェライトコア

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant