CN1085441C - 可编程增益放大器 - Google Patents

可编程增益放大器 Download PDF

Info

Publication number
CN1085441C
CN1085441C CN98102689A CN98102689A CN1085441C CN 1085441 C CN1085441 C CN 1085441C CN 98102689 A CN98102689 A CN 98102689A CN 98102689 A CN98102689 A CN 98102689A CN 1085441 C CN1085441 C CN 1085441C
Authority
CN
China
Prior art keywords
bipolar transistor
emitter
current
transistor
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN98102689A
Other languages
English (en)
Other versions
CN1204889A (zh
Inventor
岩田浩充
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of CN1204889A publication Critical patent/CN1204889A/zh
Application granted granted Critical
Publication of CN1085441C publication Critical patent/CN1085441C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/4508Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using bipolar transistors as the active amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/4508Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using bipolar transistors as the active amplifying circuit
    • H03F3/45085Long tailed pairs
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45278Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using BiFET transistors as the active amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/72Gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G1/00Details of arrangements for controlling amplification
    • H03G1/0005Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal
    • H03G1/0017Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal the device being at least one of the amplifying solid state elements of the amplifier
    • H03G1/0023Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal the device being at least one of the amplifying solid state elements of the amplifier in emitter-coupled or cascode amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G1/00Details of arrangements for controlling amplification
    • H03G1/0005Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal
    • H03G1/0088Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal using discontinuously variable devices, e.g. switch-operated
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/001Digital control of analog signals
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45462Indexing scheme relating to differential amplifiers the CSC comprising a cascode circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45466Indexing scheme relating to differential amplifiers the CSC being controlled, e.g. by a signal derived from a non specified place in the dif amp circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45471Indexing scheme relating to differential amplifiers the CSC comprising one or more extra current sources
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45504Indexing scheme relating to differential amplifiers the CSC comprising more than one switch
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45641Indexing scheme relating to differential amplifiers the LC being controlled, e.g. by a signal derived from a non specified place in the dif amp circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45696Indexing scheme relating to differential amplifiers the LC comprising more than two resistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45702Indexing scheme relating to differential amplifiers the LC comprising two resistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45726Indexing scheme relating to differential amplifiers the LC comprising more than one switch, which are not cross coupled

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Amplification And Gain Control (AREA)
  • Amplifiers (AREA)

Abstract

一种可编程增益放大器,采用简单的电路结构可实现按照控制信号逻辑电平的足够精度和线性的增益控制,包括:级联差动放大器(El至En),和电流控制器(100),用以控制发射极电流的乘积,其每个电流可按照双控制信号的逻辑电平提供给每个差动放大器(El至En)上。电流控制器(100)具有电流镜象电路,其中每个双极晶体管的发射极可通过MOS(M0至Mn,Mcl至Mcm)晶体管而接地,其相关通路电阻可设计为与双极晶体管的相关发射极尺寸成反比,用以实现发射极电流的精确控制。

Description

可编程增益放大器
本发明涉及利用MOS(金属氧化物半导体)晶体管的开关特性和双极晶体管的转换特性的可编程增益放大器。
图6是示出一种可编程放大器的常用实例的电路图,该放大器利用了MOS晶体管的开关特性和双极晶体管的转换特性,其中各晶体管具有第一至第n(n为大于1的整数)差动放大器E1至En的级联连接,其中每个差动放大器具有公开在日本专利申请在先公告号139531/96中的电路结构。
参见图6,每个差动放大器,例如,第一放大器E1包括其发射极共同连接于恒定电流源I1上的一对差动双极晶体管Q1和Q2,一对第一电阻R11,一对第二电阻R12,和一对MOS晶体管M1和M2。每个第一电阻R11和每个第二电阻R12串联连接在电源Vcc和每个差动双极晶体管Q1和Q2的集电极之间。每个MOS晶体管M1和M2并联连接于每个第一电阻R11上,并且MOS晶体管M1和M2的栅极共同地由第一控制信号CTL1来控制。
当MOS晶体管M1和M2被控制为OFF时,第一差动放大器E1的放大系数A1可通过下式表示:
A1=q×I1×(R11+R12)/2kT                                  (1)
并且可以通过下式表示:
A1=q×I1×(R11+R0)/2kT                                   (2)
当MOS晶体管M1和M2被控制为ON时,其中q,k,T,I1,R11,R12和R0分别表示电子电荷,伯尔兹曼常数,绝对温度,恒定电流源I1的电流值和第一电阻R11、第二电阻R12的阻值,以及MOS晶体管M1或M2接通与第一电阻R11并联连接的电阻阻值。
因此,通过由第一控制信号CTL1来控制MOS晶体管M1和M2的ON/OFF,可以改变第一差动放大器的E1的增益或放大系数A1,同样地,第二至第n个差动放大器E2至En的每个增益均可通过改变每个相应的第二至第n个控制信号CTL2至CTLn的逻辑电平而进行控制。
由此,图6的常用可编程增益放大器的总增益A可以通过第一至第n个差动放大器E1至En的每个放大系数相乘而得到,可按照第一至第n个控制信号CTL1至CTLn的逻辑电平而由多级来控制。
然而,由上述的式(2)可以知道,每个差动放大器E1至En的放大系数是MOS晶体管通路电阻绝对值的函数,在图1的常用可编程增益放大器中,MOS晶体管的通路电阻可通过其扩散处理的变化而很容易地得到,并且其取决于操作温度。
因此,要获得多级可编程增益放大器,其增益由足够精细而线性的步骤以dB(分贝)即按指数方式来加以控制,是非常困难的。
因此,本发明的主要目的就是提供一种可编程增益放大器,具有简单的电路结构,其中可按照双极信号的逻辑电平由足够精细而线性的步骤进行增益控制。
为了实现上述目的,本发明的可编程增益放大器包括:
多个级联连接的差动放大器,其每个具有一对双极晶体管,所述晶体管发射极共同连接;和
具有输出端子的电流控制器,用以输出发射极电流,其电流均可提供给每个差动放大器的双极晶体管对的共同连接发射极,发射极电流的积可按照一组提供给电流控制器的双极控制信号的逻辑电平来进行控制。
因此,通过设置一定的发射极电流以与按照每个双控制信号的逻辑电平用不同比值相乘,使可编程增益放大器的增益可以在宽的范围内以所需的精确方式进行控制。
例如,通过设置一个发射极电流以乘以几何级数的第2i-1部分,当将双控制信号的第i个接于逻辑电平HIGH时,增益可以以dB用拟线性步骤进行控制,i为正整数。
例如,为了实现可用足够精确的线性度进行控制的该可编程增益放大器,具有电流镜象电路的电流控制器包括:
输入双极晶体管,其发射极通过被控制于ON的输入MOS晶体管而接地,恒定电流流过输入双极晶体管;
输出双极晶体管,每个输出双极晶体管的集电极连接于电流控制器的每个输出端子上,基极连接于输入双极晶体管的基极上,发射极通过被控制于ON的MOS晶体管而接地,所述MOS晶体管与输入MOS晶体管的相关通路电阻可设计为与所述每个输出双极晶体管与输入双极晶体管的相关发射极大小成反比;和
控制双极晶体管,每个控制双极晶体管的集电极连接于电流控制器的输出端子之一上,基极连接于输入双级晶体管的基极上,发射极通过MOS晶体管而接地,所述MOS晶体管与输入MOS晶体管的相关通路电阻可设计为与所述每个控制双极晶体管与输入双极晶体管的相关发射极大小成反比,并且所述双极晶体管按照双控制信号之一的逻辑电平来进行开关。
因此,每个发射极电流可得到精确的的控制,因为MOS晶体管的相关通路电阻很少受到其制造工艺的影响,即使其通路电阻本身即绝对值可能会受到影响。
本发明的上述以及进一步的目的、特征和优点将通过下列描述、后续权利要求以及附图而更加清楚,其中相同的标号表示相同或相对应的部分。
在附图中:
图1是表示按照本发明的一个实施例是可编程增益放大器的方框图;
图2是表示图1电流控制器的电路图的局部电路图;
图3是表示按照图1实施例的可编程增益放大器的具体实例的电路图;
图4是表示通过按照图3电路而制造的可编程增益放大器所获得的控制信号的相关增益相应逻辑电平的一部分的图表;
图5是表示按照控制级由图3的实例所获得的增益的线性增加的曲线图;和
图6是表示可编程增益放大器的常用实例的电路图,其利用了MOS晶体管的开关特性和双极晶体管的转换特性。
现在,将结合实施例详细地描述本发明的各实施例。
图1是表示按照本发明实施例的一种可编程增益放大器的方框图,其包括级联的第一至第n个差动放大器E1至En,和电流控制器100,用以将每个第一至第n个发射极电流I1至In提供给每个第一至第n个差动放大器E1至En
对于每个第一至第n个差动放大器E1至En,第i个差动放大器Ei(i=1,…,n)包括具有发射极共同连接于电流控制器100的各输出端子上的一对差动双极晶体管Q1i和Q2i,和一对具有相同阻值的电阻Ri,每个电阻将每个双极晶体管Q1i和Q2i的集电极连接于电源Vcc上。
双极晶体管Q11和Q21对的基极连接于互补输入端子IN1和IN2上。每个第i个差动放大器Ei(i=2,…,n)的双极晶体管Q1i和Q2i对的基极连接于前一个差动放大器Ei-1的双极晶体管Q1(i-1)和Q2(i-1)对的集电极上。第n个差动放大器En的双极晶体管Q1n和Q2n对的集电极连接于互补输出端子OUT1和OUT2上。
如等式(1)和(2)所示,每个差动放大器的放大系数与提供给每个差动放大器的发射极电流成正比地变化,因此,增益控制可以通过在图1的可编程增益放大器中由电流控制器100控制第一至第n个发射极电流I1至In来实现。
图2是表示图1电流控制器的电路结构的局部电路图。
参见图2,电流控制器100包括输入双极晶体管Q0,第一至第n个输出双极晶体管Q1至Qn,和第一至第m个控制双极晶体管QC1至Qcm(m为大于1的整数)。
双极晶体管Q1至Qn和QC1至Qcm的每个发射极分别通过每个MOS晶体管M1至Mn和MC1至Mcm而接地GND。
恒定电流I0提供给输入双极晶体管Q0的集电极-基极接点。
第一至第n个输出双极晶体管Q1至Qn和第一至第m个控制双极晶体管QC1至Qcm的基极连接于输入双极晶体管Q0的基极上。
由此,当将每个MOS晶体管M0至Mn和MC1至Mcm控制为ON时,每个第一至第n个输出双极晶体管Q1至Qn和第一至第m个控制双极晶体管QC1至Qcm起电流镜象电路的输出晶体管的作用,其电流与流经输入双极晶体管Q0的集电极电流成正比。
每个第一至第n个输出双极晶体管Q1至Qn的集电极连接于每个电流控制器100的输出端子上,用以输出每个第一至第n个发射极电流I1至In,以提供给每个第一至第n个差动放大器E1至En,一些输出端子进一步连接于第一至第m个控制双极晶体管QC1至Qcm中的一个或多个集电极上。
连接于输入晶体管Q0上的MOS晶体管M0至Mn的栅极和第一至第n个输出双极晶体管Q1至Qn连接于电源Vcc上,并且每个MOS晶体管MC1至Mcm的栅极连接于每个控制端子CTL1至CTLm上。
因此,通过改变提供给控制端子CTL1至CTLm的双控制信号的逻辑电平值,可以控制各个第一至第n个发射极电流I1至In,以及第一至第n个发射极电流I1至In电流值的乘积,限定了图1的可编程增益放大器的总增益。
另外,通过将每个MOS晶体管M0至Mn和MC1至Mcm的通路电阻设置为与各个输入、输出和控制双极晶体管Q0至Qn和Qc1至Qcm的相关发射极大小成反比,与恒定电流I0相关的第一至第n个发射极电流I1至In的电流值可设置为远大于图6常用可编程增益放大器的负载电阻比,因为MOS晶体管的相关通路电阻很少受到其制造工艺的影响,即使其通路电阻本身即绝对值会受到影响。
还有,通过如此来设置MOS晶体管的相关通路电阻,可以降低双极晶体管的基极-发射极电压/集电极电流特性变化的影响。
因此,通过适当地将输入、输出和控制双极晶体管Q0至Qn和Qc1至Qcm的相关发射极大小与其各MOS晶体管M0至Mn和MCi至Mcm的相关通路电阻一起进行设置,可以按照本发明以所需的精度和足够的精确度获得可编程增益放大器,其总增益可以以2m级进行控制。
以前,每个电流控制器100的输出端子对应于每个输出双极晶体管,并且每个控制双极晶体管对应于每个双控制信号。然而,输出双极晶体管和控制双极晶体管的任何一个均可以通过用一个以上的双极晶体管来代替,可以由适当的MOS晶体管成对地组成,以便获得所需的发射极大小。
在下面的段落中,将描述上述实施例的具体实例。
图3是表示按照图1实施例的可编程增益放大器的具体实例的电路图,其中利用双极晶体管和MOS晶体管(具有简单的尺寸/通路电阻比)以简单的电路结构实现线性偏差在0.94-1.17之间的在准线性64级的大约24dB(27.3-50.9dB)宽度下的增益控制。
为了实现该控制过程,电流控制器100的发射极尺寸比率可如此设置,使得第一至第n个发射极电流I1至In之一可近似乘以几何级数的第i部分,即
Figure C9810268900081
(a为常数),其中提供给第i个控制端子CTLi的第i个双控制信号为逻辑电平HIGH。
参见图3,输入双极晶体管Q0,第一至第六输出双极晶体管Q1至Q6和第一至第六控制双极晶体管Qc1至Qc62组成电流镜象电路,其每个借助于每个相关MOS晶体管M0至M6和Mc1至Mc6而接地GND,并且MOS晶体管M0至M6的控制极连接于电源Vcc上,同时MOS晶体管Mc1至Mc6的控制极以与图2所述连接方式相同的方法连接于各控制端子CTL1至CTL6上。
与输入双极晶体管Q0和各MOS晶体管M0的通路电阻相关,第一至第六输出双极晶体管Q1至Q6、第一至第六控制双极晶体管Qc1至Qc62的发射极尺寸比和各相关通路电阻比可设置如下,以便产生输出电流,其列于下表。
发射极尺寸比 通路电阻比    输出电流
  Q0/M0     1     1     10μA
  Q1/M1Qc1/Mc1Qc2/Mc2     41/52/5     1/455/2     40μA2μA4μA
  Q2/M2Qc5/Mc5     22     1/21/2     20μA20μA
  Q3/M3Qc4/Mc4     23/5     1/25/3     20μA6μA
  Q4/M4Qc3/Mc3     22/5     1/25/2     20μA4μA
  Q5/M5Qc61/Mc61QC62/Mc62     131/5     11/35     10μA30μA2μA
  Q6/M6     2     1/2     20μA
因此,限定图3可编程增益放大器总增益的第一至第六发射极电流的乘积可通过将双控制信号分别提供给每个控制端子CTL1至CTL6而相乘如下。
        CTL1:×42/40
        CTL2:×44/40
        CTL3:×24/20
        CTL34:×26/20
        CTL5:×40/20
        CTL6:×42/10
由此,通过由{低,低,低,低,低,低}到{高,高,高,高,高,高}改变双控制信号的逻辑电平,使图1的可编程增益放大器的总增益可以由准线性(以dB)64级来控制,如图4所示。
图4是图表,其表示通过按照图4的电路制造的可编程增益放大器所获得的双控制信号的相关增益相应逻辑电平的一部分,图5是曲线图,其表示按照控制过程的增益线性增加。
如图4和5所示,按照实施例,可以采用简单的电路结构以足够精确的线性度实现足够精细的增益控制。

Claims (4)

1.一种可编程增益放大器,其包括:
多个级联差动放大器,其每个具有一对双极晶体管,晶体管的发射极共同连接;和
具有多个输出端子的电流控制器,用以输出发射极电流,每个电流均可提供给每个差动放大器的双极晶体管的共同连接的发射极上,发射极电流的乘积可以按照一组提供给电流控制器的双控制信号的逻辑电平来进行控制。
2.如权利要求1的可编程增益放大器,其中某个发射极电流可以按照相应的双控制信号的逻辑电平而乘以相互不同的比率。
3.如权利要求2的可编程增益放大器,其中发射极电流之一可近似地乘以几何级数的第2i-1部分,其中第i个双控制信号接到逻辑电平HIGH,i为正整数。
4.如权利要求1的可编程增益放大器,所述电流控制器具有电流镜象电路,其包括:
输入双极晶体管,其发射极通过控制为ON的输入MOS(金属氧化物半导体)晶体管而接地,恒定电流流过该输入双极晶体管;
输出双极晶体管,每个输出双极晶体管的集电极连接于电流控制器的每个输出端子上,基极连接于输入双极晶体管的基极上,发射极通过控制为ON的MOS晶体管而接地,所述MOS晶体管与输入MOS晶体管的相关通路电阻可设置为与所述每个输出双极晶体管与输入双极晶体管的相对发射极尺寸成反比;和
控制双极晶体管,其每个控制双极晶体管的集电极连接于电流控制器的输出端子之一上,基极连接于输入双极晶体管的基极上,发射极通过MOS晶体管而接地,所述MOS晶体管与输入MOS晶体管的相关通路电阻可设置为与所述每个控制双极晶体管与输入双极晶体管的相关发射极尺寸成反比,并且所述MOS晶体管可按照双控制信号之一的逻辑电平来进行开关。
CN98102689A 1997-06-30 1998-06-30 可编程增益放大器 Expired - Fee Related CN1085441C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP187162/97 1997-06-30
JP9187162A JPH1127068A (ja) 1997-06-30 1997-06-30 利得制御増幅器及びその制御方法

Publications (2)

Publication Number Publication Date
CN1204889A CN1204889A (zh) 1999-01-13
CN1085441C true CN1085441C (zh) 2002-05-22

Family

ID=16201215

Family Applications (1)

Application Number Title Priority Date Filing Date
CN98102689A Expired - Fee Related CN1085441C (zh) 1997-06-30 1998-06-30 可编程增益放大器

Country Status (5)

Country Link
US (1) US6049252A (zh)
JP (1) JPH1127068A (zh)
KR (1) KR100310405B1 (zh)
CN (1) CN1085441C (zh)
TW (1) TW382851B (zh)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9811579D0 (en) * 1998-05-30 1998-07-29 Sharp Kk Surface mode liquid crystal device
US6486711B1 (en) 1998-07-15 2002-11-26 Texas Instruments Incorporated Capacitor-based exponential programmable gain amplifier
WO2001028310A2 (en) * 1999-10-21 2001-04-26 Broadcom Corporation An adaptive radio transceiver
JP2001144563A (ja) 1999-11-17 2001-05-25 Nec Corp 可変利得増幅装置
US6271726B1 (en) * 2000-01-10 2001-08-07 Conexant Systems, Inc. Wideband, variable gain amplifier
JP2001358560A (ja) * 2000-06-15 2001-12-26 Fujitsu Ltd 位相シフタ回路のゲイン切替方法、位相シフタ回路の制御回路及び位相シフタ回路
CA2307684A1 (en) * 2000-05-05 2001-11-05 Nortel Networks Limited High speed variable output power driver
US6278325B1 (en) * 2000-12-13 2001-08-21 Industrial Technology Research Institute Programmable gain amplifier with a large extent for the variation of gains
JP3970623B2 (ja) * 2001-02-28 2007-09-05 シャープ株式会社 可変利得増幅器
US6525606B1 (en) * 2001-03-21 2003-02-25 Analog Devices, Inc. Variable gain amplifier
US6670941B2 (en) * 2001-10-22 2003-12-30 Koninklijke Philips Electronics N.V. Slow rate controlled ramp and its use in liquid crystal displays
JP3942013B2 (ja) * 2002-01-28 2007-07-11 株式会社ルネサステクノロジ 通信用半導体集積回路および無線通信装置
DE10231181A1 (de) * 2002-07-10 2004-01-29 Infineon Technologies Ag Verstärkerschaltung mit einstellbarer Verstärkung und Sendeanordnung mit der Verstärkerschaltung
US6888406B2 (en) * 2002-08-12 2005-05-03 Microtune (Texas), L.P. Highly linear variable gain amplifier
JP2004266309A (ja) * 2003-01-14 2004-09-24 Matsushita Electric Ind Co Ltd 可変利得増幅回路及び無線通信装置
DE102004031603B4 (de) * 2004-06-30 2008-04-17 Eads Deutschland Gmbh Verfahren zur Formung von Signalspektren und Schaltung zur Durchführung des Verfahrens
US7151409B2 (en) * 2004-07-26 2006-12-19 Texas Instruments Incorporated Programmable low noise amplifier and method
US7327189B2 (en) * 2004-08-17 2008-02-05 National Instruments Corporation Differential structure programmable gain instrumentation amplifier
US7215197B2 (en) * 2004-08-17 2007-05-08 National Instruments Corporation Programmable gain instrumentation amplifier with improved gain multiplexers
SE528494C2 (sv) * 2005-04-05 2006-11-28 Totalfoersvarets Forskningsins Programmerbar mikrovågskrets
US7693494B2 (en) * 2005-12-06 2010-04-06 Texas Instruments Incorporated High dynamic range pre-power amplifier incorporating digital attenuator
WO2011014206A1 (en) * 2009-07-28 2011-02-03 Skyworks Solutions, Inc. Process, voltage, and temperature sensor
CN104617899A (zh) * 2015-03-06 2015-05-13 上海新微技术研发中心有限公司 差分放大器和电子设备
US9755600B1 (en) * 2016-02-22 2017-09-05 Xilinx, Inc. Linear gain code interleaved automatic gain control circuit
US9966913B2 (en) 2016-08-24 2018-05-08 Hong Kong Applied Science and Technology Research Institute Company, Limited Linear-in-dB, low-voltage, programmable/variable gain amplifier (PGA) using recursive current division
KR102250705B1 (ko) 2019-05-10 2021-05-12 조이슨세이프티시스템스코리아 주식회사 차량의 시트벨트 리트랙터 및 이의 구동방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5331289A (en) * 1993-02-08 1994-07-19 Tektronix, Inc. Translinear fT multiplier
US5424683A (en) * 1993-03-29 1995-06-13 Sanyo Electric Co., Ltd. Differential amplification circuit wherein a DC level at an output terminal is automatically adjusted and a power amplifier wherein a BTL drive circuit is driven by a half wave

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4213097A (en) * 1978-10-19 1980-07-15 Racal-Milgo, Inc. Hybrid automatic gain control circuit
JPS5568713A (en) * 1978-11-17 1980-05-23 Matsushita Electric Ind Co Ltd Agc circuit
DE3204217A1 (de) * 1982-02-08 1983-08-18 Philips Patentverwaltung Gmbh, 2000 Hamburg Schaltung zur elektronischen verstaerkungsstellung
US4464633A (en) * 1982-03-31 1984-08-07 Rca Corporation Amplifier incorporating gain distribution control for cascaded amplifying stages
JPS59126311A (ja) * 1983-01-07 1984-07-20 Sony Corp Agc回路
JPS6148208A (ja) * 1984-08-13 1986-03-08 Rohm Co Ltd 自動利得制御回路
JPS62233908A (ja) * 1986-04-02 1987-10-14 Mitsubishi Electric Corp 可変利得増幅装置
DE3877150D1 (de) * 1987-11-19 1993-02-11 Siemens Ag Monolithisch integrierbarer phasenschieber-vco.
FR2676875B1 (fr) * 1991-05-24 1997-01-03 Alcatel Espace Dispositif amplificateur programmable.
JPH08139531A (ja) * 1994-11-04 1996-05-31 Hitachi Ltd 差動アンプ
JPH09135127A (ja) * 1995-11-07 1997-05-20 Nec Corp 電力増幅器
JP3335853B2 (ja) * 1996-03-29 2002-10-21 株式会社東芝 可変減衰器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5331289A (en) * 1993-02-08 1994-07-19 Tektronix, Inc. Translinear fT multiplier
US5424683A (en) * 1993-03-29 1995-06-13 Sanyo Electric Co., Ltd. Differential amplification circuit wherein a DC level at an output terminal is automatically adjusted and a power amplifier wherein a BTL drive circuit is driven by a half wave

Also Published As

Publication number Publication date
JPH1127068A (ja) 1999-01-29
CN1204889A (zh) 1999-01-13
KR100310405B1 (ko) 2001-12-17
US6049252A (en) 2000-04-11
KR19990007460A (ko) 1999-01-25
TW382851B (en) 2000-02-21

Similar Documents

Publication Publication Date Title
CN1085441C (zh) 可编程增益放大器
CN1249919C (zh) 可变增益放大器
CN1056256C (zh) 功率放大器及功率放大方法
CN1234206C (zh) 供开关电容器结构使用的放大器共模反馈系统
CN1081407C (zh) 低压运算放大器及方法
CN1126244C (zh) 可变增益放大器电路
CN1187894C (zh) 多级放大器
CN1171866A (zh) 增益可控制的放大器、包括一个增益可控制的放大器的接收机及控制信号幅度的方法
CN1124680C (zh) 高动态范围可变增益放大器
CN1407716A (zh) 增益可变放大器
CN1083640C (zh) 放大电路
CN1220330C (zh) 数模转换器
CN1508978A (zh) 具有放大功能的天线转换模块
CN1081841C (zh) 具有小的输出电流波动的恒流电路
CN1158191A (zh) If放大器/限幅器
CN1269309C (zh) 一种数字-模拟变换器和一种电荷泵
CN1288839C (zh) 全差分可变增益放大器和多维放大器装置
CN1201489C (zh) 电子电路
CN1141788C (zh) 可变增益放大器
CN1260990C (zh) 高频功率放大器
CN1048123C (zh) 电压限幅器电路
CN1812253A (zh) 混频级以及用于将具有不同频率的两个信号混合的方法
CN1274087C (zh) 电流输出电路
CN1324806C (zh) 放大电路
CN1468475A (zh) 电场强度检测电路及限幅放大器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: NEC ELECTRONICS TAIWAN LTD.

Free format text: FORMER OWNER: NIPPON ELECTRIC CO., LTD.

Effective date: 20030418

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20030418

Address after: Kanagawa, Japan

Patentee after: NEC Corp.

Address before: Tokyo, Japan

Patentee before: NEC Corp.

C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20020522