CN108530098A - 一种块体碳增强体/碳复合材料及其制备方法 - Google Patents

一种块体碳增强体/碳复合材料及其制备方法 Download PDF

Info

Publication number
CN108530098A
CN108530098A CN201710127051.4A CN201710127051A CN108530098A CN 108530098 A CN108530098 A CN 108530098A CN 201710127051 A CN201710127051 A CN 201710127051A CN 108530098 A CN108530098 A CN 108530098A
Authority
CN
China
Prior art keywords
carbon
reinforcement
block
preparation
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710127051.4A
Other languages
English (en)
Other versions
CN108530098B (zh
Inventor
林坤鹏
冉佳佳
杨浩田
章文
李建林
王连军
江莞
范宇驰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hainan University
Original Assignee
Hainan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hainan University filed Critical Hainan University
Priority to CN201710127051.4A priority Critical patent/CN108530098B/zh
Publication of CN108530098A publication Critical patent/CN108530098A/zh
Application granted granted Critical
Publication of CN108530098B publication Critical patent/CN108530098B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/83Carbon fibres in a carbon matrix
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Ceramic Products (AREA)

Abstract

本发明属于材料制备技术领域,具体涉及一种通过固相反应烧结得到的块体碳增强体/碳复合材料及其制备方法。块体碳增强体/碳复合材料,是将金刚石粉体在溶剂中均匀分散后,滴加含有碳纤维或碳纳米管的水溶液,经分散,搅拌蒸干后,过筛制得前驱体粉末;所述前驱体粉末在保护气氛下施加压力经高温烧结后得到所述块体碳增强体/碳复合材料。所述金刚石粉体采用至少两种不同粒径的金刚石复配,制备获得具有由同心石墨烯层包裹的石墨相而成的洋葱状晶粒结构,碳增强体均匀分布在所述洋葱状晶粒结构周围的块体碳增强体/碳复合材料。本发明所制备的块体碳增强体/碳复合材料具有高的致密度和良好的力学性能,可用于耐磨材料、电极材料、核能工业等。

Description

一种块体碳增强体/碳复合材料及其制备方法
技术领域
本发明属于材料制备技术领域,具体涉及一种块体碳增强体/碳复合材料及其制备方法。
背景技术
碳材料一直伴随着人类历史发展的进程,从零维富勒烯到一维碳纳米管,再到二维石墨烯,最后到常见的三维碳材料石墨、金刚石,都有着重要的应用。从单一的碳材料到两相甚至多相的碳/碳复合材料越来越备受关注,其应用范围也越来越广。然而,当今碳材料尤其是单一碳相组成的复合材料其发展的瓶颈是制得的产品相对致密度不是很高,力学性能达不到一些特殊行业的要求。本发明是通过固相反应烧结来制备块体碳增强体/碳复合材料,以金刚石为原料,通过引入碳纤维或碳纳米管可以显著提高由单一金刚石经相转变为石墨相所制的块体石墨材料的断裂韧性,使得裂纹在碳增强体处偏转、碳增强体对裂纹的桥连以及碳增强体拔出等能量消耗机制使该块体碳增强体/碳复合材料对裂纹、气孔等缺陷不敏感,制备方法简单,可操作性强,扩大了碳/碳复合材料的应用领域。
发明内容
为了克服现有技术的不足,攻克由固相烧结法制备高密度高强度的碳/碳复合材料难题,本发明提供了一种通过固相反应烧结得到的块体碳增强体/碳复合材料及其制备方法。本发明以金刚石为原料,添加碳增强体进行热压烧结,制得高密度高强度的洋葱状晶粒结构的块体碳增强体/碳复合材料。
本发明采用的具体技术方案是:
一种块体碳增强体/碳复合材料材料的制备方法,是先制得复合材料的前驱体,再经过加压烧结转化为块体碳增强体/碳复合材料。
进一步的,所述前驱体是采用经表面改性的金刚石粉体,采用至少两种不同粒径的金刚石复配,在无水乙醇中均匀分散后向其滴加含有碳增强体的水溶液,经超声分散,搅拌蒸干,干燥后过筛制得。
进一步的,所述复合材料的前驱体粉末的制备过程包括以下步骤:
(1)金刚石分散液的制备:分别称取2.4~2.6g粒径为80~100nm和0.24~0.26g粒径为40~50nm的经表面改性的金刚石粉体,研磨混合;将研磨后的混合粉体加入一定量的溶剂,超声分散20~30min;得到稳定的金刚石分散液;
(2)块体碳增强体/碳复合材料前驱体粉体的制备:向配置好的金刚石分散液中滴加含有碳增强体的水溶液,边滴加边搅拌,滴加完毕后再超声分散30min,在70℃下搅拌使溶剂蒸发至溶液成糊状,再80℃烘干;取出物料,滴入几滴无水乙醇并研磨至干燥,重复该步骤4次;将所得粉体用不锈钢标准筛过筛,制得复合材料的前驱体粉末。
所述步骤(1)中,所述的溶剂为无水乙醇。
所述步骤(2)中,所述的碳增强体水溶液分为二种(碳纳米管水溶液、碳纤维水溶液),滴加碳增强体的含量不超过复合材料前驱体体积分数的3%,所述的不锈钢标准筛尺寸为100目。
进一步的,所述的烧结过程为称取复合材料的前驱体粉末置于模具中,在保护气体气氛下烧结;烧结时对模具施加30~100MPa压力;达到最高烧结温度时,保温2~10min,泄压冷却至室温。高温时,金刚石颗粒转变为由同心石墨烯层包裹的石墨相洋葱状晶粒结构,碳增强体均匀分布在洋葱状晶粒结构周围,得到致密的块体碳增强体/碳复合材料。
所述模具为石墨模具。
所述保护气氛为氩气。
所述烧结方式为放电等离子体烧结时;升温速率为100~200℃/min。
所述烧结方式为热等静压烧结时;升温速率为100~200℃/h。
所述的加压起始温度为600~1000℃。
本发明与现有技术相比所具有的有益效果是:
本发明以金刚石为主要原料,在热压时金刚石经相转变,其原子历经较高的势能位置,活跃度大,相比现有的技术大都是采用各种中间相,本发明非常有利于烧结和提高产品的致密度。高温时,金刚石颗粒转变为由同心石墨烯层包裹的石墨相洋葱状晶粒结构;通过引入碳增强体可以显著提高由单一金刚石经相转变为石墨相所制的各向同性石墨的材料的断裂韧性,使得裂纹在碳增强体处偏转、碳增强体对裂纹的桥连以及碳增强体拔出等能量消耗机制使该块体碳增强体/碳复合材料对裂纹、气孔等缺陷不敏感。本发明所制备的洋葱状晶粒的块体碳增强体/碳复合材料其碳增强体均匀分布在洋葱状晶粒结构周围,无偏聚现象。该块体碳增强体/碳复合材料具有高的致密度和良好的力学性能,可用于耐磨材料、电极材料、核能工业等。
附图说明
图1是本发明制备一种块体碳增强体/碳复合材料的简要流程图。
具体实施方式
以下通过对实施例的描述,对本发明的具体实施方式作进一步的详细说明。
实施例1:
如附图1中所示流程,块体碳增强体/碳复合材料的制备方法,包括复合材料前驱体的制备、块体碳增强体/碳复合材料的烧结,具体步骤如下:
(1)复合材料前驱体的制备:
①金刚石分散液的制备:分别称取2.5g粒径为100nm和0.25g粒径为50nm的经表面改性的金刚石粉,放入研钵混合,研磨10min,将研磨后的粉体放入到100ml的烧杯中,向其烧杯中滴加50ml无水乙醇,将烧杯放入超声清洗仪中,采用120w功率超声分散30min,得到稳定的金刚石分散液;
②块体碳增强体/碳复合材料前驱体粉体的制备:向分散好的金刚石分散液中滴加碳纳米管水溶液,边滴加边搅拌,滴加完毕后再超声分散30min,放在恒温磁力搅拌器上,在70℃下缓慢搅拌使溶剂蒸发至溶液成糊状,再将其放入干燥箱中80℃烘干;取出物料放入研钵中,滴入几滴无水乙醇并研磨至干燥,重复该步骤4次;最后将所得粉体用100目不锈钢标准筛过筛,制得复合材料的前驱体粉末。
(2)复合材料的烧结:
称取0.5g(1)中制得复合材料的前驱体粉末,置于内径为10mm的石墨模具中,在氩气保护下,采用放电等离子体进行烧结,烧结时升温速率为150℃/min,烧结温度为1600℃,轴向压力为40MPa,高温时,金刚石颗粒转变为由同心石墨烯层包裹而成石墨相的洋葱状晶体,碳纳米管均匀地分布在洋葱状晶粒周围,得到致密的块体碳增强体/碳复合材料,体积密度达1.75g/cm3;杨氏模量32.6Gpa。
实施例2:
如附图1中所示流程,一种块体碳增强体/碳复合材料的制备方法,包括复合材料前驱体的制备、块体碳增强体/碳复合材料的烧结,具体步骤如下:
(1)复合材料前驱体的制备:
金刚石分散液的制备:分别称取2.5g粒径为100nm和2.5g粒径为50nm的经表面改性的金刚石粉体,放入研钵混合,研磨10min,将研磨后的粉体放入到100ml的烧杯中,向其烧杯中滴加50ml无水乙醇,将烧杯放入超声清洗仪中,采用120w功率超声分散30min,得到稳定的金刚石分散液;
块体碳增强体/碳复合材料前驱体粉体的制备:向分散好的金刚石分散液中滴加碳纤维水溶液,边滴加边搅拌,滴加完毕后再超声分散30min,放在恒温磁力搅拌器上,在70℃下缓慢搅拌使溶剂蒸发至溶液成糊状,再将其放入干燥箱中80℃烘干;取出物料放入研钵中,滴入几滴无水乙醇并研磨至干燥,重复该步骤4次;最后将所得粉体用100目不锈钢标准筛过筛,制得复合材料的前驱体粉末。
(2)复合材料的烧结:
称取0.5g(1)中制得复合材料的前驱体粉末,置于内径为10mm的石墨模具中,在氩气保护下,采用放电等离子体进行烧结,烧结时升温速率为100℃/min,烧结温度为1600℃,轴向压力为70MPa,高温时,金刚石颗粒转变为由同心石墨烯层包裹的石墨相洋葱状晶粒结构,碳纤维均匀地分布在洋葱状晶粒周围,得到致密的块体碳增强体/碳复合材料,体积密度达1.85g/cm3;杨氏模量38.2Gpa。
实施例3:
如附图1中所示流程,一种块体碳增强体/碳复合材料的制备方法,包括复合材料前驱体的制备、块体碳增强体/碳复合材料的烧结,具体步骤如下:
(1)复合材料前驱体的制备:
金刚石分散液的制备:分别称取2.5g粒径为100nm和0.25g粒径为50nm的经表面改性的金刚石粉体,放入研钵混合,研磨10min,将研磨后的粉体放入到100ml的烧杯中,向其烧杯中滴加50ml无水乙醇,将烧杯放入超声清洗仪中,采用120w功率超声分散30min,得到稳定的金刚石分散液;
块体碳增强体/碳复合材料前驱体粉体的制备:向分散好的金刚石分散液中滴加碳纳米管水溶液,边滴加边搅拌,滴加完毕后再超声分散30min,放在恒温磁力搅拌器上,在70℃下缓慢搅拌使溶剂蒸发至溶液成糊状,再将其放入干燥箱中80℃烘干;取出物料放入研钵中,滴入几滴无水乙醇并研磨至干燥,重复该步骤4次;最后将所得粉体用100目不锈钢标准筛过筛,制得复合材料的前驱体粉末。
(2)复合材料的烧结:
称取0.5g(1)中制得复合材料的前驱体粉末,置于内径为10mm的石墨模具中,在氩气保护下,采用热等静压进行烧结,烧结时升温速率为150℃/h,烧结温度为1700℃,施加压力为40MPa,金刚石颗粒转变为由同心石墨烯层包裹的石墨相洋葱状晶粒结构,碳纳米管均匀地分布在洋葱状晶粒周围,得到致密的块体碳增强体/碳复合材料,体积密度达1.82g/cm3;杨氏模量35.4Gpa。
实施例4:
一种块体碳增强体/碳复合材料的制备方法,包括复合材料前驱体的制备、块体碳增强体/碳复合材料的烧结,具体步骤如下:
(1)复合材料前驱体的制备:
金刚石分散液的制备:分别称取2.5g粒径为100nm和0.25g粒径为50nm的经表面改性的金刚石粉体,放入研钵混合,研磨10min,将研磨后的粉体放入到100ml的烧杯中,向其烧杯中滴加50ml无水乙醇,将烧杯放入超声清洗仪中,采用120w功率超声分散30min,得到稳定的金刚石分散液;
块体碳增强体/碳复合材料前驱体粉体的制备:向分散好的金刚石分散液中滴加碳纤维水溶液,边滴加边搅拌,滴加完毕后再超声分散30min,放在恒温磁力搅拌器上,在70℃下缓慢搅拌使溶剂蒸发至溶液成糊状,再将其放入干燥箱中80℃烘干;取出物料放入研钵中,滴入几滴无水乙醇并研磨至干燥,重复该步骤4次;最后将所得粉体用100目不锈钢标准筛过筛,制得复合材料的前驱体粉末。
(2)复合材料的烧结:
称取0.5g(1)中制得复合材料的前驱体粉末,置于内径为10mm的石墨模具中,在氩气保护下,采用热等静压进行烧结,烧结时升温速率为100℃/h,烧结温度为1600℃,轴向压力为70MPa,金刚石颗粒转变为由同心石墨烯层包裹的石墨相洋葱状晶粒结构,碳纤维均匀地分布在洋葱状晶粒周围,得到致密的块体碳增强体/碳复合材料,体积密度达1.92g/cm3;杨氏模量42.6Gpa。
以上描述只是本发明的具体实施方式,各举例说明不对本发明的实质内容构成限制,所属技术领域的技术人员对前述的具体实施方式做修改或变形,不背离本发明的实质。

Claims (9)

1.一种块体碳增强体/碳复合材料,其特征在于:所述块体碳增强体/碳复合材料的结构包括基体相及增强体;所述基体是金刚石粉体在热压条件下转变为由同心石墨烯层包裹的石墨相洋葱状晶粒结构;所述碳增强体是碳纳米管或碳纤维,经热压后碳增强体均匀分布在所述洋葱状晶粒结构周围。
2.一种如权利要求1所述的块体碳增强体/碳复合材料的制备方法,其特征在于:采用金刚石粉体在溶剂中均匀分散后滴加含有碳增强体的水溶液,经分散,搅拌蒸干后,过筛制得前驱体粉末;所述前驱体粉末在保护气氛下施加压力经高温烧结后得到所述块体碳增强体/碳复合材料。
3.根据权利要求2所述的块体碳增强体/碳复合材料的制备方法,其特征在于:所述金刚石粉体采用至少两种不同粒径的金刚石复配。
4.根据权利要求2~3中任一条所述的块体碳增强体/碳复合材料的制备方法,其特征在于:包括以下步骤:
(1)金刚石分散液的制备:分别称取2.4~2.6g粒径为80~100nm和0.24~0.26g粒径为40~50nm的经改性处理的金刚石粉体,研磨混合;将研磨后的混合粉体加入一定量的无水乙醇,超声分散20~30min;得到稳定的金刚石分散液;
(2)块体碳增强体/碳复合材料前驱体粉体的制备:向配置好的金刚石分散液中滴加含有碳增强体的水溶液,边滴加边搅拌,滴加完毕后再超声分散20~30min,在70℃下搅拌使溶剂蒸发至溶液成糊状,再80℃烘干;取出物料放入研钵中,滴入几滴无水乙醇并研磨至干燥,重复该步骤4次;将所得粉体用不锈钢标准筛过筛,制得复合材料的前驱体粉末;
(3)块体碳增强体/碳复合材料的制备:将制备好的复合材料的前驱体粉末定量地放置到模具中,在保护气氛下施加压力经高温烧结后得到块体碳增强体/碳复合材料。
5.根据权利要求3所述的块体碳增强体/碳复合材料的制备方法,其特征在于:所述步骤(2)中,碳增强体水溶液为碳纳米管水溶液、碳纤维水溶液中的一种。
6.根据权利要求3所述的块体碳增强体/碳复合材料的制备方法,其特征在于:所述步骤(2)中,滴加含有碳增强体的水溶液,碳增强体含量不超过复合材料前驱体体积分数的3%。
7.根据权利要求3所述的块体碳增强体/碳复合材料的制备方法,其特征在于:所述步骤(3)中,其特征在于:所述烧结的具体过程为:称取所述复合材料的前驱体粉末放置于模具中,所述模具为石墨模具;在保护气氛下烧结,所述保护气氛为氩气;在600~1000℃时开始对模具加压,施加的压力为30~100MPa;当达到最高烧结温度时,所述的最高温度为1500~1800℃;保温一定时间,所述的保温时间为2~10min;然后泄压冷却至室温。
8.根据权利要求3所述的块体碳增强体/碳复合材料的制备方法,其特征在于:所述烧结为放电等离子体烧结时,升温速率为100~200℃/min。
9.根据权利要求3所述的块体碳增强体/碳复合材料的制备方法,其特征在于:所述烧结为热等静压烧结时,升温速率为100~200℃/h。
CN201710127051.4A 2017-03-06 2017-03-06 一种块体碳增强体/碳复合材料及其制备方法 Active CN108530098B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710127051.4A CN108530098B (zh) 2017-03-06 2017-03-06 一种块体碳增强体/碳复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710127051.4A CN108530098B (zh) 2017-03-06 2017-03-06 一种块体碳增强体/碳复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN108530098A true CN108530098A (zh) 2018-09-14
CN108530098B CN108530098B (zh) 2022-04-08

Family

ID=63489508

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710127051.4A Active CN108530098B (zh) 2017-03-06 2017-03-06 一种块体碳增强体/碳复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN108530098B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110576176A (zh) * 2019-09-29 2019-12-17 河南工业大学 一种高性能金刚石工具的制备方法
CN111285687A (zh) * 2020-03-27 2020-06-16 燕山大学 一种碳纳米管-纳米聚晶金刚石复合材料及其制备方法
WO2020236079A1 (en) * 2019-05-23 2020-11-26 National University Of Singapore Monolithic and fractal carbon foams and methods of preparing and using same
CN114472945A (zh) * 2022-01-17 2022-05-13 四川伽锐科技有限公司 一种聚晶金刚石切削刀具
CN114702325A (zh) * 2022-02-11 2022-07-05 惠州学院 一种在陶瓷粉体中均匀混合大长径比硅基纳米相的方法
CN115925420A (zh) * 2021-09-30 2023-04-07 燕山大学 高弹性、高密封性的多孔碳块体材料及其制备方法
US11858812B2 (en) 2019-05-23 2024-01-02 National University Of Singapore Monolithic and fractal carbon foams and methods of preparing and using same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03103359A (ja) * 1989-02-07 1991-04-30 Ube Ind Ltd 繊維強化炭素材料
CN102007090A (zh) * 2008-04-14 2011-04-06 东洋炭素株式会社 碳纤维碳复合成型体、碳纤维强化碳复合体材料及其制造方法
CN102598875A (zh) * 2009-11-23 2012-07-18 应用纳米结构方案公司 碳-碳复合材料中的并入cnt的纤维
CN103342572A (zh) * 2012-08-15 2013-10-09 山东伟基炭科技有限公司 一种制备c/c复合材料的方法
CN103342574A (zh) * 2013-07-25 2013-10-09 华东理工大学 增强型块体纳米碳纤维/碳复合材料及其制备方法
CN105833797A (zh) * 2016-03-21 2016-08-10 吉林大学 纳米洋葱碳的高温高压制备方法
CN105908041A (zh) * 2016-04-27 2016-08-31 富耐克超硬材料股份有限公司 高韧性聚晶复合材料和高韧性聚晶刀片及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03103359A (ja) * 1989-02-07 1991-04-30 Ube Ind Ltd 繊維強化炭素材料
CN102007090A (zh) * 2008-04-14 2011-04-06 东洋炭素株式会社 碳纤维碳复合成型体、碳纤维强化碳复合体材料及其制造方法
CN102598875A (zh) * 2009-11-23 2012-07-18 应用纳米结构方案公司 碳-碳复合材料中的并入cnt的纤维
CN103342572A (zh) * 2012-08-15 2013-10-09 山东伟基炭科技有限公司 一种制备c/c复合材料的方法
CN103342574A (zh) * 2013-07-25 2013-10-09 华东理工大学 增强型块体纳米碳纤维/碳复合材料及其制备方法
CN105833797A (zh) * 2016-03-21 2016-08-10 吉林大学 纳米洋葱碳的高温高压制备方法
CN105908041A (zh) * 2016-04-27 2016-08-31 富耐克超硬材料股份有限公司 高韧性聚晶复合材料和高韧性聚晶刀片及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MARCO ZEIGER ET AL.: "Quinone-Decorated Onion-Like Carbon/Carbon Fiber Hybrid Electrodes for High-Rate Supercapacitor Applications", 《CHEMELECTROCHEM》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020236079A1 (en) * 2019-05-23 2020-11-26 National University Of Singapore Monolithic and fractal carbon foams and methods of preparing and using same
US11858812B2 (en) 2019-05-23 2024-01-02 National University Of Singapore Monolithic and fractal carbon foams and methods of preparing and using same
CN110576176A (zh) * 2019-09-29 2019-12-17 河南工业大学 一种高性能金刚石工具的制备方法
CN111285687A (zh) * 2020-03-27 2020-06-16 燕山大学 一种碳纳米管-纳米聚晶金刚石复合材料及其制备方法
CN115925420A (zh) * 2021-09-30 2023-04-07 燕山大学 高弹性、高密封性的多孔碳块体材料及其制备方法
US12024432B2 (en) 2021-09-30 2024-07-02 Yanshan University Porous carbon block material having high elasticity and high gas tightness and method for preparing the same
CN114472945A (zh) * 2022-01-17 2022-05-13 四川伽锐科技有限公司 一种聚晶金刚石切削刀具
CN114702325A (zh) * 2022-02-11 2022-07-05 惠州学院 一种在陶瓷粉体中均匀混合大长径比硅基纳米相的方法

Also Published As

Publication number Publication date
CN108530098B (zh) 2022-04-08

Similar Documents

Publication Publication Date Title
CN108530098A (zh) 一种块体碳增强体/碳复合材料及其制备方法
Morsi et al. Effect of mechanical alloying time and carbon nanotube (CNT) content on the evolution of aluminum (Al)–CNT composite powders
Esawi et al. Dispersion of carbon nanotubes (CNTs) in aluminum powder
Sun et al. Failure investigation of carbon nanotube/3Y-TZP nanocomposites
CN104846227B (zh) 石墨烯增强钛基复合材料及其制备方法
Wei et al. A new structure for multi-walled carbon nanotubes reinforced alumina nanocomposite with high strength and toughness
Lin et al. Microstructure and properties of ultrafine WC–0.6 VC–10Co hardmetals densified by pressure-assisted critical liquid phase sintering
Tsemenko et al. Fabrication, structure and properties of a composite from aluminum matrix reinforced with carbon nanofibers
CN107673772A (zh) 一种添加氧化锆晶须的Al2O3/Ti(C,N)纳米复合陶瓷刀具材料及其制备方法
CN106116582B (zh) 一种无钴碳化钨的烧结方法
CN110157931A (zh) 一种具有三维网络结构的纳米碳增强金属基复合材料及其制备方法
JPS61111967A (ja) 炭化物―ほう化物をベースとする材料およびその成形体の製造方法
Zhao et al. Preparation of ultrafine cemented carbides with uniform structure and high properties by microwave sintering
CN114752799B (zh) CNTs增强WC-Co硬质合金材料及其制备方法
Reyes-Rojas et al. Sintering of carbon nanotube-reinforced zirconia-toughened alumina composites prepared by uniaxial pressing and cold isostatic pressing
Groven et al. Solution combustion synthesis of carbon nanotube loaded nickel foams
Liu et al. Effect of boron nitride nanotubes content on mechanical properties and microstructure of Ti (C, N)-based cermets
CN106116617B (zh) 一种超细氮化硼多孔纤维增韧wc复合材料及其制备方法
JP2004137144A (ja) 多孔性炭素材、それを使った多孔性炭素材粉末、およびそれらの製造方法、ならびにそれら多孔性炭素材粉末を使った多孔性炭素材製品の製造方法
CN109763047A (zh) 一种高强度的Mo-Ti-Zr-CNT钼合金复合材料及其制备方法
CN107954715A (zh) 一种致密块体陶瓷材料的制备方法
Tabie et al. Microstructure and mechanical properties of particle reinforced high-temperature titanium composites
CN108530099A (zh) 一种块体碳增强体/碳复合材料及其制备方法
CN107299238A (zh) 一种Ti纳米颗粒增强TiC‑Ni系金属陶瓷的制备方法
CN103011779B (zh) 一种微米-纳米多尺度复合陶瓷刀具材料及其制备工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant