CN108530098B - 一种块体碳增强体/碳复合材料及其制备方法 - Google Patents
一种块体碳增强体/碳复合材料及其制备方法 Download PDFInfo
- Publication number
- CN108530098B CN108530098B CN201710127051.4A CN201710127051A CN108530098B CN 108530098 B CN108530098 B CN 108530098B CN 201710127051 A CN201710127051 A CN 201710127051A CN 108530098 B CN108530098 B CN 108530098B
- Authority
- CN
- China
- Prior art keywords
- carbon
- composite material
- reinforcement
- sintering
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/71—Ceramic products containing macroscopic reinforcing agents
- C04B35/78—Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
- C04B35/80—Fibres, filaments, whiskers, platelets, or the like
- C04B35/83—Carbon fibres in a carbon matrix
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/52—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
- C04B35/6455—Hot isostatic pressing
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/666—Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Carbon And Carbon Compounds (AREA)
- Ceramic Products (AREA)
Abstract
本发明属于材料制备技术领域,具体涉及一种通过固相反应烧结得到的块体碳增强体/碳复合材料及其制备方法。块体碳增强体/碳复合材料,是将金刚石粉体在溶剂中均匀分散后,滴加含有碳纤维或碳纳米管的水溶液,经分散,搅拌蒸干后,过筛制得前驱体粉末;所述前驱体粉末在保护气氛下施加压力经高温烧结后得到所述块体碳增强体/碳复合材料。所述金刚石粉体采用至少两种不同粒径的金刚石复配,制备获得具有由同心石墨烯层包裹的石墨相而成的洋葱状晶粒结构,碳增强体均匀分布在所述洋葱状晶粒结构周围的块体碳增强体/碳复合材料。本发明所制备的块体碳增强体/碳复合材料具有高的致密度和良好的力学性能,可用于耐磨材料、电极材料、核能工业等。
Description
技术领域
本发明属于材料制备技术领域,具体涉及一种块体碳增强体/碳复合材料及其制备方法。
背景技术
碳材料一直伴随着人类历史发展的进程,从零维富勒烯到一维碳纳米管,再到二维石墨烯,最后到常见的三维碳材料石墨、金刚石,都有着重要的应用。从单一的碳材料到两相甚至多相的碳/碳复合材料越来越备受关注,其应用范围也越来越广。然而,当今碳材料尤其是单一碳相组成的复合材料其发展的瓶颈是制得的产品相对致密度不是很高,力学性能达不到一些特殊行业的要求。本发明是通过固相反应烧结来制备块体碳增强体/碳复合材料,以金刚石为原料,通过引入碳纤维或碳纳米管可以显著提高由单一金刚石经相转变为石墨相所制的块体石墨材料的断裂韧性,使得裂纹在碳增强体处偏转、碳增强体对裂纹的桥连以及碳增强体拔出等能量消耗机制使该块体碳增强体/碳复合材料对裂纹、气孔等缺陷不敏感,制备方法简单,可操作性强,扩大了碳/碳复合材料的应用领域。
发明内容
为了克服现有技术的不足,攻克由固相烧结法制备高密度高强度的碳/碳复合材料难题,本发明提供了一种通过固相反应烧结得到的块体碳增强体/碳复合材料及其制备方法。本发明以金刚石为原料,添加碳增强体进行热压烧结,制得高密度高强度的洋葱状晶粒结构的块体碳增强体/碳复合材料。
本发明采用的具体技术方案是:
一种块体碳增强体/碳复合材料材料的制备方法,是先制得复合材料的前驱体,再经过加压烧结转化为块体碳增强体/碳复合材料。
进一步的,所述前驱体是采用经表面改性的金刚石粉体,采用至少两种不同粒径的金刚石复配,在无水乙醇中均匀分散后向其滴加含有碳增强体的水溶液,经超声分散,搅拌蒸干,干燥后过筛制得。
进一步的,所述复合材料的前驱体粉末的制备过程包括以下步骤:
(1)金刚石分散液的制备:分别称取2.4~2.6g粒径为80~100nm和0.24~0.26g粒径为40~50nm的经表面改性的金刚石粉体,研磨混合;将研磨后的混合粉体加入一定量的溶剂,超声分散20~30min;得到稳定的金刚石分散液;
(2)块体碳增强体/碳复合材料前驱体粉体的制备:向配置好的金刚石分散液中滴加含有碳增强体的水溶液,边滴加边搅拌,滴加完毕后再超声分散30min,在70℃下搅拌使溶剂蒸发至溶液成糊状,再80℃烘干;取出物料,滴入几滴无水乙醇并研磨至干燥,重复该步骤4次;将所得粉体用不锈钢标准筛过筛,制得复合材料的前驱体粉末。
所述步骤(1)中,所述的溶剂为无水乙醇。
所述步骤(2)中,所述的碳增强体水溶液分为二种(碳纳米管水溶液、碳纤维水溶液),滴加碳增强体的含量不超过复合材料前驱体体积分数的3%,所述的不锈钢标准筛尺寸为100目。
进一步的,所述的烧结过程为称取复合材料的前驱体粉末置于模具中,在保护气体气氛下烧结;烧结时对模具施加30~100MPa压力;达到最高烧结温度时,保温2~10min,泄压冷却至室温。高温时,金刚石颗粒转变为由同心石墨烯层包裹的石墨相洋葱状晶粒结构,碳增强体均匀分布在洋葱状晶粒结构周围,得到致密的块体碳增强体/碳复合材料。
所述模具为石墨模具。
所述保护气氛为氩气。
所述烧结方式为放电等离子体烧结时;升温速率为100~200℃/min。
所述烧结方式为热等静压烧结时;升温速率为100~200℃/h。
所述的加压起始温度为600~1000℃。
本发明与现有技术相比所具有的有益效果是:
本发明以金刚石为主要原料,在热压时金刚石经相转变,其原子历经较高的势能位置,活跃度大,相比现有的技术大都是采用各种中间相,本发明非常有利于烧结和提高产品的致密度。高温时,金刚石颗粒转变为由同心石墨烯层包裹的石墨相洋葱状晶粒结构;通过引入碳增强体可以显著提高由单一金刚石经相转变为石墨相所制的各向同性石墨的材料的断裂韧性,使得裂纹在碳增强体处偏转、碳增强体对裂纹的桥连以及碳增强体拔出等能量消耗机制使该块体碳增强体/碳复合材料对裂纹、气孔等缺陷不敏感。本发明所制备的洋葱状晶粒的块体碳增强体/碳复合材料其碳增强体均匀分布在洋葱状晶粒结构周围,无偏聚现象。该块体碳增强体/碳复合材料具有高的致密度和良好的力学性能,可用于耐磨材料、电极材料、核能工业等。
附图说明
图1是本发明制备一种块体碳增强体/碳复合材料的简要流程图。
具体实施方式
以下通过对实施例的描述,对本发明的具体实施方式作进一步的详细说明。
实施例1:
如附图1中所示流程,块体碳增强体/碳复合材料的制备方法,包括复合材料前驱体的制备、块体碳增强体/碳复合材料的烧结,具体步骤如下:
(1)复合材料前驱体的制备:
①金刚石分散液的制备:分别称取2.5g粒径为100nm和0.25g粒径为50nm的经表面改性的金刚石粉,放入研钵混合,研磨10min,将研磨后的粉体放入到100ml的烧杯中,向其烧杯中滴加50ml无水乙醇,将烧杯放入超声清洗仪中,采用120w功率超声分散30min,得到稳定的金刚石分散液;
②块体碳增强体/碳复合材料前驱体粉体的制备:向分散好的金刚石分散液中滴加碳纳米管水溶液,边滴加边搅拌,滴加完毕后再超声分散30min,放在恒温磁力搅拌器上,在70℃下缓慢搅拌使溶剂蒸发至溶液成糊状,再将其放入干燥箱中80℃烘干;取出物料放入研钵中,滴入几滴无水乙醇并研磨至干燥,重复该步骤4次;最后将所得粉体用100目不锈钢标准筛过筛,制得复合材料的前驱体粉末。
(2)复合材料的烧结:
称取0.5g(1)中制得复合材料的前驱体粉末,置于内径为10mm的石墨模具中,在氩气保护下,采用放电等离子体进行烧结,烧结时升温速率为150℃/min,烧结温度为1600℃,轴向压力为40MPa,高温时,金刚石颗粒转变为由同心石墨烯层包裹而成石墨相的洋葱状晶体,碳纳米管均匀地分布在洋葱状晶粒周围,得到致密的块体碳增强体/碳复合材料,体积密度达1.75g/cm3;杨氏模量32.6Gpa。
实施例2:
如附图1中所示流程,一种块体碳增强体/碳复合材料的制备方法,包括复合材料前驱体的制备、块体碳增强体/碳复合材料的烧结,具体步骤如下:
(1)复合材料前驱体的制备:
金刚石分散液的制备:分别称取2.5g粒径为100nm和2.5g粒径为50nm的经表面改性的金刚石粉体,放入研钵混合,研磨10min,将研磨后的粉体放入到100ml的烧杯中,向其烧杯中滴加50ml无水乙醇,将烧杯放入超声清洗仪中,采用120w功率超声分散30min,得到稳定的金刚石分散液;
块体碳增强体/碳复合材料前驱体粉体的制备:向分散好的金刚石分散液中滴加碳纤维水溶液,边滴加边搅拌,滴加完毕后再超声分散30min,放在恒温磁力搅拌器上,在70℃下缓慢搅拌使溶剂蒸发至溶液成糊状,再将其放入干燥箱中80℃烘干;取出物料放入研钵中,滴入几滴无水乙醇并研磨至干燥,重复该步骤4次;最后将所得粉体用100目不锈钢标准筛过筛,制得复合材料的前驱体粉末。
(2)复合材料的烧结:
称取0.5g(1)中制得复合材料的前驱体粉末,置于内径为10mm的石墨模具中,在氩气保护下,采用放电等离子体进行烧结,烧结时升温速率为100℃/min,烧结温度为1600℃,轴向压力为70MPa,高温时,金刚石颗粒转变为由同心石墨烯层包裹的石墨相洋葱状晶粒结构,碳纤维均匀地分布在洋葱状晶粒周围,得到致密的块体碳增强体/碳复合材料,体积密度达1.85g/cm3;杨氏模量38.2Gpa。
实施例3:
如附图1中所示流程,一种块体碳增强体/碳复合材料的制备方法,包括复合材料前驱体的制备、块体碳增强体/碳复合材料的烧结,具体步骤如下:
(1)复合材料前驱体的制备:
金刚石分散液的制备:分别称取2.5g粒径为100nm和0.25g粒径为50nm的经表面改性的金刚石粉体,放入研钵混合,研磨10min,将研磨后的粉体放入到100ml的烧杯中,向其烧杯中滴加50ml无水乙醇,将烧杯放入超声清洗仪中,采用120w功率超声分散30min,得到稳定的金刚石分散液;
块体碳增强体/碳复合材料前驱体粉体的制备:向分散好的金刚石分散液中滴加碳纳米管水溶液,边滴加边搅拌,滴加完毕后再超声分散30min,放在恒温磁力搅拌器上,在70℃下缓慢搅拌使溶剂蒸发至溶液成糊状,再将其放入干燥箱中80℃烘干;取出物料放入研钵中,滴入几滴无水乙醇并研磨至干燥,重复该步骤4次;最后将所得粉体用100目不锈钢标准筛过筛,制得复合材料的前驱体粉末。
(2)复合材料的烧结:
称取0.5g(1)中制得复合材料的前驱体粉末,置于内径为10mm的石墨模具中,在氩气保护下,采用热等静压进行烧结,烧结时升温速率为150℃/h,烧结温度为1700℃,施加压力为40MPa,金刚石颗粒转变为由同心石墨烯层包裹的石墨相洋葱状晶粒结构,碳纳米管均匀地分布在洋葱状晶粒周围,得到致密的块体碳增强体/碳复合材料,体积密度达1.82g/cm3;杨氏模量35.4Gpa。
实施例4:
一种块体碳增强体/碳复合材料的制备方法,包括复合材料前驱体的制备、块体碳增强体/碳复合材料的烧结,具体步骤如下:
(1)复合材料前驱体的制备:
金刚石分散液的制备:分别称取2.5g粒径为100nm和0.25g粒径为50nm的经表面改性的金刚石粉体,放入研钵混合,研磨10min,将研磨后的粉体放入到100ml的烧杯中,向其烧杯中滴加50ml无水乙醇,将烧杯放入超声清洗仪中,采用120w功率超声分散30min,得到稳定的金刚石分散液;
块体碳增强体/碳复合材料前驱体粉体的制备:向分散好的金刚石分散液中滴加碳纤维水溶液,边滴加边搅拌,滴加完毕后再超声分散30min,放在恒温磁力搅拌器上,在70℃下缓慢搅拌使溶剂蒸发至溶液成糊状,再将其放入干燥箱中80℃烘干;取出物料放入研钵中,滴入几滴无水乙醇并研磨至干燥,重复该步骤4次;最后将所得粉体用100目不锈钢标准筛过筛,制得复合材料的前驱体粉末。
(2)复合材料的烧结:
称取0.5g(1)中制得复合材料的前驱体粉末,置于内径为10mm的石墨模具中,在氩气保护下,采用热等静压进行烧结,烧结时升温速率为100℃/h,烧结温度为1600℃,轴向压力为70MPa,金刚石颗粒转变为由同心石墨烯层包裹的石墨相洋葱状晶粒结构,碳纤维均匀地分布在洋葱状晶粒周围,得到致密的块体碳增强体/碳复合材料,体积密度达1.92g/cm3;杨氏模量42.6Gpa。
以上描述只是本发明的具体实施方式,各举例说明不对本发明的实质内容构成限制,所属技术领域的技术人员对前述的具体实施方式做修改或变形,不背离本发明的实质。
Claims (5)
1.一种块体碳增强体/碳复合材料的制备方法,其特征在于:所述块体碳增强体/碳复合材料的结构包括基体相及增强体;所述基体是金刚石粉体在热压条件下转变为由同心石墨烯层包裹的石墨相洋葱状晶粒结构;所述碳增强体是碳纳米管或碳纤维,经热压后碳增强体均匀分布在所述洋葱状晶粒结构周围;
所述的块体碳增强体/碳复合材料的制备方法为:采用金刚石粉体在溶剂中均匀分散后滴加含有碳增强体的水溶液,经分散,搅拌蒸干后,过筛制得前驱体粉末;所述前驱体粉末在保护气氛下施加压力经高温烧结后得到所述块体碳增强体/碳复合材料;所述金刚石粉体采用至少两种不同粒径的金刚石复配;
包括以下步骤:
(1)金刚石分散液的制备:分别称取2.4~2.6g粒径为80~100nm和0.24~0.26g粒径为40~50nm的经改性处理的金刚石粉体,研磨混合;将研磨后的混合粉体加入一定量的无水乙醇,超声分散20~30min;得到稳定的金刚石分散液;
(2)块体碳增强体/碳复合材料前驱体粉体的制备:向配置好的金刚石分散液中滴加含有碳增强体的水溶液,边滴加边搅拌,滴加完毕后再超声分散20~30min,在70℃下搅拌使溶剂蒸发至溶液成糊状,再80℃烘干;取出物料放入研钵中,滴入几滴无水乙醇并研磨至干燥,重复该步骤4次;将所得粉体用不锈钢标准筛过筛,制得复合材料的前驱体粉末;
(3)块体碳增强体/碳复合材料的制备:将制备好的复合材料的前驱体粉末定量地放置到模具中,在保护气氛下施加压力经高温烧结后得到块体碳增强体/碳复合材料;
所述烧结的具体过程为:称取所述复合材料的前驱体粉末放置于模具中,所述模具为石墨模具;在保护气氛下烧结,所述保护气氛为氩气;在600~1000℃时开始对模具加压,施加的压力为30~100MPa;当达到最高烧结温度时,所述的最高温度为1500~1800℃;保温一定时间,所述的保温时间为2~10min;然后泄压冷却至室温。
2.根据权利要求1所述的块体碳增强体/碳复合材料的制备方法,其特征在于:所述步骤(2)中,碳增强体水溶液为碳纳米管水溶液、碳纤维水溶液中的一种。
3.根据权利要求1所述的块体碳增强体/碳复合材料的制备方法,其特征在于:所述步骤(2)中,滴加含有碳增强体的水溶液,碳增强体含量不超过复合材料前驱体体积分数的3%。
4.根据权利要求1所述的块体碳增强体/碳复合材料的制备方法,其特征在于:所述烧结为放电等离子体烧结时,升温速率为100~200℃/min。
5.根据权利要求1所述的块体碳增强体/碳复合材料的制备方法,其特征在于:所述烧结为热等静压烧结时,升温速率为100~200℃/h。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710127051.4A CN108530098B (zh) | 2017-03-06 | 2017-03-06 | 一种块体碳增强体/碳复合材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710127051.4A CN108530098B (zh) | 2017-03-06 | 2017-03-06 | 一种块体碳增强体/碳复合材料及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108530098A CN108530098A (zh) | 2018-09-14 |
CN108530098B true CN108530098B (zh) | 2022-04-08 |
Family
ID=63489508
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710127051.4A Active CN108530098B (zh) | 2017-03-06 | 2017-03-06 | 一种块体碳增强体/碳复合材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108530098B (zh) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020236079A1 (en) * | 2019-05-23 | 2020-11-26 | National University Of Singapore | Monolithic and fractal carbon foams and methods of preparing and using same |
US11858812B2 (en) | 2019-05-23 | 2024-01-02 | National University Of Singapore | Monolithic and fractal carbon foams and methods of preparing and using same |
CN110576176A (zh) * | 2019-09-29 | 2019-12-17 | 河南工业大学 | 一种高性能金刚石工具的制备方法 |
CN111285687A (zh) * | 2020-03-27 | 2020-06-16 | 燕山大学 | 一种碳纳米管-纳米聚晶金刚石复合材料及其制备方法 |
CN115925420B (zh) * | 2021-09-30 | 2024-10-01 | 燕山大学 | 高弹性、高密封性的多孔碳块体材料及其制备方法 |
CN114472945A (zh) * | 2022-01-17 | 2022-05-13 | 四川伽锐科技有限公司 | 一种聚晶金刚石切削刀具 |
CN114702325B (zh) * | 2022-02-11 | 2023-05-12 | 惠州学院 | 一种在陶瓷粉体中均匀混合大长径比硅基纳米相的方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102007090A (zh) * | 2008-04-14 | 2011-04-06 | 东洋炭素株式会社 | 碳纤维碳复合成型体、碳纤维强化碳复合体材料及其制造方法 |
CN102598875A (zh) * | 2009-11-23 | 2012-07-18 | 应用纳米结构方案公司 | 碳-碳复合材料中的并入cnt的纤维 |
CN103342572A (zh) * | 2012-08-15 | 2013-10-09 | 山东伟基炭科技有限公司 | 一种制备c/c复合材料的方法 |
CN103342574A (zh) * | 2013-07-25 | 2013-10-09 | 华东理工大学 | 增强型块体纳米碳纤维/碳复合材料及其制备方法 |
CN105833797A (zh) * | 2016-03-21 | 2016-08-10 | 吉林大学 | 纳米洋葱碳的高温高压制备方法 |
CN105908041A (zh) * | 2016-04-27 | 2016-08-31 | 富耐克超硬材料股份有限公司 | 高韧性聚晶复合材料和高韧性聚晶刀片及其制备方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0764653B2 (ja) * | 1989-02-07 | 1995-07-12 | 宇部興産株式会社 | 繊維強化炭素材料 |
-
2017
- 2017-03-06 CN CN201710127051.4A patent/CN108530098B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102007090A (zh) * | 2008-04-14 | 2011-04-06 | 东洋炭素株式会社 | 碳纤维碳复合成型体、碳纤维强化碳复合体材料及其制造方法 |
CN102598875A (zh) * | 2009-11-23 | 2012-07-18 | 应用纳米结构方案公司 | 碳-碳复合材料中的并入cnt的纤维 |
CN103342572A (zh) * | 2012-08-15 | 2013-10-09 | 山东伟基炭科技有限公司 | 一种制备c/c复合材料的方法 |
CN103342574A (zh) * | 2013-07-25 | 2013-10-09 | 华东理工大学 | 增强型块体纳米碳纤维/碳复合材料及其制备方法 |
CN105833797A (zh) * | 2016-03-21 | 2016-08-10 | 吉林大学 | 纳米洋葱碳的高温高压制备方法 |
CN105908041A (zh) * | 2016-04-27 | 2016-08-31 | 富耐克超硬材料股份有限公司 | 高韧性聚晶复合材料和高韧性聚晶刀片及其制备方法 |
Non-Patent Citations (1)
Title |
---|
Quinone-Decorated Onion-Like Carbon/Carbon Fiber Hybrid Electrodes for High-Rate Supercapacitor Applications;Marco Zeiger et al.;《ChemElectroChem》;20150526;第2卷;1117-1127 * |
Also Published As
Publication number | Publication date |
---|---|
CN108530098A (zh) | 2018-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108530098B (zh) | 一种块体碳增强体/碳复合材料及其制备方法 | |
US10926331B2 (en) | Method for reinforcing metal material by means of graphene | |
CN104619637B (zh) | 包含碳纳米管的固体碳产物以及其形成方法 | |
Inam et al. | Structural and chemical stability of multiwall carbon nanotubes in sintered ceramic nanocomposite | |
Deng et al. | Damping characteristics of carbon nanotube reinforced aluminum composite | |
CN110157931B (zh) | 一种具有三维网络结构的纳米碳增强金属基复合材料及其制备方法 | |
WO2020042950A1 (zh) | 一种短纤维增强取向max相陶瓷基复合材料及制备方法 | |
US20090269573A1 (en) | High-Performance Composite Material and Manufacturing Method thereof | |
CN109609806B (zh) | 一种氧化石墨烯增强钛基复合材料及其制备方法 | |
CN109338148A (zh) | 一种石墨烯-铜铬锆合金及其制备方法 | |
CN103924114A (zh) | 一种超声制备碳纳米管增强铝基复合材料的方法 | |
CN112592188A (zh) | 一种石墨烯复合碳化硅陶瓷材料的制备方法 | |
CN103553627A (zh) | 一种陶瓷基复合材料及其制备方法和应用 | |
Patel et al. | Formation of stainless steel–carbon nanotube composites using a scalable chemical vapor infiltration process | |
CN101985352B (zh) | 一种酞菁铁聚合物高温固相裂解制备多壁碳纳米管的方法 | |
CN114752799B (zh) | CNTs增强WC-Co硬质合金材料及其制备方法 | |
JP5366193B2 (ja) | 高機能複合材料およびその製造方法 | |
Xu et al. | Mechanical and thermal properties of vapor-grown carbon fiber reinforced aluminum matrix composites by plasma sintering | |
Zhao et al. | Reinforcement with in-situ synthesized carbon nano-onions in aluminum composites fabricated by flake powder metallurgy | |
Pang et al. | Fabrication and microstructure of Fe3Al matrix composite reinforced by carbon nanotube | |
CN108530099B (zh) | 一种块体碳增强体/碳复合材料及其制备方法 | |
CN110039042B (zh) | 一种碳纳米管增强钛镁合金复合材料的制备方法 | |
CN109652679B (zh) | 纳米碳管和内生纳米TiC颗粒混杂增强铝基复合材料及其制备方法 | |
CN108529599B (zh) | 一种块体碳增强体/碳复合材料及其制备方法 | |
Miao et al. | Sintering and mechanical properties of carbon bulks from ordered mesoporous carbon and nano diamond |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |