CN108530069A - 一种高介电常数与低介电损耗兼备的离子改性二氧化钛陶瓷材料的制备方法 - Google Patents

一种高介电常数与低介电损耗兼备的离子改性二氧化钛陶瓷材料的制备方法 Download PDF

Info

Publication number
CN108530069A
CN108530069A CN201810313888.2A CN201810313888A CN108530069A CN 108530069 A CN108530069 A CN 108530069A CN 201810313888 A CN201810313888 A CN 201810313888A CN 108530069 A CN108530069 A CN 108530069A
Authority
CN
China
Prior art keywords
titanium dioxide
ceramic material
dielectric loss
atmosphere
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810313888.2A
Other languages
English (en)
Inventor
吴家刚
刘壮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN201810313888.2A priority Critical patent/CN108530069A/zh
Publication of CN108530069A publication Critical patent/CN108530069A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明公开了一种高介电常数与低介电损耗兼备的离子改性二氧化钛陶瓷材料的制备方法。所述二氧化钛陶瓷材料为(Pr0.5Nb0.5) x Ti1‑ x O2,其中,0.5%≤x≤10%摩尔比,以二氧化钛(TiO2)、氧化镨(Pr6O11)和氧化铌(Nb2O5)为原料,采用传统固相烧结的方法,通过调控掺杂元素含量和烧结温度,获得高介电常数与低介电损耗兼备的离子改性二氧化钛陶瓷材料。所得陶瓷材料的介电常数高至80000,介电损耗低至4%,且该陶瓷材料的介电性能具有良好的温度稳定性和频率稳定性。

Description

一种高介电常数与低介电损耗兼备的离子改性二氧化钛陶瓷 材料的制备方法
技术领域
本发明涉及介电陶瓷领域,具体涉及一种高介电常数与低介电损耗兼备的离子改性二氧化钛陶瓷材料的制备方法。
背景技术
近年来,随着半导体工业的不断发展,微电子应用的需求不断增长,电子设备的小型化和集成化成为当今的发展趋势。开发出能够在小面积器件上提供高密度存储能力的材料成为了推动微电子产业发展的关键。因此,高介电常数材料的研发成为了微电子产业发展的核心要求 (Nat. Mater., 2011, 10, 899-901)。
目前,市面上已经出现了若干种具有高介电常数的材料,其中包括(Pb, La)TiO3(Phys. Rev. Lett., 2001, 86, 3403-3406)、BaTiO3 (Adv. Funct. Mater., 2014, 24,885-896)、SrTiO3 (J. Eur. Ceram. Soc., 2014, 34, 1755-1760)和CaCu3Ti4O12(Science, 2001, 293, 673-676)。然而,上述材料存在高介电常数与高介电损耗并存的现象,例如,CaCu3Ti4O12的介电损耗通常高于20%,使得这类材料无法在高密度存储领域获得广泛应用。此外,BaTiO3的介电常数存在着强烈的温度依赖性 (J. Mater., Sci., 1971,6, 1214-1224),仅在BaTiO3的四方与立方相转变温度时,BaTiO3才具有高介电常数,这促使BaTiO3无法在较宽的温度范围内服役。同时,由于含铅,(Pb, La)TiO3在使用过程中会危害人类身体健康,废弃后污染土壤,因而逐渐被无铅材料替代。
2013年,Wanbiao Hu等首次报道一种经过In3+离子与Nb5+离子改性的二氧化钛陶瓷材料 (Nat. Mater., 2013, 12, 821-826),相较于传统的二氧化钛陶瓷材料,介电常数得到了极大的提高,这也为介电材料的研发提供了一种新思路。然而,这种陶瓷材料的介电常数仍然比许多传统介电材料低。同时,目前有关掺杂元素对二氧化钛陶瓷介电性能影响的研究较少。因此,我们期望通过改变掺杂元素种类以及调整制备方法,来获得高介电常数与低介电损耗兼备的离子改性二氧化钛陶瓷材料,以推动高密度存储以及微电子器件领域的发展。
发明内容
本发明的目的是通过同时添加新型的三价元素Pr和五价元素Nb,在二氧化钛中获得高介电常数与低介电损耗兼备的离子改性二氧化钛陶瓷材料。
本发明的基本思路是:采用传统固相烧结的方法,将新型的三价元素Pr和五价元素Nb同时添加到二氧化钛中,通过调控掺杂含量与烧结温度来获得高介电常数与低介电损耗兼备的二氧化钛陶瓷材料。该陶瓷材料获得增强的介电性能可以用电子钉扎理论解释:引入的Pr3+离子取代了二氧化钛基体中的部分Ti4+离子,从而产生了一定浓度的氧空位,氧空位又促使Ti4+离子转变为Ti3+离子,从而产生自由电子。上述过程产生的氧空位与自由电子结合形成缺陷偶极子,一定数量的缺陷偶极子聚集在一起,使得材料具有了高介电常数;同时,晶界处较高的活化能又使得材料的介电损耗处于低水平。
根据上述发明思路和发明目的,本发明采用下述工艺步骤构成的技术方案来实现。
本发明的具体工序步骤如下:
(1)将二氧化钛(TiO2)、氧化镨(Pr6O11)和氧化铌(Nb2O5)粉体原料,按化学式(Pr0.5Nb0.5) x Ti1-x O2进行配料,其中0.5%≤x≤10%,并以无水乙醇为介质进行滚动球磨,将滚动球磨24小时后的粉料烘干得到混合干粉;
(2)将步骤(1)所得的混合干粉在马弗炉中预烧4小时,预烧温度为1100oC,气氛为空气气氛,随炉冷却后将预烧好的混合干粉加入8 wt%的聚乙烯醇水溶液,进行造粒,得到粒度均匀的粒料;
(3)利用磨具将步骤(2)所得的粒料压制成厚度为1.2毫米、直径为10毫米的小圆片,然后将小圆片放在马弗炉中排胶2小时,排胶温度为1000 oC,气氛为空气气氛,随炉冷却后将小圆片在1380~1450 oC下保温3.5小时烧结,气氛为空气气氛,随炉冷却后得到陶瓷片;
(4)将步骤(3)所得的陶瓷片被上银电极,即获得高介电常数与低介电损耗兼备的离子改性二氧化钛陶瓷材料。
本发明具有下述优点:(1)本发明的新型离子改性二氧化钛陶瓷材料的介电性能得到了极大的改善,其介电常数高达80000,介电损耗低至4%,上述增强的介电性能使其在高密度存储的微电子领域具有广泛的应用价值;(2)本发明提供的陶瓷材料具有良好的温度稳定性,使得由该陶瓷制作而成的电子器件可以在较宽的温度范围内服役;(3)本发明提供的陶瓷材料具有良好的频率稳定性,使得由该陶瓷制作而成的电子器件可以在较宽的频率范围内服役。(4)本发明的制备工艺方法简单,便于操作,适合工业化大批量生产。
具体实施方案
实例一
(1)将原料二氧化钛(TiO2)、氧化镨(Pr6O11)和氧化铌(Nb2O5),按化学式(Pr0.5Nb0.5) x Ti1-x O2进行备料,其中x=0.5%,并以无水乙醇为介质进行滚动球磨,将滚动球磨24小时后的粉体烘干得到混合干粉;
(2) 将步骤(1)所得的混合干粉在马弗炉中预烧4小时,预烧温度为1100oC,气氛为空气气氛,随炉冷却后将预烧好的混合干粉加入8 wt%的聚乙烯醇水溶液,进行造粒,得到粒度均匀的粒料;
(3) 利用磨具将步骤(2)所得的粒料压制成厚度为1.2毫米、直径为10毫米的小圆片,然后将小圆片放在马弗炉中排胶2小时,排胶温度为1000 oC,气氛为空气气氛,随炉冷却后将小圆片在1380 oC下保温3.5小时烧结,气氛为空气气氛,随炉冷却后得到陶瓷片;
(4)将步骤(3)烧结后的陶瓷片被上银电极,即获得高介电常数与低介电损耗兼备的离子改性二氧化钛陶瓷材料。实例一的评价结果见表一。
实例二
(1)将原料二氧化钛(TiO2)、氧化镨(Pr6O11)和氧化铌(Nb2O5),按化学式(Pr0.5Nb0.5) x Ti1-x O2进行备料,其中x=1%,并以无水乙醇为介质进行滚动球磨,将滚动球磨24小时后的粉体烘干得到混合干粉;
(2) 将步骤(1)所得的混合干粉在马弗炉中预烧4小时,预烧温度为1100oC,气氛为空气气氛,随炉冷却后将预烧好的混合干粉加入8 wt%的聚乙烯醇水溶液,进行造粒,得到粒度均匀的粒料;
(3) 利用磨具将步骤(2)所得的粒料压制成厚度为1.2毫米、直径为10毫米的小圆片,然后将小圆片放在马弗炉中排胶2小时,排胶温度为1000 oC,气氛为空气气氛,随炉冷却后将小圆片在1430 oC下保温3.5小时烧结,气氛为空气气氛,随炉冷却后得到陶瓷片;
(4)将步骤(3)烧结后的陶瓷片被上银电极,即获得高介电常数与低介电损耗兼备的离子改性二氧化钛陶瓷材料。实例二的评价结果见表一。
实例三
(1)将原料二氧化钛(TiO2)、氧化镨(Pr6O11)和氧化铌(Nb2O5),按化学式(Pr0.5Nb0.5) x Ti1-x O2进行备料,其中x=2.5%,并以无水乙醇为介质进行滚动球磨,将滚动球磨24小时后的粉体烘干得到混合干粉;
(2) 将步骤(1)所得的混合干粉在马弗炉中预烧4小时,预烧温度为1100oC,气氛为空气气氛,随炉冷却后将预烧好的混合干粉加入8 wt%的聚乙烯醇水溶液,进行造粒,得到粒度均匀的粒料;
(3) 利用磨具将步骤(2)所得的粒料压制成厚度为1.2毫米、直径为10毫米的小圆片,然后将小圆片放在马弗炉中排胶2小时,排胶温度为1000 oC,气氛为空气气氛,随炉冷却后将小圆片在1450 oC下保温3.5小时烧结,气氛为空气气氛,随炉冷却后得到陶瓷片;
(4)将步骤(3)烧结后的陶瓷片被上银电极,即获得高介电常数与低介电损耗兼备的离子改性二氧化钛陶瓷材料。实例三的评价结果见表一。
表一 各实例制备得到的二氧化钛陶瓷材料的评价
说明书附图中图1为为(Pr0.5Nb0.5) x Ti1-x O2陶瓷材料的X射线衍射(XRD)图。
说明书附图中图2为(Pr0.5Nb0.5) x Ti1-x O2陶瓷材料的表面和断面的扫描电镜(SEM)图。
说明书附图中图3为(Pr0.5Nb0.5) x Ti1-x O2陶瓷材料的表面和断面的元素分布(Mapping)图。
说明书附图中图4为(Pr0.5Nb0.5) x Ti1-x O2陶瓷材料的介电常数与介电损耗随温度变化的示意图。
说明书附图中图5 (Pr0.5Nb0.5) x Ti1-x O2陶瓷材料的介电常数与介电损耗随频率变化的示意图。
说明书附图中图6为(Pr0.5Nb0.5) x Ti1-x O2陶瓷材料的拉曼光谱(Raman)。

Claims (3)

1.一种高介电常数与低介电损耗兼备的离子改性二氧化钛陶瓷材料的制备方法,其特征在于,在二氧化钛中同时添加三价元素Pr和五价元素Nb,通过调控Pr和Nb的掺杂含量与烧结温度来获得高介电常数与低介电损耗兼备的二氧化钛陶瓷材料,该材料的通式为(Pr0.5Nb0.5) x Ti1-x O2,其中,Pr和Nb的掺杂含量调控范围为0.5%≤x≤10%摩尔比。
2.根据权利要求1所述离子改性二氧化钛陶瓷材料的制备方法,其特征在于,包括以下工序和步骤:
(1)将二氧化钛(TiO2)、氧化镨(Pr6O11)和氧化铌(Nb2O5)粉体原料,按化学式(Pr0.5Nb0.5) x Ti1-x O2进行配料,其中0.5%≤x≤10%,并以无水乙醇为介质进行滚动球磨,将滚动球磨24小时后的粉料烘干得到混合干粉;
(2)将步骤(1)所得的混合干粉在马弗炉中预烧4小时,预烧温度为1100oC,气氛为空气气氛,随炉冷却后将预烧好的混合干粉加入8 wt%的聚乙烯醇水溶液,进行造粒,得到粒度均匀的粒料;
(3)利用磨具将步骤(2)所得的粒料压制成厚度为1.2毫米、直径为10毫米的小圆片,然后将小圆片放在马弗炉中排胶2小时,排胶温度为1000 oC,气氛为空气气氛,随炉冷却后将小圆片在1380~1450 oC下保温3.5小时烧结,气氛为空气气氛,随炉冷却后得到陶瓷片;
(4)将步骤(3)所得的陶瓷片被上银电极,即获得高介电常数与低介电损耗兼备的离子改性二氧化钛陶瓷材料。
3.根据权利要求2所述制备方法,得到的离子改性二氧化钛陶瓷材料,其特征在于,该陶瓷材料的介电常数高至80000,介电损耗低至4%,且该材料的介电性能具有良好的温度稳定性和频率稳定性。
CN201810313888.2A 2018-04-10 2018-04-10 一种高介电常数与低介电损耗兼备的离子改性二氧化钛陶瓷材料的制备方法 Pending CN108530069A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810313888.2A CN108530069A (zh) 2018-04-10 2018-04-10 一种高介电常数与低介电损耗兼备的离子改性二氧化钛陶瓷材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810313888.2A CN108530069A (zh) 2018-04-10 2018-04-10 一种高介电常数与低介电损耗兼备的离子改性二氧化钛陶瓷材料的制备方法

Publications (1)

Publication Number Publication Date
CN108530069A true CN108530069A (zh) 2018-09-14

Family

ID=63480521

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810313888.2A Pending CN108530069A (zh) 2018-04-10 2018-04-10 一种高介电常数与低介电损耗兼备的离子改性二氧化钛陶瓷材料的制备方法

Country Status (1)

Country Link
CN (1) CN108530069A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109206133A (zh) * 2018-09-19 2019-01-15 天津大学 一种超低损耗钽系巨介电常数介质材料及其制备方法
CN109231981A (zh) * 2018-09-19 2019-01-18 天津大学 一种三、五价异质元素共掺的巨介电常数介质材料
CN109265162A (zh) * 2018-09-19 2019-01-25 天津大学 一种高性能巨介电常数介质材料
CN109626989A (zh) * 2019-02-25 2019-04-16 山东虎力机械有限公司 一种无污染环保型多功能陶瓷材料的制备方法
CN111217602A (zh) * 2020-02-24 2020-06-02 河南理工大学 一种介电常数和介电损耗可调控的电介质陶瓷材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104478431A (zh) * 2014-11-26 2015-04-01 四川大学 具有高介电常数的离子改性二氧化钛陶瓷材料及制备方法
CN105732020A (zh) * 2016-01-19 2016-07-06 陕西师范大学 一种巨介电、低损耗二氧化钛基复合陶瓷的制备方法
CN107200576A (zh) * 2017-06-29 2017-09-26 陕西科技大学 一种高介电常数铕和铌共掺二氧化钛陶瓷及其制备方法
CN107399967A (zh) * 2017-08-11 2017-11-28 天津大学 一种超低损耗巨介电常数温度稳定型电容器介质材料

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104478431A (zh) * 2014-11-26 2015-04-01 四川大学 具有高介电常数的离子改性二氧化钛陶瓷材料及制备方法
CN105732020A (zh) * 2016-01-19 2016-07-06 陕西师范大学 一种巨介电、低损耗二氧化钛基复合陶瓷的制备方法
CN107200576A (zh) * 2017-06-29 2017-09-26 陕西科技大学 一种高介电常数铕和铌共掺二氧化钛陶瓷及其制备方法
CN107399967A (zh) * 2017-08-11 2017-11-28 天津大学 一种超低损耗巨介电常数温度稳定型电容器介质材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUECHAN SONG ET AL.: "Dielectric properties of (Bi0.5Nb0.5)xTi1-xO2 ceramics with colossal permittivity", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109206133A (zh) * 2018-09-19 2019-01-15 天津大学 一种超低损耗钽系巨介电常数介质材料及其制备方法
CN109231981A (zh) * 2018-09-19 2019-01-18 天津大学 一种三、五价异质元素共掺的巨介电常数介质材料
CN109265162A (zh) * 2018-09-19 2019-01-25 天津大学 一种高性能巨介电常数介质材料
CN109626989A (zh) * 2019-02-25 2019-04-16 山东虎力机械有限公司 一种无污染环保型多功能陶瓷材料的制备方法
CN111217602A (zh) * 2020-02-24 2020-06-02 河南理工大学 一种介电常数和介电损耗可调控的电介质陶瓷材料及其制备方法

Similar Documents

Publication Publication Date Title
CN108530069A (zh) 一种高介电常数与低介电损耗兼备的离子改性二氧化钛陶瓷材料的制备方法
Liu et al. Influence of sintering conditions on microstructure and electrical properties of CaCu3Ti4O12 (CCTO) ceramics
CN106673642B (zh) 一种巨介电低损耗ccto基陶瓷材料及其制备方法
CN109650885A (zh) 一种掺镧铌酸银无铅反铁电储能陶瓷材料及其制备方法
CN107954712B (zh) 一种低损耗、巨介电ccto陶瓷材料及其制备方法
CN104692799A (zh) 一种高储能密度锆钛锡酸铅反铁电陶瓷及其制备方法
Gao et al. Fabrication, dielectric, and thermoelectric properties of textured SrTiO3 ceramics prepared by RTGG method
Lyu et al. Crystal structure and microwave dielectric properties of novel (1− x) ZnZrNb2O8− xTiO2 ceramics
CN106747410A (zh) 偏压稳定型巨介电低损耗二氧化钛基复合介电陶瓷材料
CN114394827B (zh) 一种低介电常数硅酸盐微波介质陶瓷及其制备方法
CN108727024B (zh) 无铅压电陶瓷及其制备方法
CN107640970B (zh) 低频低介电损耗的AgNb共掺二氧化钛基介电陶瓷材料及其制备方法
CN107188557A (zh) 一种微波介质陶瓷材料及其制备方法
CN115504784A (zh) 一种无铅弛豫铁电高储能密度陶瓷材料及其制备方法
JP2007176755A (ja) チタン酸バリウム粉末の製造方法およびそれを用いた積層セラミックコンデンサ
CN109516799A (zh) 一种具有高温度稳定性的高介陶瓷电容器材料及其制备方法
US11958781B2 (en) Potassium sodium bismuth niobate tantalate zirconate ferrite ceramics with non-stoichiometric Nb5+ and preparation method therefor
Liu et al. A novel precipitation-based synthesis for the formation of X8R-type dielectrics composition based on monodispersed submicron Ba0. 991Bi0. 006TiO3@ Nb2O5 particles
CN115947598B (zh) 一种可与贱金属内电极共烧的反铁电材料及其制备方法
CN109456057B (zh) 锆钛酸钡钙基无铅压电陶瓷及其制备方法
Pinto et al. Structural and dielectric characterization of praseodymium-modified lead titanate ceramics synthesized by the OPM route
CN114149261B (zh) 一种铪酸铅反铁电陶瓷材料及其制备方法
CN116425536A (zh) 具有非公度调制结构的Ti掺杂铌酸锶钡钆铁电陶瓷材料及制备方法
KR101559942B1 (ko) 칼슘-바나듐계 페롭스카이트 단일상 합성에 의한 열전물성과 전기전도도 향상방법
Li et al. Flash sintering BaTiO3-0.01 MgO-0.01 Nb2O5-xBi2O3 ceramics with superior dielectric temperature stability via defect engineering

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180914

WD01 Invention patent application deemed withdrawn after publication