CN108484170A - 一种激光化学微波陶瓷制备方法 - Google Patents
一种激光化学微波陶瓷制备方法 Download PDFInfo
- Publication number
- CN108484170A CN108484170A CN201810446626.3A CN201810446626A CN108484170A CN 108484170 A CN108484170 A CN 108484170A CN 201810446626 A CN201810446626 A CN 201810446626A CN 108484170 A CN108484170 A CN 108484170A
- Authority
- CN
- China
- Prior art keywords
- citric acid
- ceramics
- laser
- ions
- microwave ceramics
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/5607—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
- C04B35/5611—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
- C04B35/5618—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides based on titanium aluminium carbides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/38—Removing material by boring or cutting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/40—Removing material taking account of the properties of the material involved
- B23K26/402—Removing material taking account of the properties of the material involved involving non-metallic material, e.g. isolators
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/624—Sol-gel processing
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/0006—Honeycomb structures
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3251—Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/42—Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
- C04B2235/422—Carbon
- C04B2235/425—Graphite
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Structural Engineering (AREA)
- Materials Engineering (AREA)
- Plasma & Fusion (AREA)
- Inorganic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Dispersion Chemistry (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
本发明公开了一种激光化学微波陶瓷制备方法,使激光与陶瓷互相作用产生的热量向基体内部的传导深度降低,从而使由于受热融化快速冷却而产生的重铸层厚度下降,激光束射向陶瓷样品,激光束焦点处的能量密度超过陶瓷的破坏阀值,使得切割处的陶瓷汽化成陶瓷颗粒,通过吹入压缩空气将汽化状态的陶瓷颗粒迅速去除,以免影响下面的加工。本发明制备的陶瓷具有高比表面积、高比表面能、高活性和易烧结的优点,使得陶瓷容易被切割,另外采用吸附剂吸附激光能量,提高了切割效率。
Description
技术领域
本发明涉及一种制备方法,具体是一种激光化学微波陶瓷制备方法。
背景技术
现有的陶瓷无裂纹切割方法基本上采用(CO2或Nd:YAG)激光,在单脉冲能量不变的前提下,压缩脉宽至ns级,脉冲频率提高至10~20KHz级。其显著缺点是设备能力要求高,往往要求多道重复切割或预加工,实用切割效率低,随着切割速度的增加,熔渣从平面形态向有方向性的波纹形态转变;低速到高速切割时单个脉冲的叠加程度的降低,使熔渣从平面状态转变成为断续状态。切断方式也从气化和融化转化为附加部分热振而引起的断裂,部分热振引起的断裂。当切割速度相同时,复合高速气流断口的熔渣方向性更明显。同时高速气流具有比同轴气流更明显的去除渣层作用,促进了熔渣脱落,熔渣脱落后,亚层呈现的重铸层形貌,由于热振在切口深度方向形成的重铸层是一致的。
激光切割陶瓷由于具有非接触、柔性化、自动化及可实现精密切割和曲线切割、切缝窄、速度快等特点,同传统的切割方法如金刚石砂轮切割法相比,是一种有巨大应用价值和发展潜力的理想陶瓷加工方法。但是,陶瓷属硬、脆材料,热稳定性较差,切割时易形成重铸层和裂纹,降低了基体原有的优良性能,且陶瓷具有反光性,使激光的能量不能有效聚集。
发明内容
本发明的目的在于提供一种激光化学微波陶瓷制备方法,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:
一种激光化学微波陶瓷制备方法,包括如下步骤:1)配制Zn离子的柠檬酸水溶液;2)配制Ti与Nb离子的柠檬酸水溶液;3)三元ZnO-Nb2O5-TiO2体系微波介质陶瓷纳米前驱体的合成及陶瓷制备;(a)将步骤(1)、(2)制备的Zn柠檬酸水溶液、Ti与Nb离子柠檬酸水溶液混合均匀,然后加入乙醇进行酯化,乙醇加入的摩尔量为柠檬酸的2-3倍;加热、搅拌均匀,获得Zn-Ti-Nb前驱体溶胶;(b)将步骤(a)制备的Zn-Ti-Nb前驱体溶液置于烘箱内烘干,缩水形成干凝胶;(c)将步骤(b)的干凝胶置于高温炉中1000℃煅烧处理,即可获得颗粒均匀的纳米级ZnTiNb2O8粉体;(d)将ZnTiNb2O8粉体,以元素粉,包括Ti粉、Al粉和石墨粉为陶瓷粉料,按摩尔比Ti∶Al∶C为3∶1∶2或2∶1.5∶1,添加有机结合剂、塑性剂和润滑剂,通过炼泥,陈腐,挤出成型,干燥,在气氛炉内常压烧结而成;以升温速率2~5℃/min,在600~650℃保温2~6小时,在烧结温度1400~1500℃烧结时间0.5~3小时,从而制备出导电钛铝碳蜂窝陶瓷;(e)选择陶瓷体上需要切割的部位;(f)将所述的切割的部位涂附无挥发性的不易燃的非透明吸附层;(g)沿所述的切割部位移动激光束进行切割。
作为本发明进一步的方案:所述步骤1)配制Zn离子的柠檬酸水溶液包括以下步骤:(a)根据ZnTiNb2O8微波陶瓷物相的化学计量比,调整ZnO/TiO2/Nb2O5摩尔配比为1+x/1/1,其中x为:0<x。
作为本发明进一步的方案:所述步骤2)配制Ti与Nb离子的柠檬酸水溶液包括以下步骤:(a)根据ZnTiNb2O8微波陶瓷物相的化学计量比,称取二氧化钛与五氧化二铌,置于陶瓷介质反应釜,加入氢氟酸后密封,然后利用烘箱进行高温处理4-6小时,加速溶解,形成无色透明Ti与Nb离子的共溶HF酸溶液;(b)上述Ti与Nb离子的HF酸溶液中,加入氨水调整PH值为8-10,促使Ti与Nb离子以钛酸与铌酸的形式完成沉淀;(c)过滤上述沉淀,反复清洗数次后置于柠檬酸的水溶液中进行磁力搅拌,形成分散均匀白色柠檬酸悬浊液,其中加入柠檬酸摩尔量为金属离子总量6-10倍;(d)将上述白色柠檬酸悬浊液置于陶瓷介质高压反应釜密封,然后利用烘箱进行高温处理4-6小时,促使发生水热反应,促使柠檬酸与Ti与Nb离子进行反应形成络合物溶解,最后形成无色透明Ti与Nb离子的混合柠檬酸水溶液。
作为本发明进一步的方案:还包括步骤(h),在所述的切割部位吹入压缩空气,吹走汽化的和/或切割下来的材料。
作为本发明进一步的方案:还包括步骤(i),随着切割加工面的下降,继续注入所述的无挥发性的非透明状吸附层,移动激光束进行切割。
作为本发明再进一步的方案:所述的切割部位至少低于所述的吸附层1~2mm。
与现有技术相比,本发明的有益效果是:本发明制备的陶瓷具有高比表面积、高比表面能、高活性和易烧结的优点,使得陶瓷容易被切割,另外采用吸附剂吸附激光能量,提高了切割效率。
具体实施方式
下面对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例中,一种激光化学微波陶瓷制备方法,包括如下步骤:1)配制Zn离子的柠檬酸水溶液;2)配制Ti与Nb离子的柠檬酸水溶液;3)三元ZnO-Nb2O5-TiO2体系微波介质陶瓷纳米前驱体的合成及陶瓷制备;(a)将步骤(1)、(2)制备的Zn柠檬酸水溶液、Ti与Nb离子柠檬酸水溶液混合均匀,然后加入乙醇进行酯化,乙醇加入的摩尔量为柠檬酸的2-3倍;加热、搅拌均匀,获得Zn-Ti-Nb前驱体溶胶;(b)将步骤(a)制备的Zn-Ti-Nb前驱体溶液置于烘箱内烘干,缩水形成干凝胶;(c)将步骤(b)的干凝胶置于高温炉中1000℃煅烧处理,即可获得颗粒均匀的纳米级ZnTiNb2O8粉体;(d)将ZnTiNb2O8粉体,以元素粉,包括Ti粉、Al粉和石墨粉为陶瓷粉料,按摩尔比Ti∶Al∶C为3∶1∶2或2∶1.5∶1,添加有机结合剂、塑性剂和润滑剂,通过炼泥,陈腐,挤出成型,干燥,在气氛炉内常压烧结而成;以升温速率2~5℃/min,在600~650℃保温2~6小时,在烧结温度1400~1500℃烧结时间0.5~3小时,从而制备出导电钛铝碳蜂窝陶瓷;(e)选择陶瓷体上需要切割的部位;(f)将所述的切割的部位涂附无挥发性的不易燃的非透明吸附层;(g)沿所述的切割部位移动激光束进行切割;步骤(h),在所述的切割部位吹入压缩空气,吹走汽化的和/或切割下来的材料;步骤(i),随着切割加工面的下降,继续注入所述的无挥发性的非透明状吸附层,移动激光束进行切割。
所述步骤1)配制Zn离子的柠檬酸水溶液包括以下步骤:(a)根据ZnTiNb2O8微波陶瓷物相的化学计量比,调整ZnO/TiO2/Nb2O5摩尔配比为1+x/1/1,其中x为:0<x。
所述步骤2)配制Ti与Nb离子的柠檬酸水溶液包括以下步骤:(a)根据ZnTiNb2O8微波陶瓷物相的化学计量比,称取二氧化钛与五氧化二铌,置于陶瓷介质反应釜,加入氢氟酸后密封,然后利用烘箱进行高温处理4-6小时,加速溶解,形成无色透明Ti与Nb离子的共溶HF酸溶液;(b)上述Ti与Nb离子的HF酸溶液中,加入氨水调整PH值为8-10,促使Ti与Nb离子以钛酸与铌酸的形式完成沉淀;(c)过滤上述沉淀,反复清洗数次后置于柠檬酸的水溶液中进行磁力搅拌,形成分散均匀白色柠檬酸悬浊液,其中加入柠檬酸摩尔量为金属离子总量6-10倍;(d)将上述白色柠檬酸悬浊液置于陶瓷介质高压反应釜密封,然后利用烘箱进行高温处理4-6小时,促使发生水热反应,促使柠檬酸与Ti与Nb离子进行反应形成络合物溶解,最后形成无色透明Ti与Nb离子的混合柠檬酸水溶液。
所述的切割部位至少低于所述的吸附层1~2mm。
高速气流对激光与陶瓷相互作用区有一定的冷却作用,使激光与陶瓷互相作用产生的热量向基体内部的传导深度降低,从而使由于受热融化快速冷却而产生的重铸层厚度下降,激光束射向陶瓷样品,激光束焦点处的能量密度超过陶瓷的破坏阀值,使得切割处的陶瓷汽化成陶瓷颗粒,通过吹入压缩空气将汽化状态的陶瓷颗粒迅速去除,以免影响下面的加工。
本发明制备的陶瓷具有高比表面积、高比表面能、高活性和易烧结的优点,使得陶瓷容易被切割,另外采用吸附剂吸附激光能量,提高了切割效率。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
Claims (6)
1.一种激光化学微波陶瓷制备方法,其特征在于,包括如下步骤:1)配制Zn离子的柠檬酸水溶液;2)配制Ti与Nb离子的柠檬酸水溶液;3)三元ZnO-Nb2O5-TiO2体系微波介质陶瓷纳米前驱体的合成及陶瓷制备;(a)将步骤(1)、(2)制备的Zn柠檬酸水溶液、Ti与Nb离子柠檬酸水溶液混合均匀,然后加入乙醇进行酯化,乙醇加入的摩尔量为柠檬酸的2-3倍;加热、搅拌均匀,获得Zn-Ti-Nb前驱体溶胶;(b)将步骤(a)制备的Zn-Ti-Nb前驱体溶液置于烘箱内烘干,缩水形成干凝胶;(c)将步骤(b)的干凝胶置于高温炉中1000℃煅烧处理,即可获得颗粒均匀的纳米级ZnTiNb2O8粉体;(d)将ZnTiNb2O8粉体,以元素粉,包括Ti粉、Al粉和石墨粉为陶瓷粉料,按摩尔比Ti∶Al∶C为3∶1∶2或2∶1.5∶1,添加有机结合剂、塑性剂和润滑剂,通过炼泥,陈腐,挤出成型,干燥,在气氛炉内常压烧结而成;以升温速率2~5℃/min,在600~650℃保温2~6小时,在烧结温度1400~1500℃烧结时间0.5~3小时,从而制备出导电钛铝碳蜂窝陶瓷;(e)选择陶瓷体上需要切割的部位;(f)将所述的切割的部位涂附无挥发性的不易燃的非透明吸附层;(g)沿所述的切割部位移动激光束进行切割。
2.根据权利要求1所述的激光化学微波陶瓷制备方法,其特征在于,所述步骤1)配制Zn离子的柠檬酸水溶液包括以下步骤:(a)根据ZnTiNb2O8微波陶瓷物相的化学计量比,调整ZnO/TiO2/Nb2O5摩尔配比为1+x/1/1,其中x为:0<x。
3.根据权利要求1所述的激光化学微波陶瓷制备方法,其特征在于,所述步骤2)配制Ti与Nb离子的柠檬酸水溶液包括以下步骤:(a)根据ZnTiNb2O8微波陶瓷物相的化学计量比,称取二氧化钛与五氧化二铌,置于陶瓷介质反应釜,加入氢氟酸后密封,然后利用烘箱进行高温处理4-6小时,加速溶解,形成无色透明Ti与Nb离子的共溶HF酸溶液;(b)上述Ti与Nb离子的HF酸溶液中,加入氨水调整PH值为8-10,促使Ti与Nb离子以钛酸与铌酸的形式完成沉淀;(c)过滤上述沉淀,反复清洗数次后置于柠檬酸的水溶液中进行磁力搅拌,形成分散均匀白色柠檬酸悬浊液,其中加入柠檬酸摩尔量为金属离子总量6-10倍;(d)将上述白色柠檬酸悬浊液置于陶瓷介质高压反应釜密封,然后利用烘箱进行高温处理4-6小时,促使发生水热反应,促使柠檬酸与Ti与Nb离子进行反应形成络合物溶解,最后形成无色透明Ti与Nb离子的混合柠檬酸水溶液。
4.根据权利要求1所述的激光化学微波陶瓷制备方法,其特征在于,还包括步骤(h),在所述的切割部位吹入压缩空气,吹走汽化的和/或切割下来的材料。
5.根据权利要求1所述的激光化学微波陶瓷制备方法,其特征在于,还包括步骤(i),随着切割加工面的下降,继续注入所述的无挥发性的非透明状吸附层,移动激光束进行切割。
6.根据权利要求1所述的激光化学微波陶瓷制备方法,其特征在于,所述的切割部位至少低于所述的吸附层1~2mm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810446626.3A CN108484170A (zh) | 2018-05-11 | 2018-05-11 | 一种激光化学微波陶瓷制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810446626.3A CN108484170A (zh) | 2018-05-11 | 2018-05-11 | 一种激光化学微波陶瓷制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108484170A true CN108484170A (zh) | 2018-09-04 |
Family
ID=63352903
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810446626.3A Pending CN108484170A (zh) | 2018-05-11 | 2018-05-11 | 一种激光化学微波陶瓷制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108484170A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115461179A (zh) * | 2020-04-28 | 2022-12-09 | Iti株式会社 | 陶瓷切割方法及陶瓷切割设备 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102513707A (zh) * | 2011-12-19 | 2012-06-27 | 深圳市木森科技有限公司 | 一种激光切割陶瓷的方法 |
CN102775141A (zh) * | 2012-08-16 | 2012-11-14 | 济南大学 | 利用湿化学法精细合成三元ZnO-Nb2O5-TiO2体系微波介质陶瓷方法 |
CN103708835A (zh) * | 2013-05-24 | 2014-04-09 | 济南大学 | 利用溶胶凝胶法精细合成三元锰钽矿结构ZnTiTa2O8微波介质陶瓷方法 |
CN103708838A (zh) * | 2013-09-28 | 2014-04-09 | 济南大学 | 一种低温烧结制备具有单斜结构ZnZrNb2O8微波介质陶瓷新方法 |
CN104291824A (zh) * | 2014-09-23 | 2015-01-21 | 中国科学院金属研究所 | 利用元素粉原位制备层状导电钛铝碳蜂窝陶瓷方法和用途 |
-
2018
- 2018-05-11 CN CN201810446626.3A patent/CN108484170A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102513707A (zh) * | 2011-12-19 | 2012-06-27 | 深圳市木森科技有限公司 | 一种激光切割陶瓷的方法 |
CN102775141A (zh) * | 2012-08-16 | 2012-11-14 | 济南大学 | 利用湿化学法精细合成三元ZnO-Nb2O5-TiO2体系微波介质陶瓷方法 |
CN103708835A (zh) * | 2013-05-24 | 2014-04-09 | 济南大学 | 利用溶胶凝胶法精细合成三元锰钽矿结构ZnTiTa2O8微波介质陶瓷方法 |
CN103708838A (zh) * | 2013-09-28 | 2014-04-09 | 济南大学 | 一种低温烧结制备具有单斜结构ZnZrNb2O8微波介质陶瓷新方法 |
CN104291824A (zh) * | 2014-09-23 | 2015-01-21 | 中国科学院金属研究所 | 利用元素粉原位制备层状导电钛铝碳蜂窝陶瓷方法和用途 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115461179A (zh) * | 2020-04-28 | 2022-12-09 | Iti株式会社 | 陶瓷切割方法及陶瓷切割设备 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hajizadeh-Oghaz et al. | Synthesis and characterization of Y 2 O 3 nanoparticles by sol–gel process for transparent ceramics applications | |
US8546284B2 (en) | Process for the production of plasma sprayable yttria stabilized zirconia (YSZ) and plasma sprayable YSZ powder produced thereby | |
CN107628643B (zh) | 一种纳米钇稳定氧化锆粉体的制备方法 | |
CN101665679B (zh) | 复杂多孔结构碳基二氧化钛复合材料的制备方法 | |
CN104986786A (zh) | 一种粒径大小可控的片状α-Al2O3粉体及其制备方法 | |
CN101070246A (zh) | 氧化钇稳定氧化锆陶瓷热障涂层、制备工艺及其材料和生产方法 | |
CN109399711A (zh) | 一种金红石相二氧化钒纳米粉体的制备方法 | |
CN101698606A (zh) | 一种原位反应低温制备氧化铝陶瓷的方法 | |
Hou et al. | Efficient fabrication of spinel copper ferrite with enhanced high infrared radiation properties | |
US9469806B2 (en) | Sintering aid coated YAG powders and agglomerates and methods for making | |
CN109336572A (zh) | 一种制备氧化物陶瓷的冷压烧结方法 | |
CN103318954B (zh) | 一种固相化学反应制备三钛酸钠纳米棒的方法 | |
CN106241853B (zh) | 一种氧化钇纳米材料的制备方法 | |
CN108484170A (zh) | 一种激光化学微波陶瓷制备方法 | |
CN109437296B (zh) | 一种熔盐法制备四方相氧化锆纳米棒的方法 | |
CN104973624A (zh) | 一种网状四方相氧化锆纳米粉体的制备方法 | |
CN109305811A (zh) | 一种微波辅助的氧化锌陶瓷烧结方法 | |
CN103342557B (zh) | 一种微波介质陶瓷材料的制备方法 | |
CN103342383B (zh) | 一种微波介质陶瓷材料的制备方法 | |
CN105692694B (zh) | Ti3O5/TiO2混晶纳米纤维的制备方法 | |
CN107777718A (zh) | 一种y2o3纳米粉体及其制备方法 | |
CN106495171A (zh) | 一种LaxBa2‑xTiSi2O8非晶及其制备方法 | |
JPH10102109A (ja) | ニッケル粉末の製造方法 | |
CN108863354B (zh) | 一种基于低温自蔓延燃烧的y-tzp粉体制备方法 | |
CN106800412A (zh) | 一种具有核壳结构的氧化钇基透明陶瓷及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180904 |