CN108484151A - 一种低温下烧结制备致密的单相或复相莫来石陶瓷的方法 - Google Patents

一种低温下烧结制备致密的单相或复相莫来石陶瓷的方法 Download PDF

Info

Publication number
CN108484151A
CN108484151A CN201810323387.2A CN201810323387A CN108484151A CN 108484151 A CN108484151 A CN 108484151A CN 201810323387 A CN201810323387 A CN 201810323387A CN 108484151 A CN108484151 A CN 108484151A
Authority
CN
China
Prior art keywords
phase
sintering
low temperature
mullite ceramic
mullite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810323387.2A
Other languages
English (en)
Inventor
范宇驰
茹建红
王连军
江莞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Donghua University
National Dong Hwa University
Original Assignee
Donghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Donghua University filed Critical Donghua University
Priority to CN201810323387.2A priority Critical patent/CN108484151A/zh
Publication of CN108484151A publication Critical patent/CN108484151A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/185Mullite 3Al2O3-2SiO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62685Treating the starting powders individually or as mixtures characterised by the order of addition of constituents or additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种低温下烧结制备致密的单相或复相莫来石陶瓷的方法,其特征在于,在容器中加入硅烷偶联剂,使γ‑Al2O3分散到甲苯或乙醇溶液中,反应得到的溶液用洗涤后干燥,得到γ‑Al2O3粉体;将其分散到乙醇水溶液中超声,分两次加入正硅酸四乙酯进行反应,完成包覆过程,洗涤干燥,得到Al2O3@SiO2前驱体;加入可选的其它第二相物质,进行烧结,得到单相或复相的莫来石陶瓷。本发明为致密莫来石的低温烧结方法,该方法操作简单、无污染、重复性好、耗能低、安全性高,1100℃制备的莫来石纯度高、力学性能优异,是一种很好的高温基体材料。

Description

一种低温下烧结制备致密的单相或复相莫来石陶瓷的方法
技术领域
本发明涉及一种低温下烧结制备致密的单相或复相莫来石陶瓷的方法,属于莫来石技术领域。
背景技术
莫来石(3Al2O3·2SiO2)是一系列由铝硅酸盐组成的矿物系统,莫来石是Al2O3-SiO2系统中唯一稳定的二元化合物。莫来石陶瓷具有熔点高、热膨胀系数小、抗蠕变、抗热震性能好,电绝缘性优良等优异的物理性能,使它具有极其广泛的用途,可作为高温结构材料、红外透明窗口、微电子基底材料等。莫来石基复合材料也可用于电磁屏蔽、吸波等领域,但较高的烧结温度不仅耗能,而且阻碍了莫来石和易反应或热稳定差的第二相的复合。因此探索低温烧结莫来石陶瓷的方法对于降低能耗,拓宽莫来石基复合材料的应用有着重要的意义。
目前莫来石陶瓷材料的制备主要采用反应烧结工艺,一般是将含有铝和硅的骨料或溶胶-凝胶法获得的干凝胶经过高温烧结获得。莫来石的形成温度低,导致莫来石成相温度低于致密化温度,制备的莫来石陶瓷中孔隙率大、致密度低,因此力学性能较差。中国专利CN200610037701.8(公开2006.08.02)公开一种低温烧结莫来石的方法该方法是以正硅酸乙酯和硝酸铝为原料形成莫来石单相凝胶,在980-1000℃预烧转化为莫来石,再在莫来石陶瓷中加入2-5%莫来石单相凝胶作为晶种进行烧结,在1400℃制备了莫来石。该方法的优点是莫来石单相凝胶溶液与莫来石原料混合,混合均匀性高于直接将莫来石晶种陶瓷粉料与莫来石原料混合,从而莫来石烧结温度可有效降低相较传统温度。其缺点是空隙率最高达到25%,力学性能差。
发明内容
本发明所要解决的问题是:提供一种低温下烧结制备致密的单相或复相莫来石陶瓷的方法。
为了解决上述问题,本发明是通过以下技术方案来实现的:
一种低温下烧结制备致密的单相或复相莫来石陶瓷的方法,其特征在于,包括以下步骤:
步骤1):γ-Al2O3的表面改性:搭建冷凝装置,在容器中加入硅烷偶联剂,再加入γ-Al2O3和甲苯或乙醇溶液超声,使γ-Al2O3分散到甲苯或乙醇溶液中,在惰性气氛保护下反应,得到的溶液用乙醇离心洗涤后干燥,得到表面改性的γ-Al2O3粉体;
步骤2):Al2O3@SiO2粉体的制备:将步骤1)得到的γ-Al2O3粉体分散到乙醇水溶液中超声,调节pH值至1~6;一次或分多次加入正硅酸乙酯进行反应,完成包覆过程,然后用乙醇和水轮流洗涤后干燥,得到Al2O3@SiO2前驱体;
步骤3):莫来石的烧结:在步骤2)得到的Al2O3@SiO2前驱体中,加入可选的其它第二相物质,进行烧结,得到单相或复相的莫来石陶瓷。
优选地,所述步骤1)中的硅烷偶联剂、γ-Al2O3与甲苯或乙醇溶液的比例为:1mL∶1g∶30mL~1mL∶6g∶180mL。
优选地,所述步骤1)中的惰性气氛采用氩气或氮气;反应在搅拌条件下进行。
优选地,所述步骤1)的反应温度为80~200℃,反应时间为4~10h。
优选地,所述步骤)中的干燥温度为80℃。
优选地,所述步骤2)所采用的乙醇水溶液中乙醇与水的体积比为2∶1~5∶1。
优选地,所述步骤2)中采用氨水调节溶液的pH值。
优选地,所述步骤)中的烧结方法采用热压烧结、放电等离子烧结或热等静压烧结方法;当烧结温度为1000~1250℃时,莫来石陶瓷的相对密度大于96%。其维氏硬度可达13GPa以上,断裂韧性可达4.0MPa·m 0.5以上。
Al2O3@SiO2粉体在烧结过程中,由于氧化硅的粘性流动,莫来石的致密化温度相较于溶胶-凝胶法制备的粉体而言更低,以至于莫来石致密化温度不会与莫来石形成温度重叠,有利于低温下莫来石的致密化,提高了莫来石的机械性能。
与现有技术相比,本发明为致密莫来石的低温烧结方法,该方法操作简单、无污染、重复性好、耗能低、安全性高,1100℃制备的莫来石纯度高、力学性能优异,是一种很好的高温结构材料。
附图说明
图1a为γ-Al2O3的TEM图像;
图1b为γ-Al2O3@SiO2的TEM图像;
图1c为APTES改性的γ-Al2O3@SiO2的TEM图像;
图1d为高倍率的γ-Al2O3@SiO2的TEM图像。
具体实施方式
为使本发明更明显易懂,兹以优选实施例,并配合附图作详细说明如下。
实施例1
将1g氧化铝、100mL甲苯、1mL三胺丙基三乙氧基硅烷(APTES)加入到三颈烧瓶里,超声半小时,在氩气保护、磁力搅拌下反应4h,然后用乙醇离心、在80℃下干燥。称量0.45g改性后的氧化铝分散到2∶1的400mL乙醇和水的混合溶液中,加入7mL氨水,15min后,加入300μL的正硅酸四乙酯(TEOS)。4h后,再加入300μL TEOS,反应10h,通过真空抽滤,用水和乙醇各洗涤四次、干燥。
得到的粉体放电等离子烧结(SPS)烧结制度为:升温速率100℃/min,压力70MPa,1100℃保温10min条件下。
实施例2
将1g氧化铝、100mL乙醇、1mL APTES加入到三颈烧瓶里,超声半小时,在氩气保护、磁力搅拌下反应4h,然后用乙醇离心、在80℃下干燥。称量0.45g改性后的氧化铝分散到2∶1的400mL乙醇和水的混合溶液中,加入7mL氨水,15min后,加入300μL的TEOS,4h后,再加入300μL TEOS,反应10h,通过真空抽滤,用水和乙醇各洗涤四次、干燥。
得到的粉体在250MPa下,冷等静压0.5h,之后在1450℃下,通过高温炉无压烧结6h。
实施例3
将1g氧化铝、100mL甲苯、1mL APTES加入到三颈烧瓶里,超声半小时,在氮气保护、磁力搅拌下反应4h,然后用乙醇离心、在80℃下干燥。称量0.45g改性后的氧化铝分散到3∶1的400mL乙醇和水的混合溶液中,加入7mL氨水,15min后,加入300μL的TEOS,4h后,再加入300μL TEOS,反应10h乙醇离心四次、干燥。
得到的粉体采用热压烧结方式,在真空中1250℃下烧结1h,同时施加20MPa的压力。

Claims (8)

1.一种低温下烧结制备致密的单相或复相莫来石陶瓷的方法,其特征在于,包括以下步骤:
步骤1):γ-Al2O3的表面改性:搭建冷凝装置,在容器中加入硅烷偶联剂,再加入γ-Al2O3和甲苯或乙醇溶液超声,使γ-Al2O3分散到甲苯或乙醇溶液中,在惰性气氛保护下反应,得到的溶液用乙醇离心洗涤后干燥,得到γ-Al2O3粉体;
步骤2):Al2O3@SiO2粉体的制备:将步骤1)得到的γ-Al2O3粉体分散到乙醇水溶液中超声,调节pH值至1~6;一次或分多次加入正硅酸乙酯进行反应,再加入一次正硅酸四乙酯进行第二次反应,完成包覆过程,然后用乙醇和水轮流洗涤后干燥,得到Al2O3@SiO2前驱体;
步骤3):莫来石的烧结:在步骤2)得到的Al2O3@SiO2前驱体中,加入可选的其它第二相物质,进行烧结,得到单相或复相的莫来石陶瓷。
2.如权利要求1所述的低温下烧结制备致密的单相或复相莫来石陶瓷的方法,其特征在于,所述步骤1)中的硅烷偶联剂、γ-Al2O3与甲苯或乙醇溶液的比例为:1mL∶1g∶30mL~1mL∶6g∶180mL。
3.如权利要求1所述的低温下烧结制备致密的单相或复相莫来石陶瓷的方法,其特征在于,所述步骤1)中的惰性气氛采用氩气或氮气;反应在搅拌条件下进行。
4.如权利要求1所述的低温下烧结制备致密的单相或复相莫来石陶瓷的方法,其特征在于,所述步骤1)的反应温度为80~200℃,反应时间为4~10h。
5.如权利要求1所述的低温下烧结制备致密的单相或复相莫来石陶瓷的方法,其特征在于,所述步骤)中的干燥温度为80℃。
6.如权利要求1所述的低温下烧结制备致密的单相或复相莫来石陶瓷的方法,其特征在于,所述步骤2)所采用的乙醇水溶液中乙醇与水的体积比为2∶1~5∶1。
7.如权利要求1所述的低温下烧结制备致密的单相或复相莫来石陶瓷的方法,其特征在于,所述步骤2)中采用氨水调节溶液的pH值。
8.如权利要求1所述的低温下烧结制备致密的单相或复相莫来石陶瓷的方法,其特征在于,所述步骤3)中的烧结方法采用热压烧结、放电等离子烧结或热等静压烧结方法;当烧结温度为1000~1250℃时,莫来石陶瓷的相对密度大于96%。
CN201810323387.2A 2018-04-11 2018-04-11 一种低温下烧结制备致密的单相或复相莫来石陶瓷的方法 Pending CN108484151A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810323387.2A CN108484151A (zh) 2018-04-11 2018-04-11 一种低温下烧结制备致密的单相或复相莫来石陶瓷的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810323387.2A CN108484151A (zh) 2018-04-11 2018-04-11 一种低温下烧结制备致密的单相或复相莫来石陶瓷的方法

Publications (1)

Publication Number Publication Date
CN108484151A true CN108484151A (zh) 2018-09-04

Family

ID=63315571

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810323387.2A Pending CN108484151A (zh) 2018-04-11 2018-04-11 一种低温下烧结制备致密的单相或复相莫来石陶瓷的方法

Country Status (1)

Country Link
CN (1) CN108484151A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114644513A (zh) * 2020-12-21 2022-06-21 中国科学院上海硅酸盐研究所 一种莫来石红外透明陶瓷的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1810722A (zh) * 2006-01-10 2006-08-02 南京航空航天大学 一种莫来石陶瓷低温烧结方法
CN101700979A (zh) * 2009-10-30 2010-05-05 陕西科技大学 溶胶凝胶-超声化学法制备纳米莫来石粉体的方法
CN101717262A (zh) * 2009-10-30 2010-06-02 陕西科技大学 溶胶凝胶-溶剂热法制备纳米莫来石粉体的方法
CN104402441A (zh) * 2014-10-28 2015-03-11 东华大学 一种低温快速烧结制备碳化硼陶瓷材料的方法
CN106064936A (zh) * 2016-05-30 2016-11-02 河海大学 一种高纯莫来石陶瓷材料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1810722A (zh) * 2006-01-10 2006-08-02 南京航空航天大学 一种莫来石陶瓷低温烧结方法
CN101700979A (zh) * 2009-10-30 2010-05-05 陕西科技大学 溶胶凝胶-超声化学法制备纳米莫来石粉体的方法
CN101717262A (zh) * 2009-10-30 2010-06-02 陕西科技大学 溶胶凝胶-溶剂热法制备纳米莫来石粉体的方法
CN104402441A (zh) * 2014-10-28 2015-03-11 东华大学 一种低温快速烧结制备碳化硼陶瓷材料的方法
CN106064936A (zh) * 2016-05-30 2016-11-02 河海大学 一种高纯莫来石陶瓷材料的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MARION BARTSCH ET AL.: "Novel Low-Temperature Processing Route of Dense Mullite Ceramics by Reaction Sintering of Amorphous SiO2-Coated γ-Al2O3 Particle Nanocomposites", 《JOURNAL OF THE AMERICAN CERAMIC SOCIETY》 *
王杏等: "《纳米二氧化钛的生产与应用》", 31 July 2014, 贵州科技出版社 *
薛茹君等: "《无机纳米材料的表面修饰改性与物性研究》", 31 October 2009, 合肥工业大学出版社 *
赵修建等: "《无机非金属材料工学》", 31 December 2013, 武汉理工大学出版社 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114644513A (zh) * 2020-12-21 2022-06-21 中国科学院上海硅酸盐研究所 一种莫来石红外透明陶瓷的制备方法

Similar Documents

Publication Publication Date Title
CN102515851B (zh) 一种多孔陶瓷表面氮化硅基涂层的制备方法
CN103922778B (zh) 三维氧化铝纤维织物增强氧化物陶瓷及其制备方法
AU2014403693B2 (en) Preparation method for high-density hexagonal boron nitride ceramic material
CN102897764B (zh) 一种块状碳化硅气凝胶材料及其制备方法
CN101817683B (zh) MgAlON透明陶瓷的无压烧结制备方法
CN101993240B (zh) 一种Ce3+掺杂硅酸镥(Lu2SiO5)多晶闪烁光学陶瓷的制备方法
CN106629732B (zh) 一种纳米ZrC-SiC复合粉体的制备方法
CN105272328B (zh) 一种SiC晶须增韧莫来石抗氧化涂层的制备方法
Zhang et al. Foam gel-casting preparation of SiC bonded ZrB2 porous ceramics for high-performance thermal insulation
CN103922794B (zh) 三维氧化铝纤维织物增强多孔莫来石陶瓷及其制备方法
CN103755344A (zh) 单硅酸镥/焦硅酸镥双相复合环境障涂层材料及其制备方法
CN110436930A (zh) 一种高性能纳米SiC陶瓷及其制备方法和应用
CN107954745A (zh) 耐腐蚀微孔莫来石轻质耐火砖及其制备方法
CN105219145A (zh) 一种耐高温红外反射绝热材料及其制备方法
CN102603344B (zh) 一种碳化硅晶须增韧二硼化锆陶瓷的制备工艺
CN108484151A (zh) 一种低温下烧结制备致密的单相或复相莫来石陶瓷的方法
Ye et al. Effect of different preparation methods on the microstructure and mechanical properties of Si3N4 ceramic composites
CN1810722A (zh) 一种莫来石陶瓷低温烧结方法
CN106938932A (zh) 高纯高强度氧化锆氮化硅复合陶瓷及其制备方法
CN109665530B (zh) 一种用石英砂制备超细方石英粉的方法
CN104418608B (zh) 碳化硅多孔陶瓷的低温烧成方法
CN101700985B (zh) 一种氮化硅基封孔涂层的制备方法
CN106747574A (zh) 一种微波窑用Si2N2O透波‑隔热一体化内衬材料及其制备方法
CN107399972A (zh) 一种基于sps方法制备透明氮化铝陶瓷的方法
CN107954743A (zh) 耐腐蚀微孔轻质耐火砖及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180904