CN108479778A - 一种改性凹凸棒石的制备方法 - Google Patents

一种改性凹凸棒石的制备方法 Download PDF

Info

Publication number
CN108479778A
CN108479778A CN201810262960.3A CN201810262960A CN108479778A CN 108479778 A CN108479778 A CN 108479778A CN 201810262960 A CN201810262960 A CN 201810262960A CN 108479778 A CN108479778 A CN 108479778A
Authority
CN
China
Prior art keywords
attapulgite
preparation
bath
modified attapulgite
modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810262960.3A
Other languages
English (en)
Other versions
CN108479778B (zh
Inventor
李霞章
石海洋
左士祥
陆晓旺
姚超
罗士平
刘文杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou University
Original Assignee
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou University filed Critical Changzhou University
Priority to CN201810262960.3A priority Critical patent/CN108479778B/zh
Publication of CN108479778A publication Critical patent/CN108479778A/zh
Application granted granted Critical
Publication of CN108479778B publication Critical patent/CN108479778B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/30Ion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • B01J37/346Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy of microwave energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明属于凹凸棒石改性技术领域,提供了一种改性凹凸棒石的制备方法。其制备方法包括:(1)取纯化过的凹凸棒石进行酸化处理,使H+置换出凹凸棒石八面体结构中的部分阳离子(Al3+,Mn2+,Mg2+)及层间部分阳离子(Na+,K+,Ca2+,Mg2+);(2)将酸化后的凹凸棒石放到过渡金属盐(Mn3+,Fe3+,Co3+,Ni3+)溶液中,在60~100℃的水浴锅中充分反应;(3)将上述反应液置于微波水热化学反应仪中反应,然后离心,洗涤,干燥后得到成品。本发明能够使凹凸棒石具有可见光响应性,增大光响应范围,提高光催化作用,同时可以使其具有吸附作用,比表面积和孔隙率得到提升。

Description

一种改性凹凸棒石的制备方法
技术领域
本发明属于凹凸棒石加工技术领域,特别涉及一种改性凹凸棒石的制备方法。
背景技术
凹凸棒石粘土(又名坡缕石或坡缕缟石,简称ATP)是一种天然一维纳米矿物材料,具有特殊的纤维状晶体结构,含水富镁铝硅酸盐粘土矿物,其单根纤维晶的直径在30nm左右,长度可达几个微米,独特的结构赋予了其比表面积大、吸附能力强和耐盐碱性好的理化性质。CN 106892433 A公开了一种改性凹凸棒石粘土的制备方法,经过酸处理,热处理后,再与有机化合物和催化剂反应制得改性凹凸棒石粘土,使其具有较好的界面相容性和消泡效果,但是存在制备方法复杂的问题;南京理工大学张剑等用染料曙红Y对ATP进行表面修饰,使其光响应范围拓展到可见光区,可以直接作为光催化剂用于光催化分解水制氢,但是需要染料曙红Y对ATP进行表面修饰,才可以使其达到可见光响应;浙江大学张平萍等研究了不同酸浓度,反应温度,反应时间处理凹凸棒石,提出了酸对凹凸棒石的作用原理与过程,发现了晶格破坏与重建可能性,但是仅仅研究了盐酸浓度和温度对凹凸棒石的活化处理效果,并没有使其达到光响应的效果,使其半导体化。
凹凸棒石在天然形成过程中,晶体中镁、铝离子可被铁等过渡金属离子替代,从而形成含少量铁元素等天然掺杂的凹凸棒石,而具有紫外光响应效果,但是较窄的光响应范围阻碍了其在光催化领域的应用。
发明内容
由于凹凸棒石结构中含有丰富的Mg-O和Al-O,可以通过晶格置换或者晶格重建对凹凸棒石进行化学键的改性研究,使凹凸棒石达到可见光响应的效果,直接用作光催化剂,拓展其在光催化领域的应用。
为了解决天然凹凸棒石光响应范围较窄的技术问题,本发明以凹凸棒石粘土,盐酸,过渡金属盐为主要原料,采用水浴法和微波水热法结合,对凹凸棒石进行改性处理,并选择合适的盐酸浓度、水浴温度,水浴时间和微波水热温度等工艺参数得到了一种具有可见光响应的凹凸棒石。
本发明解决技术问题采用的技术方案涉及一种改性凹凸棒石的制备方法,包括如下步骤:
(1)取一定量纯化过的凹凸棒石加入到一定浓度的盐酸溶液中,超声溶解后置于水浴锅中,在60~100℃温度下处理8~15h时间后,5000-6000r/min离心2min,洗涤,60~100℃温度下干燥15~20h得到凹凸棒石预处理产物;
(2)将步骤(1)中预处理后的凹凸棒石放入过渡金属盐溶液中,在60~100℃的水浴锅中搅拌反应8~15h;
(3)将步骤(2)中的反应液转移到100mL水热反应釜中,置于微波水热化学反应仪中,在160~200℃下反应1h,然后5000-6000r/min离心2min,洗涤,60~100℃温度下干燥12~24h后得到改性后的可见光响应凹凸棒石成品。
步骤(1)所述的制备方法中,盐酸浓度为1~5mol/L。
步骤(2)中过渡金属盐溶液中金属的摩尔数与凹凸棒石的质量之比可以为0.0005~0.001mol:1g。
其中,过渡金属盐可以为Co、Fe、Mn、Ni盐中的任意一种;过渡金属的盐溶液可以为过渡金属的硝酸盐,硫酸盐,氯化物中的任意一种的水溶液;作为示例,所述过渡金属盐可以为FeCl3
微波水热后的产物经过充分(一般至少3-5次)水洗,以除尽杂质,并在60~100℃烘干12~24h。
与已有技术相比,本发明有益效果在于:
1、采用盐酸酸化预处理凹凸棒石,一方面可除去分布于凹凸棒石孔道中的碳酸盐等杂质,使孔道疏通,另一方面,由于凹凸棒石的阳离子的可交换性,半径较小的H+能置换出凹凸棒石层间部分K+、Na+、Ca2+和Mg2+等离子,增大孔容积。
2、将进行预处理后的凹凸棒石与Si4+,Al3+离子半径极为接近的过渡金属盐(Co3+,Fe3+,Mn3+,Ni3+)进行置换反应,使少部分的金属离子与酸处理的凹凸棒石中的占据八面体镁铝后的H+发生置换反应,通过微波水热,使被置换出的Al3+,Mg2+八面体位置被钴、铁、锰、镍填充,同时在微波水热条件下,对置换过渡金属盐后的凹凸棒石进行晶格重建修复,得到改性后的可见光响应凹凸棒石,该制备方法简单,方便可行。
3、通过对凹凸棒石的改性处理,大幅度提高了其对太阳光的吸收,使其达到半导体化,拓宽了光响应的范围(380-790nm),使其可以直接用作可见光响应半导体光催化剂。
下面结合附图和实施例对本发明进一步说明。
附图说明
图1为原始ATP、实施例1得到的酸处理ATP、可见光响应ATP及对比实施例1得到的普通水浴改性ATP样品的XRD谱图;
图2为原始ATP样品100nm标尺范围的TEM照片;
图3为实施例1得到的酸处理ATP样品100nm标尺范围的TEM照片;
图4为实施例1得到的可见光响应ATP样品100nm标尺范围的TEM照片;
图5为原始ATP、实施例1得到的酸处理ATP和可见光响应ATP样品的UV-vis光谱图;
具体实施方式
实施例1
首先称取2g的凹凸棒石溶于100mL 3mol/L的盐酸溶液中,超声溶解后置于水浴锅中,在70℃下处理10h后,在离心机中以6000r/min离心2min,移除上层液体,下层固体经充分水洗,在80℃下18h烘干,得到凹凸棒石预处理产物;然后取0.0005mol氯化铁置于含有50mL去离子水的100mL烧杯中,搅拌溶解后加入上述预处理后的凹凸棒石1g,再次搅拌溶解,放于70℃的水浴锅中搅拌反应8h;最后将烧杯中的反应液转移至100mL微波水热反应釜中160℃保温反应1h,在离心机中以6000r/min离心2min,移除上层液体,下层固体经充分水洗,在80℃下18h烘干,得到改性后的可见光响应凹凸棒石。
对本实施例所制备的改性后的可见光响应凹凸棒石进行X射线粉末衍射实验,在透射电镜下观察其形貌和结构,并在紫外可见漫反射光谱仪下测试其对光的吸收,其与凹凸棒石、酸处理凹凸棒石的XRD图谱如图1所示:酸处理凹凸棒石的XRD中仅出现了二氧化硅的特征衍射峰,说明凹凸棒石八面体结构中的Al以及少量的Mg、Fe被H+替换出来;另外发现可见光响应凹凸棒石的XRD峰强度有所降低,但是其各个特征峰峰位和原始凹凸棒石基本一致,说明在微波水热条件下,大部分H+被Fe3+置换出来,可见光响应凹凸棒石结构基本上没有被破坏。
本实施例所改性可见光响应凹凸棒石,与凹凸棒石、酸处理凹凸棒石的TEM照片如图2-图4所示,从图中可以看出,凹凸棒石的纤维棒状结构,酸处理凹凸棒石棒状结构没有发生改变,但其表面凹凸不平,说明部分杂质被除去,孔容积得以增大,而可见光响应凹凸棒石仍然为棒状结构,与XRD的结果一致。
本实施例所改性可见光响应凹凸棒石,与凹凸棒石、酸处理凹凸棒石的UV-vis光谱图如图5所示,从图中可以看出,凹凸棒石的光响应吸收边在380nm左右,酸处理凹凸棒石的光响应吸收边在480nm左右,而可见光响应凹凸棒石的光响应吸收边在690nm左右,明显拓宽了凹凸棒石的光吸收范围,说明半导体化凹凸棒石的成功改性。
实施例2
首先称取2g的凹凸棒石溶于100mL 5mol/L的盐酸溶液中,超声溶解后置于水浴锅中,在60℃下处理8h后,在离心机中以5000r/min离心2min,移除上层液体,下层固体经充分水洗,在60℃下20h烘干,得到凹凸棒石预处理产物;然后取0.0008mol氯化铁置于含有50mL去离子水的100mL烧杯中,搅拌溶解后加入上述预处理后的凹凸棒石1g,再次搅拌溶解,放于60℃的水浴锅中搅拌反应10h;最后将烧杯中的反应液转移至100mL微波水热反应釜中160℃保温反应1h,在离心机中以5000r/min离心2min,移除上层液体,下层固体经充分水洗,在60℃下24h烘干,得到改性可见光响应凹凸棒石,后续检测如实施例1。
实施例3
首先称取2g的凹凸棒石溶于100mL 1mol/L的盐酸溶液中,超声溶解后置于水浴锅中,在100℃下处理15h后,在离心机中以5000r/min离心2min,移除上层液体,下层固体经充分水洗,在100℃下15h烘干,得到凹凸棒石预处理产物;然后取0.0006mol氯化铁置于含有50mL去离子水的100mL烧杯中,搅拌溶解后加入上述预处理后的凹凸棒石1g,再次搅拌溶解,放于100℃的水浴锅中搅拌反应15h;最后将烧杯中的反应液转移至100mL微波水热反应釜中200℃保温反应1h,在离心机中以5000r/min离心2min,移除上层液体,下层固体经充分水洗,在100℃下12h烘干,得到改性后可见光响应凹凸棒石,后续检测如实施例1。
实施例4
首先称取2g的凹凸棒石溶于100mL 2mol/L的盐酸溶液中,超声溶解后置于水浴锅中,在80℃下处理12h后,在离心机中以6000r/min离心2min,移除上层液体,下层固体经充分水洗,在80℃下18h烘干,得到凹凸棒石预处理产物;然后取0.0007mol氯化铁置于含有50mL去离子水的100mL烧杯中,搅拌溶解后加入上述预处理后的凹凸棒石1g,再次搅拌溶解,放于80℃的水浴锅中搅拌反应12h;最后将烧杯中的反应液转移至100mL微波水热反应釜中170℃保温反应1h,在离心机中以6000r/min离心2min,移除上层液体,下层固体经充分水洗,在80℃下14h烘干,得到改性后可见光响应凹凸棒石,后续检测如实施例1。
实施例5
首先称取2g的凹凸棒石溶于100mL 4mol/L的盐酸溶液中,超声溶解后置于水浴锅中,在90℃下处理12h后,在离心机中以6000r/min离心2min,移除上层液体,下层固体经充分水洗,在90℃下16h烘干,得到凹凸棒石预处理产物;然后取0.001mol氯化铁置于含有50mL去离子水的100mL烧杯中,搅拌溶解后加入上述预处理后的凹凸棒石1g,再次搅拌溶解,放于90℃的水浴锅中搅拌反应13h;最后将烧杯中的反应液转移至100mL微波水热反应釜中160℃保温反应1h,在离心机中以6000r/min离心2min,移除上层液体,下层固体经充分水洗,在90℃下20h烘干,得到改性后可见光响应凹凸棒石,后续检测如实施例1。
对比实施例1
首先称取2g的凹凸棒石溶于100mL 3mol/L的盐酸溶液中,超声溶解后置于水浴锅中,在70℃下处理10h后,在离心机中以6000r/min离心2min,移除上层液体,下层固体经充分水洗,在80℃下18h烘干,得到凹凸棒石预处理产物;然后取0.0005mol氯化铁置于含有50mL去离子水的100mL烧杯中,搅拌溶解后加入上述预处理后的凹凸棒石1g,再次搅拌溶解,放于70℃的水浴锅中搅拌反应8h;最后在离心机中以6000r/min离心2min,移除上层液体,下层固体经充分水洗,在80℃下18h烘干,得到普通水浴改性后凹凸棒石。
对本对比实施例所制备的普通水浴改性后凹凸棒石进行X射线粉末衍射实验,其XRD图谱如图1所示:和实例1制备出的可见光响应凹凸棒石的XRD比较可以发现,图中出现了较少的特征衍射峰,而且峰的强度相对较弱,说明在普通水浴条件下,凹凸棒石八面体结构中仅有少量的Al以及少量的Mg、Fe被H+替换出来,而且其晶格重建复原程度相对于微波水热条件下较差。
因此,为了使改性后可见光响应凹凸棒石半导体化,而最大程度的使其离子置换,晶格复原,应该采取微波水热方法。

Claims (6)

1.一种改性凹凸棒石的制备方法,其特征在于:所述制备方法包括如下步骤:
(1)取纯化过的凹凸棒石加入到盐酸溶液中,超声溶解后置于水浴锅中进行处理后,离心,洗涤,干燥得到凹凸棒石预处理产物;
(2)将经步骤(1)预处理后的凹凸棒石放入过渡金属盐溶液中,在60~100℃的水浴锅中搅拌反应8~15h;
(3)将步骤(2)中的反应液转移到100mL水热反应釜中,置于微波水热化学反应仪中,在160~200℃下反应1h,然后离心,洗涤,干燥后得到改性凹凸棒石成品。
2.如权利要求1所述的改性凹凸棒石的制备方法,其特征在于:步骤(1)所述的盐酸溶液浓度为1~5mol/L。
3.如权利要求1所述的改性凹凸棒石的制备方法,其特征在于:步骤(1)所述的水浴锅中进行处理的温度为:60~100℃,处理时间为:8~15h;离心条件为:5000~6000r/min离心2min,干燥温度为:60~100℃,干燥时间为:15~20h。
4.如权利要求1所述的改性凹凸棒石的制备方法,其特征在于:步骤(2)所述的过渡金属盐为Co、Fe、Mn、Ni盐中的任意一种;过渡金属的盐溶液为过渡金属硝酸盐,硫酸盐,氯化物中的任意一种的水溶液。
5.如权利要求1所述的改性凹凸棒石的制备方法,其特征在于:步骤(2)所述的过渡金属盐溶液中金属的摩尔数与凹凸棒石的质量比为0.0005~0.001mol:1g。
6.如权利要求1所述的改性凹凸棒石的制备方法,其特征在于:步骤(3)所述的离心条件为:5000-6000r/min离心2min;干燥温度为:60~100℃,干燥时间为:12~24h。
CN201810262960.3A 2018-03-28 2018-03-28 一种改性凹凸棒石的制备方法 Active CN108479778B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810262960.3A CN108479778B (zh) 2018-03-28 2018-03-28 一种改性凹凸棒石的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810262960.3A CN108479778B (zh) 2018-03-28 2018-03-28 一种改性凹凸棒石的制备方法

Publications (2)

Publication Number Publication Date
CN108479778A true CN108479778A (zh) 2018-09-04
CN108479778B CN108479778B (zh) 2020-11-24

Family

ID=63316439

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810262960.3A Active CN108479778B (zh) 2018-03-28 2018-03-28 一种改性凹凸棒石的制备方法

Country Status (1)

Country Link
CN (1) CN108479778B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109226216A (zh) * 2018-09-18 2019-01-18 天津大学 一种烧制型土壤重金属去除剂及制备方法
CN110938244A (zh) * 2019-12-17 2020-03-31 含山县仁盛鞋业有限公司 一种胶面胶鞋用鞋面胶制备方法
CN111450814A (zh) * 2020-04-29 2020-07-28 江苏纳欧新材料有限公司 利用天然凹凸棒石制备硅酸锌催化剂的方法及其应用
CN112717934A (zh) * 2020-11-23 2021-04-30 淮阴师范学院 一种凹凸棒土负载过渡金属氧化物复合材料及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102030374A (zh) * 2010-12-31 2011-04-27 陕西科技大学 一种微波水热法制备铁酸铋粉体的方法
CN102500390A (zh) * 2011-11-17 2012-06-20 陕西科技大学 一种氧化铁/钨酸铋复合光催化剂的制备方法
CN102872880A (zh) * 2012-10-17 2013-01-16 安徽理工大学 用于脱除NOx的稀土改性凹凸棒石催化剂的制备方法
CN103551136A (zh) * 2013-09-24 2014-02-05 合肥工业大学 凹凸棒石负载准一维二氧化钛复合光催化剂及其制备方法
US8993198B2 (en) * 2009-08-10 2015-03-31 Korea University Research And Business Foundation Process of preparing PT/support or PT alloy/support catalyst, thus-prepared catalyst and fuel cell comprising the same
CN104877394A (zh) * 2015-06-21 2015-09-02 苏州大学 一种改性凹凸棒石及其制备方法
CN105435736A (zh) * 2015-12-04 2016-03-30 盐城市兰丰环境工程科技有限公司 一种改性凹凸棒土硫转移剂的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8993198B2 (en) * 2009-08-10 2015-03-31 Korea University Research And Business Foundation Process of preparing PT/support or PT alloy/support catalyst, thus-prepared catalyst and fuel cell comprising the same
CN102030374A (zh) * 2010-12-31 2011-04-27 陕西科技大学 一种微波水热法制备铁酸铋粉体的方法
CN102500390A (zh) * 2011-11-17 2012-06-20 陕西科技大学 一种氧化铁/钨酸铋复合光催化剂的制备方法
CN102872880A (zh) * 2012-10-17 2013-01-16 安徽理工大学 用于脱除NOx的稀土改性凹凸棒石催化剂的制备方法
CN103551136A (zh) * 2013-09-24 2014-02-05 合肥工业大学 凹凸棒石负载准一维二氧化钛复合光催化剂及其制备方法
CN104877394A (zh) * 2015-06-21 2015-09-02 苏州大学 一种改性凹凸棒石及其制备方法
CN105435736A (zh) * 2015-12-04 2016-03-30 盐城市兰丰环境工程科技有限公司 一种改性凹凸棒土硫转移剂的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
何如,: ""基于凹凸棒为载体的几种光催化剂的制备及其性能研究"", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *
沈玉龙著,: "《绿色化学》", 30 April 2016, 中国环境出版社 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109226216A (zh) * 2018-09-18 2019-01-18 天津大学 一种烧制型土壤重金属去除剂及制备方法
CN110938244A (zh) * 2019-12-17 2020-03-31 含山县仁盛鞋业有限公司 一种胶面胶鞋用鞋面胶制备方法
CN111450814A (zh) * 2020-04-29 2020-07-28 江苏纳欧新材料有限公司 利用天然凹凸棒石制备硅酸锌催化剂的方法及其应用
CN111450814B (zh) * 2020-04-29 2023-03-28 江苏纳欧新材料有限公司 利用天然凹凸棒石制备硅酸锌催化剂的方法及其应用
CN112717934A (zh) * 2020-11-23 2021-04-30 淮阴师范学院 一种凹凸棒土负载过渡金属氧化物复合材料及其制备方法和应用
CN112717934B (zh) * 2020-11-23 2023-07-25 淮阴师范学院 一种凹凸棒土负载过渡金属氧化物复合材料及其制备方法和应用

Also Published As

Publication number Publication date
CN108479778B (zh) 2020-11-24

Similar Documents

Publication Publication Date Title
CN108479778A (zh) 一种改性凹凸棒石的制备方法
Liu et al. Adsorption and visible-light-driven photocatalytic properties of Ag3PO4/WO3 composites: A discussion of the mechanism
Chen et al. Influence of phase structure and morphology on the photocatalytic activity of bismuth molybdates
Guan et al. Hydrothermal synthesis of hierarchical CuS/ZnS nanocomposites and their photocatalytic and microwave absorption properties
Ao et al. Fabrication of novel p–n heterojunction BiOI/La 2 Ti 2 O 7 composite photocatalysts for enhanced photocatalytic performance under visible light irradiation
Hu et al. Sonochemical and microwave-assisted synthesis of linked single-crystalline ZnO rods
Lu et al. Preparation and efficient visible light-induced photocatalytic activity of m-BiVO4 with different morphologies
CN104263317B (zh) 一种氧化钴/石墨烯复合吸波材料的合成方法
Liu et al. Microwave-assisted solvothermal synthesis of 3D carnation-like SnS2 nanostructures with high visible light photocatalytic activity
TWI542564B (zh) 有用於染料去除的半導體氧化物奈米管基複合粒子及其製法
Han et al. Preparing Bi 12 SiO 20 crystals at low temperature through nontopotactic solid-state transformation and improving its photocatalytic activity by etching
Yang et al. Hydrothermal synthesis of one-dimensional zinc oxides with different precursors
JP2008516880A (ja) ナノサイズの二酸化チタン粒子を合成する方法
Wang et al. Design and synthesis of porous C–ZnO/TiO2@ ZIF-8 multi-component nano-system via pyrolysis strategy with high adsorption capacity and visible light photocatalytic activity
Sahu et al. Synthesis and characterization of an eco-friendly composite of jute fiber and Fe2O3 nanoparticles and its application as an adsorbent for removal of As (V) from water
Zhou et al. Synthesis and properties of octahedral Co 3 O 4 single-crystalline nanoparticles enclosed by (111) facets
Cai et al. CuS hierarchical hollow microcubes with improved visible-light photocatalytic performance
Zhang et al. Controllable synthesis of Cu2O microcrystals via a complexant‐assisted synthetic route
CN106902745B (zh) 一种锂/铷离子同步吸附剂的制备方法及其应用
Ling et al. Formation of uniform mesoporous TiO 2@ C–Ni hollow hybrid composites
Wu et al. Template-free synthesis of mesoporous anatase yttrium-doped TiO 2 nanosheet-array films from waste tricolor fluorescent powder with high photocatalytic activity
Palharim et al. Effect of temperature and time on the hydrothermal synthesis of WO3-AgCl photocatalysts regarding photocatalytic activity
Shariatzadeh et al. Nanostructured α-Fe2O3: Solvothermal synthesis, characterization, and effect of synthesis parameters on structural properties
Schütz et al. Characterization of bentonite modified by manganese oxides
Peng et al. Removal of Cu2+ from wastewater using eco-hydroxyapatite synthesized from marble sludge

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant