CN108475829B - 锂离子电池充放电控制装置 - Google Patents

锂离子电池充放电控制装置 Download PDF

Info

Publication number
CN108475829B
CN108475829B CN201680049378.8A CN201680049378A CN108475829B CN 108475829 B CN108475829 B CN 108475829B CN 201680049378 A CN201680049378 A CN 201680049378A CN 108475829 B CN108475829 B CN 108475829B
Authority
CN
China
Prior art keywords
lithium ion
ion battery
electrode
capacity
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201680049378.8A
Other languages
English (en)
Other versions
CN108475829A (zh
Inventor
杨殿宇
宇都宫隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Publication of CN108475829A publication Critical patent/CN108475829A/zh
Application granted granted Critical
Publication of CN108475829B publication Critical patent/CN108475829B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/04Arrangement of batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/0071Regulation of charging or discharging current or voltage with a programmable schedule
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1423Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle with multiple batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0069Charging or discharging for charge maintenance, battery initiation or rejuvenation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Transportation (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Control Of Charge By Means Of Generators (AREA)

Abstract

对启动发动机起动机(1)的锂离子电池(3)的充放电进行控制的锂离子电池充放电控制装置包括:检测锂离子电池的电压的电压传感器(SN1)、检测锂离子电池的电流的电流传感器(SN2)以及对锂离子电池的充放电进行控制的控制器(30)。控制部(30)根据从发动机起动机启动时起经过了第一时间时的电压传感器和电流传感器的检测值、经过了比第一时间长的第二时间时的电压传感器和所述电流传感器的检测值,计算锂离子电池的正极和负极各自的容量劣化速率,再根据对正极和负极各自的容量劣化速率与正极和负极各自的判断基准值的比较结果限制锂离子电池的充放电。

Description

锂离子电池充放电控制装置
技术领域
这里所公开的技术涉及一种锂离子电池充放电控制装置。
背景技术
近年来,从降低车辆的耗油量的观点出发,采用了所谓的减速再生系统的车辆在不断地增多,所谓的减速再生系统是通过在车辆减速时集中发电来减轻发动机的负担的一种系统。
因为要在短时间内将减速时所产生的大容量电充到电池里,所以采用了减速再生系统的车辆上大多安装有锂离子电池。该锂离子电池与在现有技术中广泛采用的铅电池不同,与铅电池相比,该锂离子电池能够更加快速地进行充放电。通过安装特性不同的两种蓄电装置,既能够毫无浪费地将减速时所产生的电回收起来,又能够确保充分大的充电容量。
专利文献1中公开了以下技术。在该技术下,计算电池的劣化速率,当劣化速率比标准速率大时,通过限制目标充电量、充放电电压和电流来减少电池寿命上的差异。
专利文献1:日本公开专利公报特开2007-323999号公报
发明内容
-发明要解决的技术问题-
因为锂离子电池的容量并非一点点地逐渐劣化,而会有突然劣化的情况。因此,每隔一段较短的时间就对劣化进行一次预测,并且在劣化比人们预想得严重的情况下需要对锂离子电池的使用进行限制。而且,锂离子电池的正极和负极随时间劣化的劣化速率有时候会不同,故需要对正极和负极的容量劣化程度分别进行预测并适当地限制其使用。
本公开正是为解决上述问题而完成的。这里所公开的技术的目的在于:实现对安装在车辆上的锂离子电池的充放电的适当控制。
-用以解决技术问题的技术方案-
这里所公开的技术是一种锂离子电池充放电控制装置,其对启动发动机起动机的锂离子电池的充放电进行控制。该锂离子电池充放电控制装置包括:检测锂离子电池的电压的电压传感器、检测锂离子电池的电流的电流传感器、以及对锂离子电池的充放电进行控制的控制部,控制部根据从发动机起动机启动时起经过了第一时间时的电压传感器和电流传感器的检测值、和经过了比第一时间长的第二时间时的电压传感器和电流传感器的检测值,计算锂离子电池的正极和负极各自的容量劣化速率,再根据对正极和负极各自的容量劣化速率与正极和负极各自的判断基准值的比较结果限制锂离子电池的充放电。
根据该构成方式,是根据正极和负极各自的容量劣化速率对锂离子电池的充放电进行控制的。因此,能够进行很适合正极和负极的容量劣化彼此独立发展这样的锂离子电池实体的充放电控制,从而能够推迟锂离子电池的容量劣化的发展,延长可使用时间。
可以是这样的,锂离子电池的正极和负极中之一方即第一电极的初始容量比正极和负极中之另一方即第二电极的初始容量大,两电极的容量劣化随着使用彼此独立发展下去,从开始使用时起经过了规定时间以后,第一电极和第二电极的剩余容量反过来,第一电极的剩余容量比第二电极的剩余容量小,控制部在规定时间内使用彼此不同的值作为正极和负极各自的判断基准值。
可以是这样的,控制部在规定时间后,使用第一电极的判断基准值作为正极和负极各自的判断基准值。
可以是这样的,第一电极在规定时间内的判断基准值被设定为比在规定时间后的判断基准值低。可以是这样的,在规定时间内第一电极的判断基准值朝着规定时间后的判断基准值逐渐增大。
可以是这样的,控制部在规定时间后仅根据第一电极的容量劣化速率与第一电极的判断基准值的比较结果限制锂离子电池的充放电。
-发明的效果-
根据这里所公开的技术,能够实现对安装在车辆上的锂离子电池的充放电的适当控制。
附图说明
图1是示出车辆用电源控制装置的电气结构的电路图。
图2是示出控制系统的连接关系的方框图。
图3是锂离子电池的等效电路图。
图4是示出锂离子电池的交流阻抗特性的乃奎斯特图。
图5是示出正极和负极的交流阻抗特性的乃奎斯特图。
图6是示出正极电阻和负极电阻随时间增加的曲线图。
图7是示出正极容量和负极容量随时间劣化的曲线图。
图8是示出启动发动机时所进行的控制步骤的流程图。
图9是示出锂离子电池的正极和负极的判断基准值的曲线图。
图10是示出锂离子电池的充放电控制值的曲线图。
具体实施方式
下面,参照附图详细地说明示例出的实施方式。
(1)车辆的整体结构
图1是示出车辆用电源控制装置的电气结构的电路图。图1所示的车辆包括:从设置在发动机室内且未图示的汽油发动机(以下,简称发动机)获得动力而发电的B-ISG(带驱动式集成式起动机/发电机)1;与B-ISG1电连接,将B-ISG1所产生的电蓄积起来的电池2和锂离子电池(LiB)3;降低B-ISG1所产生的电的电压的DC/DC转换器4;由耗电的各种电气设备构成的电气负荷5;以及起动机6,该起动机6让曲柄轴旋转来启动发动机。需要说明的是,B-ISG1相当于“发动机起动机”,起动机6相当于“不同的起动机”,电气负荷5相当于“发动机附件”。
B-ISG1利用轮带(省略图示)与发动机的输出轴相连结,通过让与发动机的输出轴联动旋转的转子在磁场中旋转而发电,故B-ISG1能够根据施加给产生磁场的激磁线圈的电流的增减,在最大到25V的范围内调节所产生的电。B-ISG1内置有将所产生的交流电转换为直流电的整流器(省略图示)。亦即,B-ISG1所产生的电经该整流器转换为直流后供往各部分。相反,B-ISG1能够从LiB3接收电,作为起动机工作来启动发动机。
电池2是车辆上所使用的蓄电装置,且是额定电压为12V的普通铅电池。因为这样的电池2是通过化学反应而将电能蓄积起来的,所以不适合快速充放电。但因为这样的电池2容易确保充电容量,所以具有可蓄积电量相对较大这样的特性。
LiB3是将多个基本单元即锂离子电池单元连结在一起而实现了大容量化的电池,最大能够充电到25V。这样的LiB3与电池2不同,是利用锂离子的物理吸附来将电蓄积起来的,故这样的LiB3具有能够快速地进行充放电且内部电阻也较少这样的特性。
DC/DC转换器4是通过接通或切断(开关动作)内置的开关元件而让电压变化的开关式转换器。需要说明的是,在本实施方式中,DC/DC转换器4具有利用开关动作来降低从B-ISG1或LiB3一侧供向电气负荷5或电池2一侧(亦即,从图中的左侧供向右侧)的电的电压的功能,但不具有除此以外的功能,例如不具有允许朝着与上述方向相反的方向(亦即,从图中的右侧供向左侧)供电的功能或者使电压上升的功能。
B-ISG1和LiB3经供电用第一供电线7彼此连接起来。从第一供电线7分支出第二供电线8,在该第二供电线8的中途设置有DC/DC转换器4。从第二供电线8分支出第三供电线9,电池2和第二供电线8经该第三供电线9彼此连接起来。从第三供电线9分支出第四供电线10,起动机6和电池2经该第四供电线10彼此连接起来。
在第一供电线7上从它与第二供电线8的分支点到LiB3之间的部位,设置有用于保持B-ISG1和LiB3之间的连接状态或切断B-ISG1和LiB3之间的连接状态的LiB断路继电器12。LiB断路继电器12能够在允许从B-ISG1向LiB3供电的“ON”状态(关闭:连接状态)和切断该供电的“OFF”状态(打开:切断状态)之间进行切换。
而且,第一供电线7还分支出与第二供电线8并排着延伸的旁路供电线11,该旁路供电线11连接在第二供电线8上比DC/DC转换器4离输出一侧还近的中途部位。亦即,旁路供电线11不经DC/DC转换器4就将B-ISG1和电气负荷5连接起来,并且不经DC/DC转换器4就将电池2和LiB3连接起来。为保持这些连接状态或者切断这些连接状态,而在旁路供电线11上设置有旁路继电器13。旁路继电器13能够在允许经旁路供电线11(将DC/DC转换器4旁路)供电的“ON”状态(关闭:连接状态)和切断该供电的“OFF”状态(打开:切断状态)之间进行切换。
电气负荷5除包括利用电气马达等的驱动力辅助驾驶员进行转向操作的电动式动力转向机构(以下,简称为EPAS)21以外,还包括空调22、音响23等。这些EPAS21、空调22、音响23等电气负荷与设置有DC/DC转换器4的第二供电线8相连接,或者经未设置DC/DC转换器4的旁路供电线11与第一供电线7相连接。
本实施方式中的电气负荷5除了包括EPAS21等电气负荷以外,还包括电热塞26。电热塞26是在冷启动发动机(在本实施方式中,为汽油发动机)时,利用通电加热而使发动机的燃烧室的温度升高的加热器。电热塞26与起动机6并联后与电池2相连接,PTC加热器25是利用通电加热来将室内制热的加热器,在最大到25V的电压下也能够稳定地工作,故将该PTC加热器25设置在相对于DC/DC转换器4而言的B-ISG1和LiB3这一侧。
(2)控制系统
图2是示出控制系统的连接关系的方框图。如图2所示,上述B-ISG1、DC/DC转换器4、起动机6、LiB断路继电器12、旁路继电器13、电气负荷5(EPAS21、空调22、音响23、……)等部件经各种信号线与控制器30相连接,按照来自控制器30的指令控制这些部件。控制器30是现有技术中公知的由CPU、ROM、RAM等构成的微型计算机,相当于“控制部”。
控制器30经信号线与设置在车辆上的各种传感器类相连接。具体而言,在本实施方式的车辆上设置有电压传感器SN1、电流传感器SN2、启动开关传感器SN3以及温度传感器SN4等,由这些传感器类检测到的信息依次输入控制器30。
图1中也示出,电压传感器SN1是检测LiB3的电压的传感器。
图1中也示出,电流传感器SN2是检测LiB3的电流的传感器。
启动开关传感器SN3是一种检测在启动发动机或让发动机停止时由驾驶员操作但未图示的点火钥匙被操作到发动机启动位置这一情况的传感器。
温度传感器SN4是检测未图示的散热器的水温的传感器。
控制器30根据来自各传感器类SN1~SN4的输入信息控制B-ISG1所产生的发电量和作为起动机的动作、DC/DC转换器4的降压动作、电气负荷5和起动机6的工作/停止、继电器12、13的关闭(ON)/打开(OFF)操作等,并且还预测LiB3的剩余容量。
(3)锂离子电池的剩余容量预测
接下来,说明普通的预测锂离子电池剩余容量的预测方法。图3是锂离子电池的等效电路图。就这样,锂离子电池中的正极、负极、表面皮膜(固体电解质界面,SEI:SolidElectrolyte Interface)等分别能够用R-CPE(恒相位元件:Constant Phase Element)并联电路表示,这些R-CPE并联电路又串联在一起。
锂离子电池的电池内部状态能够用交流阻抗法进行解析。图4是示出锂离子电池的交流阻抗特性的乃奎斯特图。图4的交流阻抗特性包括图3的等效电路中的正极、负极、SEI的各R-CPE并联电路的交流阻抗特性。因此,由图4的交流阻抗特性建立图3的等效电路,并且如果用该建立结果对正极和负极分别进行解析,就能够得到正极和负极的交流阻抗特性。
图5是示出正极和负极的交流阻抗特性的乃奎斯特图。如图5所示,正极和负极的交流阻抗特性都能够用半圆形曲线表示。这里,正极和负极分别具有固有的顶点频率fca和fan,即使锂离子电池随着时间的推移而劣化,这些顶点频率也是一定不变的。因此,能够在从锂离子电池开始向负荷供电时算起经过了时间T1=1/fca时,根据锂离子电池的电压和电流计算正极电阻,还能够在从锂离子电池开始向负荷供电时算起经过了时间T2=1/fan时,根据锂离子电池的电压和电流计算出负极电阻。时间T1相当于“第一时间”,时间T2相当于“第二时间”。以下,说到测量电阻的时候,意味着由电压和电流计算电阻。
正极电阻和负极电阻随着时间的推移而增加,而成为锂离子电池容量劣化的原因。正极电阻和负极电阻随时间的增加率能够从到此时为止的测量值计算出来。图6是示出正极电阻和负极电阻随时间增加的曲线图。图6中的曲线图,是以最初测得的正极电阻和负极电阻作为初始值(原点),用这之后测得的正极电阻和负极电阻作为相对于初始值的相对值而描绘出来的。通过这样对在过去的多个时刻测得的正极电阻和负极电阻进行多元回归分析,就能够计算出正极电阻和负极电阻随时间的增加率。需要说明的是,也能够从上一次的测量值和这一次的测量值计算出正极电阻和负极电阻随时间的增加率。
设初始(新产品)状态下的锂离子电池的剩余容量为SOH(0),容量维持率为η,锂离子电池的剩余容量SOH就能够用
SOH=η×SOH(0) (1)
表示。也就是说,可以将锂离子电池的容量劣化看成是容量维持率η的减少。容量维持率η能够由正极和负极的容量维持率的初始值和正极电阻和负极电阻随时间的增加率预测出来。这里,设正极和负极的容量维持率的初始值为ηca(0)和ηan(0),设将正极和负极随时间的增加率转换为容量减少率的函数(以时间t为自变量的函数)为fca(t)和fan(t),则锂离子电池的正极和负极的容量维持率ηca和ηan就能够用
ηca=fca(t)+ηca(0) (2)
ηan=fan(t)+ηan(0) (3)
表示。
图7是示出正极容量和负极容量随时间变化的曲线图。一般情况下,锂离子电池都是以正极容量大于负极容量的方式或者以负极容量大于正极容量的方式制造出来的,故正极和负极的容量维持率的初始值ηca(0)和ηan(0)会彼此不同。锂离子电池的正极和负极的容量维持率按照式(2)和式(3)彼此独立地随时间劣化。因此,如果画两条表示正极和负极的容量维持率随时间变化的直线,则如图7所示,存在两条直线在从开始使用锂离子电池时算起经过了规定时间后的时刻P相交叉这样的情况。
将锂离子电池整体的容量维持率限定为正极的容量维持率和负极的容量维持率中较低的一方。因此,在图7所示之例中,有关式(1)中的锂离子电池整体的容量维持率η,在从开始使用时算起到时刻P的这段时间内η=ηan,在时刻P以后η=ηca。也就是说,在图7之例中,有关锂离子电池的容量劣化,在从开始使用时算起到时刻P的这段时间内负极容量的劣化占支配地位,在时刻P以后正极容量的劣化占支配地位。
(4)利用锂离子电池剩余容量预测装置预测LiB3的剩余容量
接下来,详细说明是如何利用本实施方式中的锂离子电池剩余容量预测装置来预测LiB3的剩余容量的。由图2所示的控制器30、电压传感器SN1、电流传感器SN2以及温度传感器SN4构成的部分相当于本实施方式中的锂离子电池剩余容量预测装置。
就本实施方式中的锂离子电池充放电控制装置而言,为了尽量延长LiB3的使用寿命,由控制器30根据LiB3的劣化状況控制LiB3充满电后的电压、充电电流、放电电流等。这里,如上所述,LiB3的正极和负极中之一方的初始容量比LiB3的正极和负极中之另一方的初始容量大,两电极的容量劣化随着使用彼此独立发展下去,从开始使用时起经过了规定时间以后,正极和负极的剩余容量反过来,初始容量较大的电极的剩余容量比初始容量较小的电极的剩余容量小。例如,在图7所示之例中,开始使用时,LiB3的正极的容量比负极的容量大,随着使用,正极的容量比负极的容量劣化得早,在从开始使用时起经过了规定时间后的时刻P以后的时间内,正极的剩余容量比负极的剩余容量小。于是,控制器30根据上述方法,对LiB3的正极和负极分别计算容量劣化速率,再根据对正极和负极各自的容量劣化速率与正极和负极各自的判断基准值的比较结果限制LiB3的充放电。判断基准值是表示各电极的标准容量劣化速率的值。
以下,说明由控制器30进行控制的控制例。需要说明的是,为便于说明,假定LiB3是这样的一种电池,与图7所示之例一样,正极的初始容量比负极的初始容量大,在时刻P正极和负极的剩余容量反过来。
图8是示出启动发动机时由控制器30进行的控制步骤的流程图。
在步骤S1中,一打开点火开关,电压传感器SN1和电流传感器SN2就开始检测LiB3的电压V和电流I。当控制器30从来自启动开关传感器SN3的输入信息检测到启动开关已被打开时,该控制器30就利用LiB3启动B-ISG1。
在步骤S2中,控制器30从电压传感器SN1和电流传感器SN2获取在从LiB3开始向B-ISG1供电时起经过了时间T1时的LiB3的电压和电流的检测值、以及经过了时间T2时的LiB3的电压和电流的检测值。需要说明的是,时间T1和时间T2是LiB3的固有值。例如,T1=0.1秒,T2=0.5秒。
获取LiB3的电压和电流以后,在步骤S3中,就由控制器30按照上述方法计算LiB3的正极和负极的容量劣化速率V1和V2。如上所述,LiB3的正极电阻和负极电阻随时间增加,而成为LiB3容量劣化的原因。正极电阻和负极电阻随时间的增加率能够根据到此时为止的LiB3的正极电阻和负极电阻的测量值计算出来。而且,如图7所示,还能够根据正极电阻和负极电阻随时间的增加率计算正极容量和负极容量的容量维持率。而且,LiB3的正极和负极的容量劣化速率V1和V2相当于正极容量和负极容量的容量维持率的减少速率。
需要说明的是,根据启动B-ISG1时的LiB3的电压和电流计算LiB3的正极和负极的容量劣化速率V1和V2的理由如下:B-ISG1启动时,会从LiB3输出大电流,参照LiB3这样输出大电流时的LiB3的电压和电流,就能够以更高的精度计算出正极电阻和负极电阻。
计算出LiB3的正极和负极的容量劣化速率V1和V2以后,在步骤S4中,就由控制器30获取正极和负极各自的判断基准值。需要说明的是,正极和负极各自的判断基准值,是在考虑了LiB3在正极和负极的初始容量、正极和负极的容量劣化速率、正极和负极的剩余容量反过来的时刻等的特性的基础上事先计算出来的,且作为以时间t为自变量的函数或者查找表(lookup table)等提供出来。
图9是示出LiB3的正极和负极的判断基准值的曲线图。设初始容量较小的电极的判断基准值即为本实施方式中LiB3的负极的判断基准值在从开始使用LiB3时起到时刻P为止的这段时间内为SLOW,一定不变。设初始容量较小的电极的判断基准值即为本实施方式中LiB3的负极的判断基准值在时刻P以后的时间内为SHIGH(>SLOW),一定不变。另一方面,设初始容量较大的电极的判断基准值即为本实施方式中LiB3的正极的判断基准值,在时刻P以后的时间内为SHIGH,一定不变。设初始容量较大的电极的判断基准值即为本实施方式中LiB3的正极的判断基准值在从开始使用LiB3时起到时刻P为止的这段时间内为小于SHIGH(较松)的值,特别是朝着SHIGH逐渐增大的值。参照图7可知,负极的容量劣化速率比正极的容量劣化速率慢,因此在整个时间段内将负极的判断基准值固定为SLOW,将正极的判断基准值固定为SHIGH即可。但是,因为在时刻P以后LiB3整体的容量劣化速率是由正极的容量劣化速率决定的,所以如图9所示,在时刻P前后对判断基准值做了切换。也就是说,因为在从开始使用LiB3时起到时刻P为止的这段时间内,负极无需使用原来的判断基准值SLOW,正极无需使用原来的判断基准值SHIGH,所以使用的是比它们小的值。另一方面,在时刻P以后,负极使用比原来的判断基准值SLOW高(较严)的值即SHIGH,正极使用原来的判断基准值SHIGH
返回图8,在步骤S5中,控制器30对正极的容量劣化速率V1与其判断基准值S1的大小进行比较。在“是”的情况下,在步骤S6中,就由控制器30限制LiB3的充放电。
图10是示出LiB3的充放电控制值的曲线图。控制器30限制LiB3的充放电,以便做到:正极的容量劣化速率V1与其判断基准值S1之差越大,亦即,正极的容量劣化速率越大,就使LiB3的充满电后的电压和每单位时间的充放电电流都越小。
返回图8,当在步骤5中为“否”的情况下,或者在步骤S6之后,在步骤S7中,控制器30对负极的容量劣化速率V2与其判断基准值S2的大小进行比较。在“是”的情况下,在步骤S8中,就由控制器30限制LiB3的充放电。接下来,控制器30根据负极的容量劣化速率V2与其判断基准值S2之差限制LiB3的充放电,以便做到:LiB3的充满电后的电压和每单位时间的充放电电流都较小。
之后,在步骤S9中,控制器30根据正极或负极的容量劣化速率判断是否已限制了LiB3的充放电。在“是”的情况下,在步骤S10中,控制器30就选择根据正极或负极的容量劣化速率限制LiB3的充放电中的更为严格的那种限制。另一方面,在“否”的情况下,在步骤S11中,控制器30不限制LiB3的充放电,将LiB3的充放电量设定为规定值。
(5)作用
像以上所说明的那样,在本实施方式中,控制启动B-ISG1的LiB3的充放电的锂离子电池充放电控制装置包括:检测LiB3的电压的电压传感器SN1、检测LiB3的电流的电流传感器SN2以及控制LiB3的充放电的控制器30。控制器30根据从B-ISG1启动时起到经过了时间T1时的电压传感器SN1和电流传感器SN2的检测值、经过了比时间T1长的时间T2时的电压传感器SN1和电流传感器SN2的检测值,计算LiB3的正极和负极各自的容量劣化速率V1、V2,再根据对正极和负极各自的容量劣化速率V1、V2与正极和负极各自的判断基准值S1、S2的比较结果限制LiB3的充放电。
根据该构成方式,是根据正极和负极各自的容量劣化速率控制LiB3的充放电的,故能够进行很适合正极和负极的容量劣化彼此独立发展这样的LiB3实体的充放电控制,从而能够推迟LiB3的容量劣化的发展,延长可使用时间。
(6)变形例
在上述实施方式中,以将这里所公开的技术应用到装载有汽油发动机的车辆上的情况为例做了说明,但这里所公开的技术当然还能够应用到装载了汽油发动机以外的发动机(例如柴油发动机)的车辆上。
在时刻P以后的时间内由正极容量的剩余容量决定LiB3整体的剩余容量。因此,在时刻P以后的时间内,可以省去步骤S7、步骤S8,让控制器30仅根据对正极的容量劣化速率V1与其判断基准值S1的比较结果限制LiB3的充放电。
-产业实用性-
综上所述,这里所公开的技术作为锂离子电池充放电控制装置很有用。
-符号说明-
1 B-ISG(发动机起动机)
3 LiB(锂离子电池)
SN1 电压传感器
SN2 电流传感器
30 控制器(控制部)

Claims (6)

1.一种锂离子电池充放电控制装置,其对启动发动机起动机的锂离子电池的充放电进行控制,其特征在于:
该锂离子电池充放电控制装置包括:检测所述锂离子电池的电压的电压传感器、检测所述锂离子电池的电流的电流传感器以及对所述锂离子电池的充放电进行控制的控制部,
所述控制部根据从所述发动机起动机启动时起经过了第一时间时的所述电压传感器和所述电流传感器的检测值和经过了比所述第一时间长的第二时间时的所述电压传感器和所述电流传感器的检测值,计算所述锂离子电池的正极和负极各自的容量劣化速率,
当算出的正极的容量劣化速率比正极的判断基准值大或算出的负极的容量劣化速率比负极的判断基准值大时,所述控制部限制所述锂离子电池的充放电,
另一方面,当算出的正极的容量劣化速率比正极的判断基准值小且算出的负极的容量劣化速率比负极的判断基准值小时,所述控制部不限制所述锂离子电池的充放电。
2.根据权利要求1所述的锂离子电池充放电控制装置,其特征在于:
所述锂离子电池的所述正极和所述负极中之一方即第一电极的初始容量比所述正极和所述负极中之另一方即第二电极的初始容量大,两电极的容量劣化随着使用彼此独立发展下去,从开始使用时起到规定时间过后,所述第一电极和所述第二电极的剩余容量反过来,所述第一电极的剩余容量比所述第二电极的剩余容量小,
所述控制部在所述规定时间内使用彼此不同的值作为所述正极和所述负极各自的判断基准值。
3.根据权利要求2所述的锂离子电池充放电控制装置,其特征在于:
所述控制部在所述规定时间后,使用所述第一电极的判断基准值作为所述正极和所述负极各自的判断基准值。
4.根据权利要求2所述的锂离子电池充放电控制装置,其特征在于:
所述第一电极在所述规定时间内的判断基准值被设定为比在所述规定时间后的判断基准值低。
5.根据权利要求4所述的锂离子电池充放电控制装置,其特征在于:
在所述规定时间内所述第一电极的判断基准值朝着所述规定时间后的判断基准值逐渐增大。
6.根据权利要求2所述的锂离子电池充放电控制装置,其特征在于:
所述控制部在所述规定时间后仅根据所述第一电极的容量劣化速率与所述第一电极的判断基准值的比较结果限制所述锂离子电池的充放电。
CN201680049378.8A 2015-12-25 2016-12-05 锂离子电池充放电控制装置 Active CN108475829B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015254578A JP6183446B2 (ja) 2015-12-25 2015-12-25 リチウムイオン電池充放電制御装置
JP2015-254578 2015-12-25
PCT/JP2016/086051 WO2017110436A1 (ja) 2015-12-25 2016-12-05 リチウムイオン電池充放電制御装置

Publications (2)

Publication Number Publication Date
CN108475829A CN108475829A (zh) 2018-08-31
CN108475829B true CN108475829B (zh) 2021-03-16

Family

ID=59090054

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680049378.8A Active CN108475829B (zh) 2015-12-25 2016-12-05 锂离子电池充放电控制装置

Country Status (5)

Country Link
US (1) US10930982B2 (zh)
JP (1) JP6183446B2 (zh)
CN (1) CN108475829B (zh)
DE (1) DE112016004024T5 (zh)
WO (1) WO2017110436A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6311746B2 (ja) * 2016-06-21 2018-04-18 マツダ株式会社 リチウムイオン電池の診断装置及び制御装置
JP6628699B2 (ja) * 2016-08-02 2020-01-15 株式会社デンソーテン 給電制御装置および給電制御システム
JP7115035B2 (ja) * 2018-05-25 2022-08-09 株式会社デンソー 電池寿命推定装置
CN109591646B (zh) * 2018-12-19 2020-05-29 国网江苏省电力有限公司 适用于lcl/lcc拓扑无线充电系统的车载端并联保护电路
KR20210074001A (ko) * 2019-12-11 2021-06-21 주식회사 엘지에너지솔루션 전극의 상대적 퇴화도를 이용한 이차 전지의 동작 제어 장치 및 방법
CN113495212A (zh) * 2020-03-18 2021-10-12 北京好风光储能技术有限公司 一种可维护再生电池的维护再生次数及循环寿命估测方法
CN112572229A (zh) * 2020-10-29 2021-03-30 广州小鹏自动驾驶科技有限公司 一种充电限值的调节方法和装置
JP7136870B2 (ja) * 2020-11-18 2022-09-13 矢崎総業株式会社 電源制御装置
JP7136871B2 (ja) * 2020-11-18 2022-09-13 矢崎総業株式会社 電源制御装置
CN113183763B (zh) * 2021-05-28 2022-01-18 兰州石化职业技术学院 一种智能网联汽车的控制装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007323999A (ja) * 2006-06-01 2007-12-13 Fuji Heavy Ind Ltd 自動車のバッテリ制御装置
WO2012073997A1 (ja) * 2010-11-30 2012-06-07 本田技研工業株式会社 2次電池の劣化推定装置

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07128416A (ja) * 1993-11-04 1995-05-19 Mitsubishi Motors Corp 電気自動車用バッテリ残存容量計
EP1923710B1 (en) * 1999-09-09 2010-10-27 Toyota Jidosha Kabushiki Kaisha Battery capacity measuring and remaining capacity calculating system
JP5050325B2 (ja) * 2005-07-12 2012-10-17 日産自動車株式会社 組電池用制御装置
KR100816592B1 (ko) * 2006-03-24 2008-03-24 마쯔시다덴기산교 가부시키가이샤 비수전해질 2차전지
JP2008192608A (ja) * 2007-01-11 2008-08-21 Matsushita Electric Ind Co Ltd リチウム二次電池
JP4968088B2 (ja) * 2008-01-24 2012-07-04 トヨタ自動車株式会社 電池システム、車両、電池搭載機器
US9293773B2 (en) * 2008-04-08 2016-03-22 California Institute Of Technology Electrolytes for wide operating temperature lithium-ion cells
US8053131B2 (en) * 2008-08-14 2011-11-08 Hyundai Motor Company Apparatus and method for determining deterioration of a fuel cell and method for preventing deterioration of the same
JP5044511B2 (ja) * 2008-09-03 2012-10-10 トヨタ自動車株式会社 リチウムイオン電池の劣化判定方法、リチウムイオン電池の制御方法、リチウムイオン電池の劣化判定装置、リチウムイオン電池の制御装置及び車両
JP5656415B2 (ja) * 2009-03-26 2015-01-21 プライムアースEvエナジー株式会社 二次電池の状態判定装置及び制御装置
JP4772137B2 (ja) * 2009-06-02 2011-09-14 トヨタ自動車株式会社 バッテリ使用機器の制御装置
JP4923116B2 (ja) * 2010-01-29 2012-04-25 株式会社日立製作所 二次電池システム
JP5537236B2 (ja) * 2010-04-13 2014-07-02 トヨタ自動車株式会社 リチウムイオン二次電池の劣化判定装置および劣化判定方法
JP2011257219A (ja) * 2010-06-08 2011-12-22 Nissan Motor Co Ltd 二次電池の内部抵抗又は開放電圧を演算する演算装置
JP5293827B2 (ja) * 2010-09-27 2013-09-18 トヨタ自動車株式会社 電池制御システム
WO2012124244A1 (ja) * 2011-03-16 2012-09-20 パナソニック株式会社 リチウム二次電池の充放電方法および充放電システム
WO2013018143A1 (ja) * 2011-08-03 2013-02-07 トヨタ自動車株式会社 二次電池の劣化状態推定装置および劣化状態推定方法
JP5850492B2 (ja) * 2011-10-13 2016-02-03 学校法人早稲田大学 電池システムおよび電池の評価方法
WO2014046179A1 (ja) * 2012-09-20 2014-03-27 積水化学工業株式会社 蓄電池運転制御装置、蓄電池運転制御方法及びプログラム
JP2014190763A (ja) * 2013-03-26 2014-10-06 Toshiba Corp 電池寿命推定方法及び電池寿命推定装置
US10483779B2 (en) * 2013-09-25 2019-11-19 Hitachi, Ltd. Status determining method for secondary battery, status determining apparatus for secondary battery, secondary battery system, and charge/discharge control apparatus having status determining apparatus
WO2015107687A1 (ja) * 2014-01-20 2015-07-23 日立オートモティブシステムズ株式会社 電源制御システム、電源制御装置及び方法
JP2016081579A (ja) * 2014-10-10 2016-05-16 株式会社日立製作所 二次電池システム
JP6294207B2 (ja) * 2014-10-17 2018-03-14 株式会社日立製作所 二次電池の制御方法
JP6330639B2 (ja) * 2014-12-01 2018-05-30 トヨタ自動車株式会社 蓄電システムおよびその制御方法
JP6749080B2 (ja) * 2015-09-09 2020-09-02 株式会社日立製作所 蓄電システム、二次電池の制御システム及び二次電池の制御方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007323999A (ja) * 2006-06-01 2007-12-13 Fuji Heavy Ind Ltd 自動車のバッテリ制御装置
WO2012073997A1 (ja) * 2010-11-30 2012-06-07 本田技研工業株式会社 2次電池の劣化推定装置

Also Published As

Publication number Publication date
JP6183446B2 (ja) 2017-08-23
US10930982B2 (en) 2021-02-23
US20180261890A1 (en) 2018-09-13
JP2017118780A (ja) 2017-06-29
WO2017110436A1 (ja) 2017-06-29
DE112016004024T5 (de) 2018-05-17
CN108475829A (zh) 2018-08-31

Similar Documents

Publication Publication Date Title
CN108475829B (zh) 锂离子电池充放电控制装置
CN108431616B (zh) 锂离子电池剩余容量预测装置
RU2592468C1 (ru) Устройство управления подачей энергии
JP5288170B2 (ja) バッテリの昇温制御装置
JP6311746B2 (ja) リチウムイオン電池の診断装置及び制御装置
JP6011135B2 (ja) 電源システム
JP2016028543A (ja) 電源装置
JP6323501B2 (ja) リチウムイオン電池の診断装置
JP2004194364A (ja) 電源装置
WO2012101667A1 (ja) 蓄電システム
WO2014167914A1 (ja) バッテリ充電システム及びバッテリ充電方法
WO2017008846A1 (en) A method and system for balancing a battery pack
WO2014087442A1 (ja) 蓄電システム
US10498154B2 (en) Electric power system
JP2015217859A (ja) 電源制御装置
JP6136792B2 (ja) 車両用電源装置
US10611360B2 (en) Electric power source system
JP4871180B2 (ja) 蓄電デバイスの制御装置
JP6079725B2 (ja) 車両用電源制御装置
JP6777588B2 (ja) 電池制御装置、および、電池システム
JP2016037232A (ja) 車両用電源制御装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant