JP6011135B2 - 電源システム - Google Patents

電源システム Download PDF

Info

Publication number
JP6011135B2
JP6011135B2 JP2012176991A JP2012176991A JP6011135B2 JP 6011135 B2 JP6011135 B2 JP 6011135B2 JP 2012176991 A JP2012176991 A JP 2012176991A JP 2012176991 A JP2012176991 A JP 2012176991A JP 6011135 B2 JP6011135 B2 JP 6011135B2
Authority
JP
Japan
Prior art keywords
storage battery
internal resistance
lithium ion
voltage
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012176991A
Other languages
English (en)
Other versions
JP2014035283A (ja
Inventor
大和 宇都宮
大和 宇都宮
博志 田村
博志 田村
友樹 長井
友樹 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012176991A priority Critical patent/JP6011135B2/ja
Publication of JP2014035283A publication Critical patent/JP2014035283A/ja
Application granted granted Critical
Publication of JP6011135B2 publication Critical patent/JP6011135B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

本発明は、蓄電池を備え、その蓄電池の残存容量を算出する電源システムに関する。
充放電可能な蓄電池を備える電源システムでは、蓄電池を効率的に充電することが求められる。この場合、蓄電池に流れる電流及び蓄電池の出力電圧を検出し、その検出結果を用いて蓄電池の充電状態である残存容量(SOC:State of Charge)を算出するとともに、そのSOCに基づいて電流を制御することが実施されている。また、蓄電池は過充電や過放電により劣化する。このため、SOCに基づいて電流を制御して、SOCを所定の範囲内に制御することが望ましい。そこで、SOCを正確に算出されることが求められている。
SOCは、充放電がなされていない状態での蓄電池の出力電圧(開放電圧)に基づいて算出することができる。ただし、充電又は放電により蓄電池に電流が流れている場合であっても、蓄電池の内部抵抗、蓄電池に流れる電流、及び蓄電池の出力電圧に基づいて蓄電池の開放電圧が算出可能であり、開放電圧が算出できれば、SOCの算出も可能となる。
ここで、充放電が行われている状態で開放電圧を算出するには、蓄電池の内部抵抗を正確に算出する必要があり、その内部抵抗の算出手法として、蓄電池の等価回路を用いたものが知られている。例えば、蓄電池の等価回路として、蓄電池の接続線による接触抵抗や電解溶の抵抗成分である抵抗成分Rs(内部インピーダンスの周波数に依存しない抵抗成分)と、電極界面の反応に起因する抵抗成分抵抗成分Rnと、容量成分Cとからなる回路を想定し、それらの抵抗成分Rs,Rnと容量成分Cとに基づいて蓄電池の内部抵抗を算出する技術が知られている(例えば特許文献1)。
特開2010−71703号公報
しかしながら、蓄電池においては、抵抗成分として上記の抵抗成分Rs,Rn以外に、拡散抵抗成分が含まれる。この場合、蓄電池の放電時間が長くなるほど、拡散抵抗成分の影響が顕著になり、内部抵抗の算出の精度が低下すると考えられる。そのため、上記のように抵抗成分Rs,Rnと容量成分Cとからなる等価回路に基づいて内部抵抗を算出する技術では、蓄電池の開放電圧を正確に算出できず、ひいてはSOCを精度良く算出することができないといった不都合が生じる。
本発明は、上記課題を解決するためになされたものであり、蓄電池の残存容量を算出する電源システムにおいて、正確に残存容量を算出することを目的とする。
以下、上記課題を解決するための手段、及びその作用効果について記載する。
本構成は、蓄電池(30)と、前記蓄電池の出力電圧を検出する電圧検出手段(70)と、前記蓄電池から出力される出力電流を検出する電流検出手段(70)とを備え、前記蓄電池の充電と放電とが繰り返し実施される電源システムである。
そして、前記蓄電池が放電を開始してから放電を継続している放電継続時間に基づいて、前記蓄電池の内部抵抗を算出する内部抵抗算出手段(70)と、前記出力電圧、前記出力電流、および、前記内部抵抗に基づいて前記蓄電池の開放電圧を算出し、算出された開放電圧に基づいて前記残存容量を算出する残存容量算出手段(70)とを備えることを特徴とする。
蓄電池の内部抵抗の拡散抵抗成分は、時間変化しない抵抗成分と異なり、放電継続時間に応じて変化し、その抵抗値は、放電継続時間の長さに応じて増加する。上記構成によれば、放電継続時間に基づいて内部抵抗を算出することで、その拡散抵抗成分の影響を考慮した内部抵抗値を算出することができる。この算出された内部抵抗に基づいて開放電圧を算出し、その開放電圧に基づいて残存容量を算出することで、正確に残存容量を算出することができる。
本実施形態における電源システムの概略を示す構成図。 リチウムイオン蓄電池の等価回路図。 リチウムイオン蓄電池の内部抵抗のナイキスト線図。 リチウムイオン蓄電池の出力電流とSOCとの時間変化を示す図。 放電継続時間および電池温度と内部抵抗との関係を示すマップ。 残存容量算出処理の手順を示すフローチャート。
以下、本発明を具体化した各実施形態を図面に基づいて説明する。本実施形態の電源システムは車両に搭載される車載電源システムであり、車両は、エンジン(内燃機関)を駆動源として走行するものである。エンジンの始動時にはスタータモータの駆動によりエンジンに初期回転が付与されるものとなっている。
図1に示すように、本電源システムは、オルタネータ10(発電機)、第1蓄電池としての鉛蓄電池20、第2蓄電池としてのリチウムイオン蓄電池30、各種の電気負荷41,42,43、接続スイッチとしてのMOSスイッチ50及び蓄電池スイッチとしてのSMRスイッチ60を備えている。鉛蓄電池20、リチウムイオン蓄電池30及び電気負荷41〜43は、接続線としての給電線15によりオルタネータ10に対して並列に電気接続されている。この給電線15により、上記の各電気要素について相互の給電経路が形成されている。
鉛蓄電池20は周知の汎用蓄電池である。これに対し、リチウムイオン蓄電池30は、鉛蓄電池20に比べて充放電のエネルギー効率、出力密度、及びエネルギ密度の高い高密度蓄電池である。リチウムイオン蓄電池30は、複数の単電池を直列に接続してなる組電池により構成されている。なお、鉛蓄電池20の蓄電容量は、リチウムイオン蓄電池30の蓄電容量よりも大きく設定されている。
MOSスイッチ50は、MOSFETからなる半導体スイッチであり、オルタネータ10及び鉛蓄電池20と、リチウムイオン蓄電池30との間に設けられている。MOSスイッチ50は、オルタネータ10及び鉛蓄電池20に対するリチウムイオン蓄電池30の導通(オン)と遮断(オフ)を切り替えるスイッチとして機能する。
MOSスイッチ50のオン/オフは、ECU70(電子制御装置)により制御される。つまり、MOSスイッチ50のオン作動(導通作動)とオフ作動(遮断作動)との切替はECU70により実施される。
また、SMRスイッチ60は、MOSスイッチ50と同様に、MOSFETからなる半導体スイッチにより構成されており、MOSスイッチ50及び電気負荷43の接続点(図のX)とリチウムイオン蓄電池30との間に設けられている。SMRスイッチ60は、MOSスイッチ50及び電気負荷43の接続点に対するリチウムイオン蓄電池30の導通及び遮断を切り替えるスイッチとして機能する。
SMRスイッチ60のオン作動(導通作動)とオフ作動(遮断作動)との切替はECU70により実施される。このSMRスイッチ60は非常時用の開閉手段でもあり、通常時には、ECU70からオン信号が出力されることでオン状態に保持される。そして、以下に例示する非常時に、オン信号の出力が停止されてSMRスイッチ60がオフ作動される。このSMRスイッチ60のオフ作動により、リチウムイオン蓄電池30の過充電及び過放電の回避が図られている。
例えば、オルタネータ10に設けられたレギュレータが故障して設定電圧Vregが異常に高くなる場合には、リチウムイオン蓄電池30が過充電の状態になることが懸念される。この場合にはSMRスイッチ60をオフ作動させる。また、オルタネータ10の故障やMOSスイッチ50の故障によりリチウムイオン蓄電池30への充電ができなくなる場合には、リチウムイオン蓄電池30が過放電になることが懸念される。この場合にもSMRスイッチ60をオフ作動させる。
なお、SMRスイッチ60をノーマリオープン式の電磁リレーを用いて構成してもよい。この場合、ECU70が故障してSMRスイッチ60の作動を制御できなくなったとしても、SMRスイッチ60が自動的に開作動し、導通が遮断される。
リチウムイオン蓄電池30と、スイッチ50,60と、ECU70とは筐体(収容ケース)に収容されることで一体化され、電池ユニットUとして構成されている。電池ユニットU内のECU70は、リチウムイオン蓄電池30の出力電流、出力電圧、及び、温度を検出する。また、ECU70は、電池ユニット外のECU80(電子制御装置)に接続されている。つまり、これらECU70,80は、LIN等の通信ネットワークにより接続されて相互に通信可能となっており、各ECU70,80に記憶される各種データが互いに共有できるものとなっている。
電気負荷41〜43のうち符号43に示す負荷は、供給電力の電圧が概ね一定であるか、または電圧変動が所定範囲内であり安定していることが要求される定電圧要求電気負荷であり、MOSスイッチ50に対してリチウムイオン蓄電池30の側に電気接続されている。これにより、定電圧要求電気負荷である電気負荷43への電力供給は、主にリチウムイオン蓄電池30が分担することとなる。また、電気負荷43は、消費電力の変動が少なく、電気負荷43に供給される電流は概ね一定であるか、または電流変動が所定範囲内であり安定している。
電気負荷43の具体例としてはナビゲーション装置やオーディオ装置が挙げられる。例えば、供給電力の電圧が一定ではなく大きく変動している場合、或いは前記所定範囲を超えて大きく変動している場合には、電圧が瞬時的に最低動作電圧よりも低下して、ナビゲーション装置等の作動がリセットする不具合が生じる。そこで、電気負荷43へ供給される電力は、電圧が最低動作電圧よりも低下することのない一定の値に安定していることが要求される。
また、電気負荷41〜43のうち符号41に示す負荷は、エンジンを始動させるスタータモータであり、符号42に示す負荷は、電気負荷43(定電圧要求電気負荷)及びスタータ41以外の一般的な電気負荷である。電気負荷42の具体例としてはヘッドライト、フロントウインドシールド等のワイパ、空調装置の送風ファン、リヤウインドシールドのデフロスタ用ヒータ等が挙げられる。また、電気負荷42は、パワーステアリングや、パワーウィンドウなどの所定の駆動条件が成立した場合に駆動する駆動負荷を含む。これらのスタータ41及び電気負荷42は、MOSスイッチ50に対して鉛蓄電池20の側に電気接続されている。これにより、スタータ41及び電気負荷42への電力供給は主に鉛蓄電池20が分担することとなる。
オルタネータ10は、エンジンのクランク軸(出力軸)の回転エネルギにより発電するものである。オルタネータ10の構成等は周知であるため、ここでは図示を省略し、簡単に説明する。オルタネータ10のロータがクランク軸により回転すると、ロータコイルに流れる励磁電流に応じてステータコイルに交流電流が誘起され、整流器により直流電流に変換される。そして、ロータコイルに流れる励磁電流をレギュレータが調整することで、発電された直流電流の電圧を設定電圧Vregとなるよう調整する。オルタネータ10のレギュレータに対する制御はECU80により実施される。
オルタネータ10で発電した電力は、各種電気負荷41〜43へ供給されるとともに、鉛蓄電池20及びリチウムイオン蓄電池30へ供給される。エンジンの駆動が停止してオルタネータ10で発電が実施されていない場合には、鉛蓄電池20及びリチウムイオン蓄電池30から電気負荷41〜43へ電力供給される。鉛蓄電池20及びリチウムイオン蓄電池30から電気負荷41〜43への放電量、及びオルタネータ10から各蓄電池20,30への充電量は、各蓄電池20,30のSOC(State of charge:満充電時の充電量に対する実際の充電量の割合)が過充放電とならない範囲(適正範囲)となるよう制御される。つまり、上記のとおり過剰な充放電とならないように、ECU80により設定電圧Vregが調整されるとともに、ECU70によりMOSスイッチ50の作動が制御されるようになっている。
また、本実施形態では、車両の回生エネルギによりオルタネータ10を発電させて両蓄電池20,30(主にはリチウムイオン蓄電池30)に充電させる減速回生を行っている。この減速回生は、車両が減速状態であること、エンジンへの燃料噴射をカットしていること等の条件が成立した時に実施される。
ここで、両蓄電池20,30は並列接続されているため、オルタネータ10により充電を実施する際には、MOSスイッチ50とSMRスイッチ60とをオン作動させていれば、端子電圧の低い側の蓄電池に対してオルタネータ10の起電流が流れ込むこととなる。一方、電気負荷42,43へ電力供給(放電)する際には、非発電時にMOSスイッチ50とSMRスイッチ60とをオン作動させていれば、端子電圧の高い側の蓄電池から電気負荷へ放電がなされることとなる。
ちなみに、回生充電時には、リチウムイオン蓄電池30の端子電圧が鉛蓄電池20の端子電圧より低くなる機会が多くなるようにして、鉛蓄電池20よりも優先してリチウムイオン蓄電池30に対する充電が実施されるようになっている。この設定は、両蓄電池20,30の開放電圧及び内部抵抗値を設定することで実現可能であり、開放電圧の設定は、リチウムイオン蓄電池30の正極活物質、負極活物質及び電解液を選定することで実現可能である。
本実施形態の車両は、所定の自動停止条件を満たした場合にエンジンを自動停止させ、エンジンが自動停止された状態で所定の再始動条件を満たした場合にエンジンを自動で再始動させる、アイドリングストップ機能を有するものであり、ECU80によりアイドリングストップ制御が実施される。このアイドリングストップ制御においてエンジンの自動停止時には、エンジン回転速度の減少過程でリチウムイオン蓄電池30の充電(回生充電)を行うべく、ECU70によりMOSスイッチ50がオン(導通)状態に操作される。また、エンジンの再始動時には、鉛蓄電池20とリチウムイオン蓄電池30とを電気的に切り離した状態で、鉛蓄電池20によりスタータ(電気負荷41)を駆動させるべく、ECU70によりMOSスイッチ50がオフ(遮断)状態に操作される。
また、回生充電時以外の車両走行時において、ECU70により、MOSスイッチ50がオフ状態、SMRスイッチ60がオン状態に操作される。オルタネータ10及び鉛蓄電池20と電気負荷43との接続が遮断され、リチウムイオン蓄電池30と電気負荷43との接続が導通状態とされるため、リチウムイオン蓄電池30が単独で電気負荷43に対して電力供給がなされる。これにより、回生発電時には、その発電電力をリチウムイオン蓄電池30に積極的に充電させることができる。リチウムイオン蓄電池30は、鉛蓄電池20と比べて、充放電時のエネルギ効率が高いため、電源システム全体としての充放電効率を向上させることができる。
蓄電池は、その蓄電池固有の開放電圧−SOC特性を備えている。すなわち、蓄電池の開放電圧を検出し、その検出された開放電圧に基づき開放電圧−SOC特性マップを用いて、SOCを算出することができる。ここで、蓄電池の開放電圧は、蓄電池に電流が流れておらず蓄電池における充電・放電が生じていない状態における蓄電池の出力電圧である。このため、蓄電池から電気負荷に対して充電または給電を行うと同時に、蓄電池の開放電圧を端子間電圧から直接検出することはできない。
そこで、蓄電池のSOCを算出する方法として以下の方法が用いられる。第1の方法としては、最初に、蓄電池から電気負荷に対して給電がされていない状態で蓄電池の開放電圧を検出し、その開放電圧に基づいて蓄電池のSOCを算出する。蓄電池から電気負荷に対する給電が開始された後は、蓄電池の出力電流の時間積分を算出することで、SOCの変化量を取得する。そして、開放電圧に基づいて算出されたSOCに出力電流の時間積分によって算出されたSOCの変化量を加算することで、蓄電池のSOCを算出する。この第1の方法によって算出されたSOCをSOC1とする。
また、第2の方法としては、蓄電池の内部抵抗に基づいて蓄電池の開放電圧を算出し、その開放電圧に基づいてSOCを算出する方法である。蓄電池の開放電圧(OCV:Open Cell Voltage)と、電気負荷への電力供給時の出力電圧(CCV:Close Cell Voltage)と、蓄電池の出力電流(IB)と、蓄電池の内部抵抗(Rbat)とは、OCV=CCV+IB×Rbatという関係を有する。このため、Rbatの値を取得できれば、RbatとCCVとIBとに基づいて、蓄電池のOCVを算出することが可能となり、そのOCVに基づいてSOCを算出することができる。この第2の方法によって算出されたSOCをSOC2とする。リチウムイオン蓄電池は、鉛蓄電池と比較して、放電に伴うOCVの変化量が大きい。このため、蓄電池の出力電流、出力電圧、内部抵抗に基づいてOCVを算出して、そのOCVに基づいてSOCを算出する第2の方法は、特にリチウムイオン蓄電池30において有効である。
本実施形態では、リチウムイオン蓄電池30について、上記2つの方法によってSOCを算出し、算出された2つのSOC(SOC1,SOC2)について重み付けを行って加算することで、SOCを算出する。
蓄電池の内部抵抗Rbatは、内部インピーダンスZの大きさ|Z|として表すことができる。図2に蓄電池の内部インピーダンスZの等価回路を表す。等価回路は、電池成分と、抵抗成分Rsと抵抗成分Rnと容量成分Cと、ワールブルグインピーダンスZwとを備える。電池成分に抵抗成分Rsが接続され、抵抗成分Rsに抵抗成分RnおよびワールブルグインピーダンスZwと容量成分Cとが並列に接続されている。抵抗成分Rsは、蓄電池の接続線による接触抵抗や、電解溶液中をイオンが通過するときの抵抗である。抵抗成分Rnは、電極界面の反応に起因する抵抗である。容量成分Cは、電極と電解溶液の界面に形成される電気二重層に起因する容量成分である。Zwは、電極内での拡散抵抗に起因するワールブルグインピーダンスである。
図3にリチウムイオン蓄電池30の内部インピーダンスZの周波数特性を表すナイキスト線図を示す。この周波数特性は、交流インピーダンス法によって測定することができる。交流インピーダンス法とは、解析対象の素子に対して周波数を変化させながら交流電圧を印加し、入力電圧に対する出力電流の大きさ、および、入力信号に対する出力信号の位相遅れを周波数毎に検出して解析を行う方法である。本実施形態では、ワールブルグインピーダンスZwを計測可能な領域を含む周波数域で周波数特性の測定が実施されている。
図に示す周波数f1以上の周波数領域においては、抵抗成分Rnと容量成分Cが支配的であり、周波数fが大きくなるほど、内部インピーダンスZはRsに近づく。周波数f1において、内部インピーダンスの実部Re(Z)は、Rs+Rnに近い値となる。周波数f1以下の周波数領域においては、ワールブルグインピーダンスZwによって、周波数fが低下すると、内部インピーダンスZの実部Re(Z)の大きさと、虚部Im(Z)の大きさとは、ともに大きくなる。
リチウムイオン蓄電池30は、充電状態から放電状態に切り替わった後、再び充電状態に戻るようになっている。ここで、リチウムイオン蓄電池30に流れる電流は、放電状態から充電状態に切り替わった後に、再度、充電状態から放電状態に切り替わる時点までを1周期とすれば、その1周期の逆数をその電流の周波数とみなすことができる。また、放電開始(T=0)から時刻(T=T0)までの間、リチウムイオン蓄電池30が一定値の電流を放電し続けている場合、すなわち、放電継続時間がT0である場合には、その電流の周波数fは、f=1/(4×T0)として求めることができる。
図4に使用時におけるリチウムイオン蓄電池30のSOCと充放電電流との時間変化を示す。放電時において、リチウムイオン蓄電池30は、一定電流が供給される電気負荷43に対して給電を行う。このため、リチウムイオン蓄電池30からは一定電流が放電される。また、放電は、充電に比べて長い時間で行われる。このため、放電時におけるリチウムイオン蓄電池30に流れる電流の周波数は図3のf1に比べて低い値となり、放電時においては、内部インピーダンスZにおけるワールブルグインピーダンスZwの影響が大きくなることとなる。
図5に放電継続時間および電池温度とリチウムイオン蓄電池30の内部抵抗Rbat、すなわち、内部インピーダンスの大きさ|Z|との関係を示す。放電継続時間T=0(sec)近くで、|Z|は急速に立ち上がり、以後、放電継続時間が増加するほど、|Z|が緩やかに増加する。また、温度が高いほど、|Z|は低くなる。通常時において、リチウムイオン蓄電池30は、放電状態を数十秒以上継続するため、放電継続時間が増加するほど、|Z|は緩やかに増加することとなる。
図6は、リチウムイオン蓄電池30の残存容量算出処理を示すフローチャートであり、本処理は、ECU70によって所定時間周期で行われる。
図6のステップS11では、リチウムイオン蓄電池30の出力電流IBと、出力電圧VBとを検出する。ステップS12では、SMRスイッチ60のオン・オフ状態に基づいて、リチウムイオン蓄電池30が開放状態でないか否かを判断する。SMRスイッチ60がオフ状態であり、リチウムイオン蓄電池30が開放状態である場合(S12:NO)、ステップS13では、リチウムイオン蓄電池30の出力電圧VBが開放電圧OCVであるため、ステップS11で検出した出力電圧VB、すなわち、開放電圧OCVに基づいてSOCを算出して処理を終了する。
SMRスイッチ60がオン状態であり、リチウムイオン蓄電池30が充電状態または放電状態の場合(S12:YES)、ステップS14では、リチウムイオン蓄電池30が開放状態から充放電状態に切り替わった後に、リチウムイオン蓄電池30に流れた電流の積算値を算出する。ステップS15では、ステップS13において算出したSOCと、ステップS14において算出した電流の積算値に基づいてリチウムイオン蓄電池30のSOC(SOC1)を算出する。
ステップS16では、電流IBに基づいて、リチウムイオン蓄電池30が放電状態であるか否かを判断する。リチウムイオン蓄電池30が充電状態である場合(S16:NO)、ステップS24において、SOC1をSOCとして、処理を終了する。リチウムイオン蓄電池30が放電状態である場合(S16:YES)、ステップS17では、開放状態または充電状態から放電状態に切り替わってから現在までの継続時間である放電継続時間を算出する。
ステップS18では、リチウムイオン蓄電池30の電池温度、および、放電開始前のリチウムイオン蓄電池30の状態に基づいて、待ち時間を設定する。待ち時間とは、放電が開始されてから内部抵抗の算出を実行するまでに待機すべき時間である。待ち時間経過後に内部抵抗を算出することで、出力電圧に対する分極現象の影響を抑制することができる。電池温度が低いほど、待ち時間は短くなるように設定する。また、リチウムイオン蓄電池30が放電開始前に充電状態であった場合には、開放状態であった場合と比較して、待ち時間を長くなるように設定する。
ステップS19では、放電継続時間と待ち時間とを比較する。放電継続時間が待ち時間に満たない場合(S19:NO)、ステップS24において、SOC1をSOCとして、処理を終了する。放電経過時間が待ち時間以上の場合(S19:YES)、ステップS20では、図5に示すマップを用い、放電経過時間及び電池温度に基づいて、リチウムイオン蓄電池30の内部抵抗Rbat=|Z|を算出する。
ステップS21では、関係式「OCV=VB−IB×Rbat」を用い、リチウムイオン蓄電池30の出力電流IB、出力電圧VB、内部抵抗Rbatに基づいて、開放電圧OCVを算出する。ステップS22では、ステップS21において算出した開放電圧OCVに基づいてSOC(SOC2)を算出する。ステップS23では、ステップS15において算出したSOC1に対して、ステップS22において算出したSOC2を重み付けを行い加算することで、SOC1を補正する。具体的には,重み付けの係数をk(0≦k≦1)として、式「(1−k)×SOC1+k×SOC2」によって算出された値を新たなSOCとして、処理を終了する。
以上詳述した本実施形態によれば、以下の優れた効果が得られる。
(1)放電継続時間に基づいてリチウムイオン蓄電池30の内部抵抗を算出することで、その拡散抵抗成分の影響を考慮した抵抗値を算出することができる。この算出された内部抵抗に基づいて開放電圧を算出し、その開放電圧に基づいたSOCを算出することで、正確に残存容量を算出することができる。
(2)リチウムイオン蓄電池30の内部抵抗に電流が流れることにより生じる電圧降下・電圧上昇の他に、分極現象に伴う起電力の変化によっても、リチウムイオン蓄電池30の出力電圧は変化する。このため、分極現象の影響が大きい場合に、蓄電池の出力電圧から開放電圧を算出すると実際の開放電圧との誤差が大きくなる。ここで、蓄電池の分極の影響は、蓄電池が放電状態、または、充電状態を所定の時間継続することで飽和する。このため、分極現象の影響を低減するために、放電が開始されてから所定の待ち時間が経過するまで、内部抵抗に基づいた残存容量の算出を行わないことで、分極現象の影響を抑制することができる。
(3)充電状態から放電状態に切り替わったリチウムイオン蓄電池30は、開放状態から放電状態に切り替わった蓄電池と比べて、分極現象による影響が大きい。このため、充電状態から放電状態に切り替わった場合に、開放状態から放電状態に切り替わった場合に比べて、内部抵抗に基づいた残存容量の算出を開始するまでの待ち時間を長くすることで、分極の影響が緩和されるまでの時間を確保するとともに、内部抵抗に基づいた残存容量の算出を行う機会を確保することができる。
(4)分極による影響が飽和するまでの時間は、温度によっても変化する。このため、リチウムイオン蓄電池30の電池温度に基づいて、待ち時間を設定することで、分極の影響が緩和されるまでの時間を確保するとともに、内部抵抗に基づいた残存容量の算出を行う機会を確保することができる。
(5)放電継続時間とリチウムイオン蓄電池30の内部抵抗との関係は、交流インピーダンス測定法によって予め測定することができる。具体的には、まず、交流インピーダンス法により、リチウムイオン蓄電池30の拡散抵抗(ワールブルグインピーダンスZw)を計測可能な領域を含む周波数域で、各周波数におけるリチウムイオン蓄電池30の内部抵抗の抵抗値を取得する。ここで、交流インピーダンス法で取得される、ある周期の交流波を矩形波として考えた場合、ある周期の矩形派の内部抵抗の平均値は、その周期の1/4の放電継続時間のときの内部抵抗と等しいと考えられる。よって交流インピーダンス法で取得される、ある周波数fの内部抵抗は、周波数の逆数から求まる周期T=1/fの1/4つまり、T/4(sec)のリチウムイオン蓄電池30の放電継続時間の内部抵抗と等しいと考えられる。交流インピーダンス法によって取得した、内部抵抗と周波数との対応と、周波数と放電継続時間との関係を用いれば、リチウムイオン蓄電池30の内部抵抗と放電継続時間とを対応づけるマップを予め取得することが可能となる。
(6)交流インピーダンス法で取得される、ある周波数fの内部抵抗と、周波数の逆数から求まる周期T=1/fの1/4つまり、T/4(sec)のリチウムイオン蓄電池30の放電継続時間の内部抵抗とが等しいという考えは、リチウムイオン蓄電池30から出力される電流の変動が小さいほど精度よく成り立つ。この点、本実施例では、リチウムイオン蓄電池30の給電対象を一定電流の給電を要求する電気負荷43としている。このため、リチウムイオン蓄電池30から出力される電流の変動が小さいため、リチウムイオン蓄電池30の放電継続時間からリチウムイオン蓄電池30の内部抵抗を精度よく算出することができる。
(他の実施形態)
上記実施形態を例えば次のように変更してもよい。
・図6に示す残存容量算出処理のステップS23において、SOC2をSOCとする処理を実施するようにしてもよい。これは、重み係数kをk=1にすることにも相当する。これによって、内部抵抗に基づき算出されたSOC(SOC2)が、電流積算値に基づき算出されたSOC(SOC1)と比べて精度が高い場合に、その精度の高いSOC2を用いて、リチウムイオン蓄電池30の制御をすることが可能となる。
・電池温度、および、リチウムイオン蓄電池30が放電状態に切り替わる前の状態に基づいて待ち時間を算出したが、これに換えて、待ち時間を所定の時間に設定してもよい。この場合の待ち時間は、電池温度が低く、かつ、リチウムイオン蓄電池30が充電状態から放電状態に切り替わった場合において、分極現象の影響を抑制できる程度に長く設定するとよい。
・放電継続時間と内部抵抗との関係は、シミュレーションによって求めてもよい。この場合、放電継続時間が長くなるほど、ワールブルグインピーダンスZwが大きくなることが考慮されて、放電継続時間と内部抵抗との関係が規定されるとよい。
30…リチウムイオン蓄電池、70…ECU。

Claims (4)

  1. 蓄電池(30)と、
    前記蓄電池の出力電圧を検出する電圧検出手段(70)と、
    前記蓄電池から出力される出力電流を検出する電流検出手段(70)と、を備え、前記蓄電池の充電と放電とが繰り返し実施される電源システムにおいて、
    前記蓄電池が放電を開始してから放電を継続している放電継続時間に基づいて、前記蓄電池の内部抵抗を算出する内部抵抗算出手段(70)と、
    前記出力電圧、前記出力電流、および、前記内部抵抗算出手段によって算出された前記内部抵抗に基づいて前記蓄電池の開放電圧を算出し、算出された開放電圧に基づいて前記蓄電池の残存容量を算出する残存容量算出手段(70)とを備え
    前記蓄電池が放電を開始してから所定の待ち時間が経過するまで、前記残存容量算出手段による前記残存容量の算出を行わず、さらに、前記蓄電池が充電状態から放電状態に切り替わった場合に、前記蓄電池が開放状態から放電状態に切り替わった場合と比較して、前記待ち時間を長く設定することを特徴とする電源システム。
  2. 前記蓄電池の電池温度を検出する温度検出手段(70)を備え、
    前記電池温度に基づいて、前記待ち時間を設定することを特徴とする請求項に記載の電源システム。
  3. 前記内部抵抗算出手段は、マップを用いて前記放電継続時間に基づいて前記内部抵抗を算出するものであり、
    交流インピーダンス測定法を用い、前記蓄電池の拡散抵抗を計測可能な領域を含む周波数域で、前記蓄電池から出力される出力電流の周波数と前記内部抵抗との対応づけを行い、前記周波数の逆数の四分の一を前記放電継続時間として前記周波数と前記放電継続時間との対応づけを行って、前記放電継続時間と前記内部抵抗とを対応づけた前記マップが予め設定されていることを特徴とする請求項1又は2に記載の電源システム。
  4. 前記蓄電池は、一定電流が供給されることで駆動される電気負荷(43)を給電対象としており、前記蓄電池の放電時には、当該蓄電池から前記電気負荷に対して一定電流が出力されることを特徴とする請求項に記載の電源システム。
JP2012176991A 2012-08-09 2012-08-09 電源システム Active JP6011135B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012176991A JP6011135B2 (ja) 2012-08-09 2012-08-09 電源システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012176991A JP6011135B2 (ja) 2012-08-09 2012-08-09 電源システム

Publications (2)

Publication Number Publication Date
JP2014035283A JP2014035283A (ja) 2014-02-24
JP6011135B2 true JP6011135B2 (ja) 2016-10-19

Family

ID=50284332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012176991A Active JP6011135B2 (ja) 2012-08-09 2012-08-09 電源システム

Country Status (1)

Country Link
JP (1) JP6011135B2 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6277864B2 (ja) * 2014-05-26 2018-02-14 株式会社デンソー 電池内部状態推定装置
JP6316690B2 (ja) * 2014-07-17 2018-04-25 日立オートモティブシステムズ株式会社 電池状態検知装置、二次電池システム、電池状態検知プログラム、電池状態検知方法
CN104777430B (zh) * 2015-04-30 2017-09-22 西安科技大学 开关电源失电及蓄电池充放电检测指示电路及其设计方法
JP6528598B2 (ja) * 2015-08-20 2019-06-12 株式会社デンソー 二次電池の拡散抵抗同定装置
JP6614007B2 (ja) * 2015-09-18 2019-12-04 住友電気工業株式会社 内部抵抗算出装置、コンピュータプログラム及び内部抵抗算出方法
WO2017047192A1 (ja) * 2015-09-18 2017-03-23 住友電気工業株式会社 内部抵抗算出装置、コンピュータプログラム及び内部抵抗算出方法
JP6493167B2 (ja) * 2015-11-11 2019-04-03 株式会社デンソー 電源システムの制御装置
JP6323441B2 (ja) * 2015-12-25 2018-05-16 マツダ株式会社 リチウムイオン電池残容量推定装置
JP6701938B2 (ja) * 2016-05-10 2020-05-27 住友電気工業株式会社 劣化判定装置、コンピュータプログラム及び劣化判定方法
JP6562015B2 (ja) * 2017-02-21 2019-08-21 トヨタ自動車株式会社 電源システム
JP6724822B2 (ja) * 2017-03-07 2020-07-15 トヨタ自動車株式会社 二次電池の内部抵抗算出方法
KR102452548B1 (ko) * 2017-04-18 2022-10-07 현대자동차주식회사 배터리 열화 상태 추정장치, 그를 포함한 시스템 및 그 방법
JP7042413B2 (ja) * 2018-08-22 2022-03-28 株式会社オートネットワーク技術研究所 内部抵抗検出装置及び電源装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0864224A (ja) * 1994-08-23 1996-03-08 Yamaha Motor Co Ltd 2次電池の構成方法
JP2002064946A (ja) * 2000-08-11 2002-02-28 Sony Corp 電源装置
JP2003068370A (ja) * 2001-08-28 2003-03-07 Toyota Motor Corp バッテリの充電状態検出装置
JP5040733B2 (ja) * 2008-03-05 2012-10-03 日産自動車株式会社 電池の充放電可能電力推定方法
US8975897B2 (en) * 2010-06-07 2015-03-10 Mitsubishi Electric Corporation State-of-charge estimating apparatus
JP2011257219A (ja) * 2010-06-08 2011-12-22 Nissan Motor Co Ltd 二次電池の内部抵抗又は開放電圧を演算する演算装置
JP5303528B2 (ja) * 2010-09-16 2013-10-02 カルソニックカンセイ株式会社 フィルタによるパラメータ推定装置

Also Published As

Publication number Publication date
JP2014035283A (ja) 2014-02-24

Similar Documents

Publication Publication Date Title
JP6011135B2 (ja) 電源システム
JP6384412B2 (ja) 電源装置
JP6380171B2 (ja) 電源システム
JP5811055B2 (ja) バッテリシステム制御装置
RU2592468C1 (ru) Устройство управления подачей энергии
CN108011433B (zh) 蓄电装置及其控制方法、蓄电装置监测用系统、存储介质
JP5846073B2 (ja) 電源システム
JP3931446B2 (ja) 組電池の充電状態調整装置
CN108475829B (zh) 锂离子电池充放电控制装置
US10677176B2 (en) Vehicle power system
JP6459913B2 (ja) 電源システムの制御装置
JP6493167B2 (ja) 電源システムの制御装置
JP2014034288A (ja) 車両用電源システム
WO2017043641A1 (ja) 電源装置
JP6406328B2 (ja) 電源装置及び電池ユニット
CN104827990A (zh) 车辆电池系统
JP6481483B2 (ja) 電源装置
JP2015217859A (ja) 電源制御装置
JP6468104B2 (ja) 電源システム
JP5796545B2 (ja) 電源システム
JP6488995B2 (ja) 車載電源システムの制御装置
CN107431370A (zh) 用于运行电池组单元的方法
JP2017079503A (ja) 電源装置
JP2020183161A (ja) 電源装置、電源システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160905

R151 Written notification of patent or utility model registration

Ref document number: 6011135

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250