CN108473732B - 高孔隙度微孔聚乙烯 - Google Patents

高孔隙度微孔聚乙烯 Download PDF

Info

Publication number
CN108473732B
CN108473732B CN201580084703.XA CN201580084703A CN108473732B CN 108473732 B CN108473732 B CN 108473732B CN 201580084703 A CN201580084703 A CN 201580084703A CN 108473732 B CN108473732 B CN 108473732B
Authority
CN
China
Prior art keywords
hdpe
peroxide
foaming
ldpe
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201580084703.XA
Other languages
English (en)
Other versions
CN108473732A (zh
Inventor
陈成
孙刚伟
M·埃斯吉尔
J·M·柯吉恩
杜哲
张建鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Global Technologies LLC
Original Assignee
Dow Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Global Technologies LLC filed Critical Dow Global Technologies LLC
Publication of CN108473732A publication Critical patent/CN108473732A/zh
Application granted granted Critical
Publication of CN108473732B publication Critical patent/CN108473732B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0023Use of organic additives containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/026Crosslinking before of after foaming
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/032Impregnation of a formed object with a gas
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/08Supercritical fluid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/044Micropores, i.e. average diameter being between 0,1 micrometer and 0,1 millimeter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2207/00Foams characterised by their intended use
    • C08J2207/06Electrical wire insulation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/14Applications used for foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/062HDPE
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2310/00Masterbatches
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Emergency Medicine (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一种制造泡沫组合物的方法,所述方法包含以下步骤:(A)形成包含高密度聚乙烯(HDPE)、低密度聚乙烯(LDPE)以及过氧化物的混合物;和(B)使所述(A)的混合物与二氧化碳(CO2)在大于或等于15兆帕(MPa)的压力下接触。在一个实施例中,所述过氧化物是DTAP。在一个实施例中,所述(A)的混合物还包含亲CO2化合物,如PDMS。

Description

高孔隙度微孔聚乙烯
技术领域
本发明涉及聚乙烯(PE)泡沫。一方面,本发明涉及可用作电信绝缘的PE泡沫,另一方面,本发明涉及包含PE泡沫的同轴电缆和射频电缆。
背景技术
由高发泡聚乙烯制成的同轴/射频电缆广泛用作天线馈电线、天线阵列布线、设备互连、移动通信系统、微波传输系统,广播传输系统以及其它通信系统。随着对高带宽需求的增加,电缆需要使用由聚合物树脂(例如聚烯烃)制成的高度发泡的电介质,所述聚合物树脂具有最小极性基团或极性添加剂且具有成本效益并具有良好的电特性。
通常,高频电缆由发泡绝缘体包围的内导体制成。用于绝缘的基础树脂通常是高密度聚乙烯(HDPE)、高压低密度聚乙烯(HPLDPE或简称LDPE)以及成核母料的混合物。一般来说,HDPE与LDPE的比率为70-80%HDPE/30-20%LDPE。成核母料通常以约1-3%的量加入,且通常也基于LDPE树脂。由于HDPE的分子结构中支化较少,HDPE的损耗因数(Df)低于LDPE,因此用于电缆绝缘的基础树脂通常绝大多数是HDPE。此外,这为泡沫提供了理想的机械性能,例如高抗压性。相反,LDPE由于其支化结构而增强了基础树脂的整体熔体强度。
在早期尝试中,发泡步骤通过将基础聚合物树脂与能够吹制所期望尺寸的闭孔的特定化学发泡剂混配来实施。对于典型的电线电缆注气发泡线,根据用户线路的不同,HDPE/LDPE(7/3)掺合物的孔隙度可达75-80%。然而,化学发泡方法只能达到较低的发泡水平且还存在聚合电介质材料捕获发泡剂残余物而损害损耗因数的不利因素。较低的发泡水平和发泡剂的残余物的存在导致更高的信号衰减,尤其是在频率范围的上限。
聚合物的物理发泡通常通过将发泡剂溶解到聚合物基质中来进行。随后,通过在结构中产生热力学不稳定性(例如,通过增加温度或降低压力)来快速降低发泡剂的溶解度,从而引起成核和泡沫生长。用于电缆绝缘的物理发泡的工业实践基于类似的概念,通过注入惰性气体(例如氮气)来吹制充气的膨胀的孔。添加成核剂是减小孔尺寸、增加细胞密度以及均匀孔分布的常用且有效的技术。
对于目前的氮气(N2)发泡方法,所得的孔隙度在50-80%范围内,相应地,当前PE泡沫的Df约为0.0002-0.00015(在2.47Ghz下),这稍微满足了当前高端电缆的要求。然而,对更高频率下降低的电缆衰减的绝缘需求仍未得到满足。提高电信电缆绝缘的膨胀率是降低Df的一种方式。孔隙度是对绝缘材料中的空隙或空的空间的量度,并且通常测量为空隙体积与泡沫总体积的比率。在N2发泡过程中试图获得更高的孔隙度常常导致泡沫孔塌陷和结构不均匀。无论是新的PE基础配方还是发泡方法的突破都是在电缆行业生产高孔隙度PE绝缘泡沫所需要的。
发明内容
在一个实施例中,本发明是一种用于制造泡沫组合物的方法,所述方法包含以下步骤:
(A)形成包含高密度聚乙烯(HDPE)、低密度聚乙烯(LDPE)以及过氧化物,例如过氧化二叔戊基(DTAP,CAS#10508-09-5)的混合物;和
(B)在大于或等于15兆帕(MPa)的压力下或在典型的挤出条件下将(A)的混合物与二氧化碳(CO2)接触。
在一个实施例中,(A)的混合物还包含亲CO2化合物,如聚二甲基硅氧烷(PDMS)。将亲CO2化合物引入到(A)的混合物中有利于二氧化碳在树脂掺合物中的溶解度,且这继而增加了泡沫的孔隙度(相对于类似制备地但不使用亲CO2化合物的泡沫)。
在一个实施例中,本发明是通过上述方法制备的泡沫组合物。
本发明泡沫具有高达85%孔隙度的高膨胀率。过氧化物以相对小的量使用,并且在一个实施例中,发泡步骤用超临界二氧化碳(ScCO2)进行。在一个实施例中,过氧化物改性的聚合物掺合物具有15×10-5的低Df值。
在一个实施例中,本发明方法产生适用于制造用于高频应用(大于3GHz)的电缆的泡沫组合物。通过本发明方法制备的泡沫(1)包含具有低Df值,例如约11×10-5的HDPE/LDPE掺合物,和(2)通过与过氧化物,例如DTAP的反应展现轻微交联。前者有利于具有低Df值的泡沫,后者有利于树脂的良好熔体强度而对损耗因数具有最小的负面影响,这((A)的混合物)继而进一步改善了泡沫的孔隙度。在本发明中,应用ScCO2发泡方法且在本发泡过程中使用纯CO2作为发泡剂。
附图说明
图1是实例中使用的分批发泡装置的示意图。
图2是用于计算实例中报道的某些组合物的Df和孔隙度的Df和孔隙度的理论估计的图。
图3是用于计算实例中所报告的某些泡沫的孔尺寸的一组扫描电子显微术(scanning electron microscopy,SEM)图像。
具体实施方式
定义
除非相反地陈述、由上下文暗示或在所属领域中惯用,否则所有份数和百分比都按重量计,并且所有测试方法都是截至本申请的申请日的现行方法。出于美国专利实践的目的,任何所参考的专利、专利申请或公开的内容都以全文引用的方式并入(或其等效美国版本如此以引用的方式并入),尤其在本领域中的定义(在不会与本公开具体提供的任何定义不一致的程度上)和常识的公开方面。
本文中公开的数值范围包括来自上限值和下限值、并包括上限值和下限值的所有的值。对于含有确切值的范围(例如1或2;或3到5;或6;或7),包括任何两个确切值之间的任何子范围(例如1到2;2到6;2.5到6.5;5到7;3到7;5到6等)。
“高压CO2”和类似术语是指在大于环境压力(>0.1MPa)的压力下的CO2,包括处于次临界或超临界状态的CO2。CO2的临界压力是7.4MPa。
高密度聚乙烯(HDPE)
“高密度聚乙烯”(或“HDPE”)是密度为至少0.94g/cc、或至少0.94g/cc到0.98g/cc的乙烯类聚合物。HDPE具有0.1克/10分钟到25克/10分钟的熔体指数。
HDPE可以包括乙烯和一种或多种C3-C20α烯烃共聚单体。共聚单体可为线性或支化的。合适的共聚单体的非限制性实例包括丙烯、1-丁烯、1-戊烯、4-甲基-1-戊烯、1-己烯以及1-辛烯。HDPE可以在浆料反应器、气相反应器或溶液反应器中,使用齐格勒-纳塔(Ziegler-Natta)催化剂、铬类催化剂、限定几何构型催化剂或茂金属催化剂制备。乙烯/C3-C20α烯烃共聚单体包括至少50重量%的其中聚合的乙烯,或至少70重量%、或至少80重量%、或至少85重量%,或至少90重量%、或至少95重量%的呈聚合形式的乙烯。
在一个实施例中,HDPE是密度为0.95g/cc至0.98g/cc并且熔体指数为0.1克/10分钟至10克/10分钟的乙烯/α-烯烃共聚物。在一个实施例中,HDPE的密度为0.960g/cc至0.980g/cc且熔体指数为0.1克/10分钟至10克/10分钟。
在一个实施例中,HDPE的密度为0.95g/cc或0.96g/cc到0.97g/cc且熔体指数为0.1克/10分钟到10克/10分钟。
在一个实施例中,HDPE的密度为0.96g/cc到0.98g/cc且熔体指数为1.0克/10分钟到10.0克/10分钟。
合适的HDPE的非限制性实例包括ELITE 5960G、HDPE KT 10000UE、HDPEKS10100UE以及HDPE 35057E,均可从美国密歇根州米德兰市的陶氏化学公司(The DowChemical Company Midland,Michigan,USA)获得;以及可从加拿大阿尔伯塔省卡尔加里(Calgary,Alberta,Canada)的Nova Chemicals Corporation获得的
Figure BDA0001665385610000041
低密度聚乙烯(LDPE)
LDPE树脂是本领域中熟知的,可商购获得,且通过包括但不限于以下的多种方法中的任何一种制备:溶液相、气相或浆料相以及高压管或高压釜;齐格勒-纳塔、茂金属或限定几何构型催化(constrained geometry catalyzed,CGC)。这些树脂的密度为0.915到0.925g/cm3且熔体指数(MI,I2)为0.15至50克每10分钟(克/10分钟)。聚乙烯可具有宽分子量分布,其特征为多分散性(Mw/Mn)大于3.5,或窄分子量分布,其特征为多分散性(Mw/Mn)为1.5到3。Mw被定义为重均分子量,并且Mn被定义为数均分子量。
可商购的LDPE树脂包括但不限于可购自陶氏化学公司的DOW低密度聚乙烯树脂(DOW Low Density Polyethylene),一般来说,用于重荷袋或农业膜中的任何分数熔融流动指数(fractional melt flow index,MFI)树脂,如可获自Borealis、Basel、Sabic等的那些树脂。
适用于本发明的LDPE的更具体实例包括均匀支化、线性乙烯/α烯烃共聚物(例如,三井石油化学有限公司(Mitsui Petrochemicals Company Limited)的TAFMERTM和埃克森化学公司(Exxon Chemical Company)的EXACTTM);均匀支化、基本上线性的乙烯/α烯烃聚合物(例如,可获自陶氏化学公司的AFFINITYTM和ENGAGETM聚乙烯);以及如USP 7,355,089中所描述的烯烃嵌段共聚物(例如,可获自陶氏化学公司的INFUSETM)。更优选的LDPE是均匀支化的线性和基本上线性的乙烯共聚物。基本上线性的乙烯共聚物是特别优选的,且更完整地描述在USP 5,272,236、5,278,272和5,986,028中。
HDPE/LDPE掺合物
按组合物的重量计,HDPE/LDPE掺合物中的HDPE的量典型地为至少45重量%(wt%),更典型地为至少55wt%且更加典型地为至少60wt%。按组合物的重量计,聚烯烃组合物中的HDPE的量典型地不超过95wt%,更典型地不超过85wt%且更加典型地不超过80wt%。按组合物的重量计,聚烯烃组合物中的LDPE的量典型地为至少5重量%(wt%),更典型地为至少15wt%且更加典型地为至少20wt%。按组合物的重量计,聚烯烃组合物中的LDPE的量典型地不超过55wt%,更典型地不超过45wt%且更加典型地不超过40wt%。在一个实施例中,掺合物中可存在少量的,例如少于5重量%或4重量%或3重量%或2重量%或1重量%的一种或多种其它聚合物,例如一种或多种其它聚烯烃(如聚丙烯)。
过氧化物
用作交联剂的合适的自由基引发剂是二烷基过氧化物和二过氧缩酮引发剂。这些化合物描述在《化学技术百科(Encyclopedia of Chemical Technology)》,第三版,第17卷,第27-90页(1982)中。两种或更多种自由基引发剂的混合物也可以一起用作自由基引发剂。
在二烷基过氧化物的群组中,合适的自由基引发剂的非限制性实例为:过氧化二枯基、过氧化二叔丁基、过氧化叔丁基枯基、2,5-二甲基-2,5-二(叔丁基过氧基)-己烷、2,5-二甲基-2,5-二(叔戊基过氧基)-己烷、2,5-二甲基-2,5-二(叔丁基过氧基)己炔-3,2,5-二甲基-2,5-二(叔戊基过氧基)己炔-3、α,α-二[(叔丁基过氧基)-异丙基]苯、过氧化二叔戊基(DTAP)、1,3,5-三-[(叔丁基过氧基)-异丙基]苯、1,3-二甲基-3-(叔丁基过氧基)丁醇、1,3-二甲基-3-(叔戊基过氧基)丁醇以及两种或多种这些引发剂的混合物。
在二过氧缩酮引发剂的群组中,合适的自由基引发剂的非限制性实例包括:1,1-二(叔丁基过氧基)-3,3,5-三甲基环己烷、1,1-二(叔丁基过氧基)环己烷正丁基、4,4-二(叔戊基过氧基)戊酸酯、3,3-二(叔丁基过氧基)丁酸乙酯、2,2-二(叔戊基过氧基)丙烷、3,6,6,9,9-五甲基-3-乙氧基羰基甲基-1,2,4,5-四氧杂环壬烷、4,4-双(叔丁基过氧基)戊酸正丁酯、3,3-二(叔戊基过氧基)丁酸乙酯以及两种或多种这些引发剂的混合物。
存在于组合物中的自由基引发剂的量可以随着足以提供期望的交联范围的最小量而变化。按HDPE/LDPE掺合物的重量计,过氧化物的最小量为至少约0.02wt%、或至少约0.05wt%、或至少约0.1重量%(wt%)。组合物中自由基引发剂的最大量可以变化,且其通常由诸如成本、效率和所期望的交联程度等因素决定。按HDPE/LDPE掺合物的重量计,最大量可以小于约2wt%、或小于约1wt%、或小于约0.5wt%。
亲CO2化合物
“聚二甲基硅氧烷流体”、“聚合物有机硅材料”等术语是指具有基于式(I)的重复单元的各种硅氧烷类聚合物,例如来自陶氏化学公司的具有1000厘斯(centistoke)的动力粘度的XIAMETERTM PMX-200硅酮流体1,000CS。
Figure BDA0001665385610000061
其中n>4。
添加剂
可使用如氟树脂颗粒(例如聚四氟乙烯(PTFE))、偶氮二甲酰胺(ADCA)、滑石、二氧化硅、沸石、氮化硼等的成核剂(包括两种或更多种试剂的混合物)来改善发泡。成核剂的装载范围为0.01%到1%,优选0.05%到0.6%,最优选0.1%到0.5%。
混配
本发明的经掺合的组合物的配混可以通过本领域技术人员已知的标准方法进行。混配设备的实例为内部分批混合器,如HAAKETM、BANBURYTM或BOLLINGTM内部混合器。替代地,可使用连续单螺杆或双螺杆混合器,如FARRELTM连续混合器、WERNER and PFLEIDERERTM双螺杆混合器或BUSSTM捏合连续挤出机。所用混合器类型和混合器操作条件会影响组合物的特性,如粘度、体积电阻率以及挤出表面光滑度。
本发明掺合物的混配温度通常为170℃到200℃,以确保过氧化物与HDPE/LDPE聚合物掺合物完全反应,混配温度更通常为180℃到190℃。最终组合物的各种组分可以以任何顺序或同时添加并彼此混配,但通常首先将HDPE与LDPE相互混配,然后过氧化物与(如果存在的话)亲CO2化合物一前一后地添加或同时添加。替代地,首先将亲CO2化合物和/或过氧化物调配成具有HDPE和LDPE中的一个或两个作为载体树脂的母料,随后将母料添加到HDPE/LDPE掺合物中。在将过氧化物调配成母料或在包含在最终调配物中之前与一种或多种组分混配(“预掺合”)的实施例中,母料或含过氧化物的预掺合物应该在低于过氧化物的活化温度的温度下制备以避免在制备最终调配物之前过氧化物分解。例如,当使用过氧化二异丙苯时,含过氧化物的母料或预掺合物应在低于约145℃的温度下制备。
发泡方法
在一个实施例中,本发明的HDPE/LDPE掺合物在典型挤出条件下与CO2接触,并且在绝缘体被挤出到导体上的同时发泡。当化合物离开挤出模头时,压降引起通过溶解气体发泡。挤出发泡的方法在本领域中是熟知的。
实例
测试方法
凝胶含量
称量约1.5克(g)交联样品,随后用180目的金属网封装。记录包装前后样品的重量。将经封装的样品插入250mL烧瓶中,随后浸入200mL甲苯中。在120℃下煮沸至少6小时后,将经封装的样品从烧瓶中取出并在室温下干燥24小时。也记录下剩余重量。凝胶含量通过以下等式计算:
Figure BDA0001665385610000071
其中
W1是金属网封装装后的重量;
W2是用金属网封装前的重量;且
W0是初始样品的重量。
孔尺寸分析
PE泡沫样品使用液氮破碎,随后涂覆铱。扫描电子显微术(SEM)图像(图3)以不同的放大率获得。通过用来自Media Cybernetics的Image-Pro Plus 6.0的软件分析SEM照片获得平均孔尺寸。
密度
泡沫密度根据ASTM D792-00测量,涉及使用沉锤在水中称量聚合物泡沫。
损耗因数(Df)
在高频分离后介质谐振器上以2.47吉赫(GHz)的频率对50密耳(mil)压缩成型的薄片进行损耗因数测量。在测量之前,薄片在室温(21-24℃)下在干燥室中调理24小时。
孔隙度
根据发泡前后样品的密度计算孔隙度。根据ASTM D792测量发泡制品和固体薄片的密度。
孔隙度=(1-ρ泡沫固体)×100%
材料
表1和2报告在这些例子中所使用的材料。
表1
材料
Figure BDA0001665385610000081
表2
使用HDPE的PDMS反应性混配的配方
化学品 重量比率(%)
HDPE 69.9
LDPE 30
DTAP 0.1
PMX-200 1
步骤
混配
根据表2中的配方分别称量HDPE、LDPE、过氧化物以及PDMS到烧杯中,然后相互掺合形成相对均匀的物质。
将具有两个以相反方向旋转的σ转子的HAAKETM混合设备[来自ThermoScientific,作为HAAKETM Polylab OS,50立方厘米]预热到180℃。
将HDPE、LDPE、过氧化物和PDMS的混合物通过混合器填充口加入混合器中,随后在180℃下掺合8分钟。旋转速率为60转每分钟(rpm)。
当混合完成时,将所得混合物取出并切成小粒料,准备压缩成型。
聚乙烯板的制备
将经混合的PE粒料放入到热板压缩成型机(例如广州第一橡胶塑料设备有限公司(Guangzhou NO.1Rubber&Plastic Equipment Co.Ltd.)制造的Platent VulcanizingPress)中预热到150℃的模具中,保持5分钟,然后接受压缩压力10分钟。将所得板冷却至室温(21到24℃)并储存用于发泡实验。
样品起泡
样品使用分批发泡装置制造,意图代表与电线涂覆过程期间的挤出发泡相关的实验室筛选测试。所述过程包括装载、预热、饱和以及减压的步骤。图1提供了方法装置和布局的一般描述。发泡压力为15到35MPa,LDPE的发泡温度为95℃到105℃,HDPE的发泡温度为125℃到150℃。掺合物的发泡温度为120℃到130℃。使用HAAKETM交联聚乙烯与过氧化物或挤出以形成交联的中间体;成型交联的中间体以形成尺寸为15mm×10mm×1mm的模制中间板;使用高压CO2发泡模制的中间板以形成泡沫。将聚合物板放置在压力容器中的端部位于静置在铝塞顶部上的玻璃棉薄层上。将压力容器加热到150℃维持30分钟。随后通过向压力容器通入包含发泡剂的加压气氛使容器中的压力增加到23MPa,并且在150℃温度和23MPa的压力下使聚合物熔体与发泡剂饱和2小时。随后将压力容器冷却到127℃的发泡温度并保持发泡温度30分钟。之后快速排放压力容器,由此给压力容器减压,并从压力容器收集发泡样品。
如图1所示,分批发泡装置(10)包括压力容器(11)、CO2注入泵(12)、氦驱动电磁阀(13)以及相应的数据采集系统(14)以记录减压后的压力分布。通过使用这种发泡设备,发泡实验在高达5500磅每平方英寸(psi)(37.9MPa)的压力和低于或等于160℃的温度下进行。发泡步骤如下:
1.尺寸为15mm×10mm×1mm的PE样品(如上面制备和描述的小板形式)垂直放置在压力容器11中位于铝塞(未示出)顶部的玻璃棉薄层(未示出)上。
2.将烘箱(15)设置为150℃预热温度30分钟。
3.在开始实验之前,将烘箱(15)设置并保持在发泡温度约1小时。
4.将压力升高到饱和压力(表3中所示的23MPa),并在这些条件下保持2小时。然后将烘箱冷却到127℃发泡温度,并将烘箱保持在127℃下30分钟,如表3所示。
5.打开阀门4(V4),且高压室内的压力迅速释放。
6.快速减压后,打开容器(11)并收集泡沫样品用于分析。
表3报告比较实例和本发明实例的加工条件。测量的各种样品性质也报告在表3中。
表3
发泡过程参数和样品属性
Figure BDA0001665385610000101
*发泡后Df提高百分比是通过与未发泡的对照2(HDPE/LDPE=70/30)比较而计算的。不同孔隙度的Df数据是根据图2的理论估算。
使用等式1计算泡沫挤出物的损耗因数。
Figure BDA0001665385610000102
等式1列举在《聚合物的电性质:化学原理(Electrical Properties of Polymer:Chemical Principles)》,Hanser出版社,1976中
符号定义:
P:孔隙度
εθ:发泡前树脂的介电常数,这里约2.32
tgδθ:固体树脂掺合物的损耗因数
tgδγ:泡沫挤出物的损耗因数
例如,对照2的泡沫挤出物的损耗因数的计算为:
Figure BDA0001665385610000103
P:孔隙度为76%
tanδθ:固体树脂掺合物的损耗因数为0.00011,
εθ:发泡前树脂的介电常数为2.32
Figure BDA0001665385610000111
由此损耗因数tanδγ=0.000037686
作为另一个例子,实例2的泡沫挤出物的损耗因数的计算是:
P:孔隙度为83%
tanδθ:固体树脂掺合物的损耗因数是0.00012,
εθ:发泡前树脂的介电常数为2.32
Figure BDA0001665385610000112
因此损耗因数tanδγ=0.000030475
发泡后Df提高百分比通过未发泡的比较实例2(0.00011)相比计算如下:
Figure BDA0001665385610000113
结果讨论
在一个实施例中,本发明是用于PE聚合物树脂体系改性的过氧化物选择,其对DF特性具有最小的劣化。相比于DCP(对照5,DF为57×10-5)和L101(对照6,DF为44×10-5),DTAP改性的HDPE/LDPE掺合物具有最低的DF数据,约为12×10-5(实例2),所有制剂的过氧化物装载量均为0.1%。
如表3所示,对于纯HDPE树脂和HDPE/LDPE=70/30,在127℃下由CO2发泡的孔隙度分别为76%和75%。在这些发泡条件下,虽然LDPE与HDPE混合,但HDPE/LDPE掺合物的孔隙度几乎没有提高。在对照3和对照4中,相对于对照1和对照2,PMX-200的引入稍微增加了孔隙度。而且,它们的孔隙尺寸也明显减小。这是因为PDMS是一种亲CO2化合物,它的添加可以提高CO2在PE树脂中的溶解度。
在实例1中,在HAAKETM混合器中在相同反应条件下向HDPE/LDPE掺合物中加入DTAP过氧化物确实引起孔隙度增加。其孔隙度达到82%,而且孔隙尺寸减小到小于10微米(见图3)。这是因为PE树脂的熔体强度由于过氧化物分解引起的链式偶联或剪裁而增加(没有添加足够的过氧化物用以产生交联且系统保持热塑性,如由可挤出性和可发泡性体现)。
随着DTAP和PMX-200量的增加,过氧化物改性样品的孔隙度也增加。最高孔隙度报告在实例4中。值得注意的是,当PMX-200的量增加到2%时,相对于用1%的PDMS200获得的孔隙尺寸,孔隙尺寸明显增加。
表3中也列出了比较实例和几个本发明实例的Df数据。对于对照1和2,Df数据分别是7×10-5和11×10-5。LDPE的引入导致Df增加。还报告了PMX-200和不同的过氧化物,如DCP和L101,对Df的影响。当1%的PMX-200添加到HDPE/LDPE掺合物中时,掺合物的Df从11×10-5增加到20×10-5。当2%的PDMS加入到纯HDPE中时,Df从7×10-5增加到23×10-5。相比之下,具有相同量(0.1%)的DTAP几乎不会对实例2的树脂的Df(即12×10-5)产生负面影响。当添加1%的PMX-200时,Df增加到18×10-5(实例3)。通过图2所示的理论估算,发泡实例(实例1、2以及3)的发泡后Df值相对于未发泡的对照2提高了66%、72%以及64%。

Claims (5)

1.一种制备泡沫组合物的方法,所述方法包含以下步骤:
(A)形成包含高密度聚乙烯(HDPE)、低密度聚乙烯(LDPE)、过氧化物以及聚二甲基硅氧烷的混合物;其中所述过氧化物是过氧化二叔戊基;所述过氧化物的最小量为至少0.02wt%且所述过氧化物的最大量小于2wt%,按所述高密度聚乙烯和低密度聚乙烯的总重量计;和
(B)使所述(A)的混合物与二氧化碳(CO2)接触。
2.根据权利要求1所述的方法,其中所述(A)的混合物与CO2在大于或等于15兆帕(MPa)的压力下接触。
3.根据权利要求1所述的方法,其中所述(A)的混合物与CO2在挤出条件下接触。
4.根据权利要求1所述的方法,其中所述HDPE构成大于50重量%的所述(A)的混合物。
5.一种通过根据权利要求1到4中任一项所述的方法制成的泡沫。
CN201580084703.XA 2015-12-03 2015-12-03 高孔隙度微孔聚乙烯 Active CN108473732B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/096250 WO2017091996A1 (en) 2015-12-03 2015-12-03 High porosity microcellular polyethylene

Publications (2)

Publication Number Publication Date
CN108473732A CN108473732A (zh) 2018-08-31
CN108473732B true CN108473732B (zh) 2021-03-19

Family

ID=58795997

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580084703.XA Active CN108473732B (zh) 2015-12-03 2015-12-03 高孔隙度微孔聚乙烯

Country Status (9)

Country Link
US (1) US20180346676A1 (zh)
EP (1) EP3383950B1 (zh)
JP (1) JP6616506B2 (zh)
KR (1) KR20180089467A (zh)
CN (1) CN108473732B (zh)
BR (1) BR112018009883B1 (zh)
CA (1) CA3007012C (zh)
MX (1) MX2018006135A (zh)
WO (1) WO2017091996A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019041216A1 (en) * 2017-08-31 2019-03-07 Dow Global Technologies Llc PROCESS FOR PRODUCING FOAM BALLS USING A MODIFIED ETHYLENE POLYMER
CN112262443B (zh) * 2018-06-15 2022-09-06 陶氏环球技术有限责任公司 用于电缆涂层的聚合化合物及其生产方法
CN110615911A (zh) * 2019-10-29 2019-12-27 恩奇(佛山)新材料科技有限公司 一种聚乙烯类高倍率发泡材料及其制备方法
CN112210113B (zh) * 2020-10-21 2022-11-15 华东理工大学 聚丙烯发泡材料及其制备方法

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03139536A (ja) * 1989-10-25 1991-06-13 Nippon Unicar Co Ltd 連続気泡型架橋エチレン系樹脂発泡体の製造方法
US5574074A (en) * 1993-02-19 1996-11-12 Mitsubishi Cable Industries, Inc. Foamable organic polymer composition and production of foamed article
CN1138870A (zh) * 1994-11-15 1996-12-25 钟渊化学工业株式会社 发泡性树脂组合物及用其制成的发泡体及其制造方法
CN1209148A (zh) * 1995-12-18 1999-02-24 克里奥瓦克公司 热塑性泡沫体及用二氧化碳生产这种泡沫体的方法
JP2000235814A (ja) * 1998-12-14 2000-08-29 Nippon Unicar Co Ltd 不活性ガス発泡法による高発泡ポリエチレン被覆電線製造用の発泡性樹脂組成物及びこれを被覆して作った高発泡絶縁ポリエチレン被覆電線
US6124770A (en) * 1999-10-22 2000-09-26 Nippon Unicar Company Limited Expandable resin composition
CN1343738A (zh) * 2000-09-20 2002-04-10 中国石油化工股份有限公司 一种化学交联聚乙烯微孔材料及其制备方法
US6492453B1 (en) * 1999-09-24 2002-12-10 Alphagary Corporation Low smoke emission, low corrosivity, low toxicity, low heat release, flame retardant, zero halogen polymeric compositions
CN1788047A (zh) * 2003-04-24 2006-06-14 加拿大国家研究委员会 低损耗泡沫体组合物和具有低损耗泡沫层的电缆
CN1325544C (zh) * 2000-10-24 2007-07-11 陶氏环球技术公司 多峰热塑性聚合物泡沫的无水制备方法和由该方法得到的泡沫
CN101930806A (zh) * 2009-06-19 2010-12-29 日立电线株式会社 树脂组合物及高频同轴电缆
CN102229708A (zh) * 2011-05-16 2011-11-02 四川大学 高发泡倍率高密度聚乙烯微孔发泡型材及其制备方法
JP2011256375A (ja) * 2010-05-10 2011-12-22 Asahi Kasei Chemicals Corp 無架橋発泡用ポリエチレン系樹脂組成物ならびにそのポリエチレン系樹脂無架橋発泡成形体
CN102947386A (zh) * 2010-06-22 2013-02-27 陶氏环球技术有限责任公司 交联的组合物以及由其制备的制品
CN103113653A (zh) * 2013-02-06 2013-05-22 常州大学 一种hdpe/ldpe共混发泡材料及其制备方法
JP2013129757A (ja) * 2011-12-21 2013-07-04 Japan Polypropylene Corp 発泡性ポリプロピレン系樹脂組成物、発泡成形体及びその製造方法
CN103524821A (zh) * 2013-06-19 2014-01-22 南京迪默森节能科技有限公司 聚乙烯泡沫塑料及其制备方法
CN103554658A (zh) * 2013-10-18 2014-02-05 深圳职业技术学院 塑料多孔材料及其制备方法
CN104812512A (zh) * 2012-09-28 2015-07-29 陶氏环球技术有限责任公司 用于无线通信塔的低密度基于金属的组件
CN104870534A (zh) * 2012-12-21 2015-08-26 陶氏环球技术有限责任公司 用于改善起泡性和增强可加工性的聚烯烃基缆线化合物配制品
WO2015168510A1 (en) * 2014-05-02 2015-11-05 Fina Technology, Inc. Polymer foams

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4681715A (en) * 1984-11-16 1987-07-21 The Dow Chemical Company Steam expandable polymeric composition and method
US4714716A (en) * 1984-11-16 1987-12-22 The Dow Chemical Company Lightly crosslinked linear olefinic polymer foams and process for making
US4607060A (en) * 1985-09-30 1986-08-19 Pennwalt Corporation Foaming and crosslinking of elastomeric and/or thermoplastic polymers
JP2939565B2 (ja) * 1990-07-19 1999-08-25 日本ユニカー株式会社 高発泡絶縁ポリエチレン用発泡性樹脂組成物およびその製造方法
US5158986A (en) * 1991-04-05 1992-10-27 Massachusetts Institute Of Technology Microcellular thermoplastic foamed with supercritical fluid
US5100924A (en) * 1991-08-28 1992-03-31 Nippon Unicar Company Limited Open cell foam compositions
JP3092773B2 (ja) * 1993-02-19 2000-09-25 三菱電線工業株式会社 発泡性有機高分子組成物および発泡体の製造方法
NO313835B1 (no) * 1998-06-19 2002-12-09 Borealis As Fremgangsmate for forgrening av polypropylenmaterialer, fremgangsmate for forgrening og skumming av polypropylenmaterialer, og anvendelse av polymermaterialene oppnadd ved fremgangsmatene
US6541533B2 (en) * 2001-01-10 2003-04-01 Jsp Corporation Extruded polyolefin resin foam
JP2002338722A (ja) 2001-05-11 2002-11-27 Inoac Corp 切削加工用架橋ポリエチレン発泡体
JP2007051190A (ja) * 2005-08-17 2007-03-01 Fujikura Ltd 発泡用樹脂組成物、発泡同軸ケーブル及び発泡同軸ケーブルの製造方法
EP2164893B1 (en) * 2007-05-31 2013-06-26 Saudi Basic Industries Corporation Polyethylene foam
JP2012046574A (ja) * 2010-08-25 2012-03-08 Hitachi Cable Ltd 樹脂組成物および高周波同軸ケーブル
JP2014530677A (ja) * 2011-09-23 2014-11-20 ゼウス インダストリアル プロダクツ インコーポレイテッド 複合補綴シャントデバイス

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03139536A (ja) * 1989-10-25 1991-06-13 Nippon Unicar Co Ltd 連続気泡型架橋エチレン系樹脂発泡体の製造方法
US5574074A (en) * 1993-02-19 1996-11-12 Mitsubishi Cable Industries, Inc. Foamable organic polymer composition and production of foamed article
CN1138870A (zh) * 1994-11-15 1996-12-25 钟渊化学工业株式会社 发泡性树脂组合物及用其制成的发泡体及其制造方法
CN1209148A (zh) * 1995-12-18 1999-02-24 克里奥瓦克公司 热塑性泡沫体及用二氧化碳生产这种泡沫体的方法
JP2000235814A (ja) * 1998-12-14 2000-08-29 Nippon Unicar Co Ltd 不活性ガス発泡法による高発泡ポリエチレン被覆電線製造用の発泡性樹脂組成物及びこれを被覆して作った高発泡絶縁ポリエチレン被覆電線
US6492453B1 (en) * 1999-09-24 2002-12-10 Alphagary Corporation Low smoke emission, low corrosivity, low toxicity, low heat release, flame retardant, zero halogen polymeric compositions
US6124770A (en) * 1999-10-22 2000-09-26 Nippon Unicar Company Limited Expandable resin composition
CN1343738A (zh) * 2000-09-20 2002-04-10 中国石油化工股份有限公司 一种化学交联聚乙烯微孔材料及其制备方法
CN1325544C (zh) * 2000-10-24 2007-07-11 陶氏环球技术公司 多峰热塑性聚合物泡沫的无水制备方法和由该方法得到的泡沫
CN1788047A (zh) * 2003-04-24 2006-06-14 加拿大国家研究委员会 低损耗泡沫体组合物和具有低损耗泡沫层的电缆
CN101930806A (zh) * 2009-06-19 2010-12-29 日立电线株式会社 树脂组合物及高频同轴电缆
JP2011256375A (ja) * 2010-05-10 2011-12-22 Asahi Kasei Chemicals Corp 無架橋発泡用ポリエチレン系樹脂組成物ならびにそのポリエチレン系樹脂無架橋発泡成形体
CN102947386A (zh) * 2010-06-22 2013-02-27 陶氏环球技术有限责任公司 交联的组合物以及由其制备的制品
CN102229708A (zh) * 2011-05-16 2011-11-02 四川大学 高发泡倍率高密度聚乙烯微孔发泡型材及其制备方法
JP2013129757A (ja) * 2011-12-21 2013-07-04 Japan Polypropylene Corp 発泡性ポリプロピレン系樹脂組成物、発泡成形体及びその製造方法
CN104812512A (zh) * 2012-09-28 2015-07-29 陶氏环球技术有限责任公司 用于无线通信塔的低密度基于金属的组件
CN104870534A (zh) * 2012-12-21 2015-08-26 陶氏环球技术有限责任公司 用于改善起泡性和增强可加工性的聚烯烃基缆线化合物配制品
CN103113653A (zh) * 2013-02-06 2013-05-22 常州大学 一种hdpe/ldpe共混发泡材料及其制备方法
CN103524821A (zh) * 2013-06-19 2014-01-22 南京迪默森节能科技有限公司 聚乙烯泡沫塑料及其制备方法
CN103554658A (zh) * 2013-10-18 2014-02-05 深圳职业技术学院 塑料多孔材料及其制备方法
WO2015168510A1 (en) * 2014-05-02 2015-11-05 Fina Technology, Inc. Polymer foams

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Crosslinked polyethylene;S M Tamboli et al.;《Indian Journal of Chemical Technology》;20041130;第11卷;第853页倒数第2段第1、5行,第857页左栏倒数第1段第1-4行,第858页表5第1列第3行,第863页左栏第4段 *
超临界CO2微孔发泡PE–LLD/PE–UHMW共混物;刘智峰 等;《工程塑料应用》;20150331;第43卷(第3期);第65-71页 *
超临界CO2挤出发泡DCP微交联高密度聚乙烯研究;张玉霞 等;《中国塑料》;20120630;第26卷(第6期);第81-86页 *

Also Published As

Publication number Publication date
BR112018009883B1 (pt) 2022-01-04
JP6616506B2 (ja) 2019-12-04
EP3383950A4 (en) 2019-05-29
EP3383950A1 (en) 2018-10-10
CA3007012C (en) 2023-03-28
US20180346676A1 (en) 2018-12-06
CA3007012A1 (en) 2017-06-08
BR112018009883A2 (pt) 2018-11-13
KR20180089467A (ko) 2018-08-08
CN108473732A (zh) 2018-08-31
MX2018006135A (es) 2018-08-15
JP2018536056A (ja) 2018-12-06
EP3383950B1 (en) 2020-06-17
WO2017091996A1 (en) 2017-06-08

Similar Documents

Publication Publication Date Title
CN108473732B (zh) 高孔隙度微孔聚乙烯
KR102210037B1 (ko) 개선된 발포성 및 향상된 가공성을 위한 폴리올레핀-기재 케이블 화합물 제제
CA2969004C (en) Process for foaming polyolefin compositions using a fluororesin/azodicarbonamide mixture as a nucleating agent
KR102350399B1 (ko) 핵제로서 아조디카본아미드/시트레이트 혼합물을 사용하는 폴리올레핀 조성물을 발포시키는 방법
CN1146607A (zh) 用于同轴电缆的绝缘材料、同轴电缆和制造同轴电缆的方法
JP2019511608A (ja) 核形成剤としてフッ素樹脂/窒化ホウ素混合物を使用してポリオレフィン組成物を発泡させるためのプロセス
KR102304010B1 (ko) 핵제로서 불소수지를 사용한 폴리올레핀 조성물을 포말화하는 방법
CN110225942B (zh) 使用改性的高密度聚乙烯使聚烯烃组合物发泡的方法
EP3180793B1 (en) Polydimethylsiloxane grafted polyethylene foam
JP6584505B2 (ja) フッ素樹脂/クエン酸混合物を核形成剤として使用してポリオレフィン組成物を発泡させるためのプロセス
US20220332913A1 (en) Silane Crosslinked Ethylene/a-Olefin Block Copolymer Bead Foam
JP2020079384A (ja) フッ素樹脂/アソジカルボンアミド混合物を核形成剤として使用してポリオレフィン組成物を発泡させるためのプロセス

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant