CN108470781A - 选择性发射极黑硅双面perc晶体硅太阳能电池的制作方法 - Google Patents

选择性发射极黑硅双面perc晶体硅太阳能电池的制作方法 Download PDF

Info

Publication number
CN108470781A
CN108470781A CN201810167076.1A CN201810167076A CN108470781A CN 108470781 A CN108470781 A CN 108470781A CN 201810167076 A CN201810167076 A CN 201810167076A CN 108470781 A CN108470781 A CN 108470781A
Authority
CN
China
Prior art keywords
silicon
silicon chip
black
back side
front side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810167076.1A
Other languages
English (en)
Inventor
陈丽萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuxi Suntech Power Co Ltd
Original Assignee
Wuxi Suntech Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuxi Suntech Power Co Ltd filed Critical Wuxi Suntech Power Co Ltd
Priority to CN201810167076.1A priority Critical patent/CN108470781A/zh
Publication of CN108470781A publication Critical patent/CN108470781A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02366Special surface textures of the substrate or of a layer on the substrate, e.g. textured ITO/glass substrate or superstrate, textured polymer layer on glass substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/513Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F17/00Multi-step processes for surface treatment of metallic material involving at least one process provided for in class C23 and at least one process covered by subclass C21D or C22F or class C25
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/12Semiconductors
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B31/00Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor
    • C30B31/06Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor by contacting with diffusion material in the gaseous state
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/08Etching
    • C30B33/10Etching in solutions or melts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0684Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells double emitter cells, e.g. bifacial solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及一种选择性发射极黑硅双面PERC晶体硅太阳能电池的制作方法,其特征是,包括以下步骤:(1)在硅片正面和背面采用金属催化化学腐蚀法制备黑硅绒面;(2)对硅片进行高温磷扩散形成PN结;(3)去除扩散后硅片正面磷硅玻璃和背面及边缘的PN结;(4)在硅片的背面沉积氧化铝/氮化硅叠层钝化薄膜,在硅片的正面沉积氮化硅减反射膜层;(5)使用激光器在硅片背面打线,得到打线槽;(6)在硅片正面喷涂或者甩涂磷酸溶液;(7)采用激光对硅片正面进行激光掺杂得到主栅线和副栅线图形区域;(8)硅片的正面和背面同时电镀;(9)退火。本发明降低表面反射率,提高黑硅电池转换效率,降低了制造成本。

Description

选择性发射极黑硅双面PERC晶体硅太阳能电池的制作方法
技术领域
本发明涉及一种选择性发射极黑硅双面PERC晶体硅太阳能电池的制作方法,属于光电技术领域。
背景技术
光伏发电由于其成本太高,仍然无法取代传统能源,降低成本、提高太阳电池转换效率是光伏行业可以逐渐取代传统能源的关键。多晶金刚线切割硅片具有切割速度快、相比于砂浆切割线损更小、损伤层更薄、更环保、成本低等优势,市场份额逐年提升,逐步替代砂浆切割硅片,金刚线切割硅片降低了硅片成本,将成为行业主流,但是多晶金刚线切太阳电池表面反射率高制约了电池效率的提升,制绒后表面有色差影响了多晶金刚线切太阳电池的良品率,而湿法黑硅技术成功解决了这些难题,既能提高多晶金刚线切太阳电池的转换效率、良品率,又能降低电池成本。
湿法黑硅中的金属催化化学腐蚀法采用银、铜等电负性高于硅的金属颗粒在化学腐蚀液的作用下在硅片表面形成多孔结构,从而降低硅片表面反射率,工艺简单,成本低,更适用于工业生产,可使多晶效率提升0.2-0.3%(绝对值)。如图1所示,为金刚线黑硅电池与常规电池反射率对比示意图。
黑硅绒面为纳米孔结构,常规多晶绒面为微米级蠕虫结构,因此黑硅比表面积大于常规多晶,由于黑硅绒面结构特殊性,在前表面磷扩散制备PN结时表面杂质浓度高,俄歇复合严重,更容易形成扩散“死层”。为提升黑硅电池转换效率,需降低表面掺杂浓度,减少光生少数载流子的表面复合。同时,在较低的表面杂质浓度下,黑硅表面的钝化效果也更好,钝化后可进一步减少表面复合,但表面掺杂浓度降低后,金属电极区域的接触电阻会升高,导致电池串联电阻升高转换效率下降。选择性发射极结构在电池电极栅线与栅线之间受光区域对应的活性区域形成低掺杂浅扩散区,电池的电极栅线下方区域形成高掺杂深扩散区。在电极间隔区形成与常规太阳电池一样的NP结,在低掺杂区和高掺杂区交界处形成横向N+N高低结,在电极栅线下方形成N+P结,与常规太阳电池相比,选择性发射极太阳电池电极栅线处多一个横向N+N高低结和一个N+P结,有利于提高光生载流子的收集率、降低太阳电池的串联电阻、减少光生少数载流子的表面复合和减小扩散死层的影响。叠加选择性发射极结构,黑硅电池效率可再提升0.2-0.3%(绝对值)。图2为选择性发射极太阳电池的结构示意图。
湿法黑硅纳米制绒技术和选择性发射极结构使多晶金刚线太阳电池的转换效率有了大幅提升。但是电池背表面较为严重的光学和电学损失已成为制约多晶黑硅电池效率进一步提升的瓶颈。钝化发射极背面接触电池(PERC)结构不仅可以大幅降低背表面电学复合速率,还可以形成良好的内部光学背反射机制,尤其是在硅片向着薄片化的发展趋势下,电池表面钝化质量和内部背反射效果的重要性就更加凸显。PERC结构使黑硅电池效率提升0.7-1.0%。
PERC技术采用AlOx/SiNy叠层钝化膜层对背表面进行钝化,可以有效降低背表面复合,提高开路电压,增加背表面反射,提高短路电流,从而提高电池效率。PERC电池由于其工艺相对简单,成本增加较少,是目前和未来的主流量产工艺。除此之外,由于双面PERC具有双面发电功能,还可以采用双面电池结构进一步提升效率。双面PERC电池的技术路线是在目前的PERC电池工艺的基础上将全部铝浆调整为局部铝栅线,优点是背表面由于为栅线结构,使得局部背场的厚度增加,从而提高了PERC电池的开路电压,难点和缺点是背面丝网印刷时需要使用对准系统使铝栅线和激光开窗栅线完全对准。如图3所示,为单面PERC电池结构的示意图。如图4所示,为双面PERC电池结构的示意图。
在太阳电池制造成本中,银浆、铝浆是生产太阳能电池的关键基础材料,但是银浆、铝浆成本高,限制了太阳能电池制造成本的进一步下降。另外,丝网印刷银、铝电极高温烧结工艺易造成硅片翘曲、隐裂、碎片,限制了硅片朝薄片化方向发展。
发明内容
本发明的目的是克服现有技术中存在的不足,提供一种选择性发射极黑硅双面PERC晶体硅太阳能电池的制作方法,降低表面反射率,提高黑硅电池转换效率,降低了制造成本。
按照本发明提供的技术方案,所述选择性发射极黑硅双面PERC晶体硅太阳能电池的制作方法,其特征是,包括以下步骤:
(1)在硅片正面和背面采用金属催化化学腐蚀法制备黑硅绒面,制绒减薄量为0.35-0.45g,制绒后硅片表面反射率20-21%;
(2)扩散:对硅片进行高温磷扩散形成PN结,扩散后表面方块电阻为100-150Ω/□,扩散温度800-850℃,扩散时间70-120分钟;
(3)去除扩散后硅片正面磷硅玻璃和背面及边缘的PN结;
(4)镀膜:在硅片的背面沉积氧化铝/氮化硅叠层钝化薄膜,在硅片的正面沉积氮化硅减反射膜层;硅片背面氧化铝/氮化硅叠层钝化薄膜中氧化铝的厚度为10-20nm,氮化硅的厚度为120-150nm,硅片正面氮化硅减反射膜层的厚度为75-85nm,平均折射率2.04-2.14;
(5)使用激光器在硅片背面打线,使背面的氧化铝/氮化硅叠层钝化薄膜从硅片背面剥离,得到打线槽;
(6)在硅片正面喷涂或者甩涂磷酸溶液;
(7)激光掺杂:采用激光对硅片正面进行激光掺杂得到主栅线和副栅线图形区域,在硅片背面进行激光开窗;
(8)将硅片与外置电源的阴极连接,在打线槽中沉积镍/铜/银金属,硅片的正面和背面同时电镀,电镀后正面栅线宽度30-35μm,高度13-15μm,背面栅线宽度50-65μm,高度25-32μm;
(9)退火。
进一步地,所述步骤(1)中黑硅绒面孔径500-700nm。
进一步地,所述步骤(4)中,先对硅片正面镀膜再对硅片背面镀膜,或者先对硅片背面镀膜再对硅片正面镀膜。
进一步地,所述步骤(5)中打线槽的宽度为20-40μm,间距为0.5-2mm。
进一步地,所述步骤(7)中使用波长355nm或532nm的激光对硅片正面进行加热,得到激光掺杂的主栅线和副栅线图形区域;激光掺杂的副栅线线宽为8-15μm,线间距0.7-1.0mm;主栅线垂直于副栅线,单条主栅线由多条细栅线重叠组成,单条主栅的宽度为1.0-1.5mm。
进一步地,所述退火温度为350-450℃,退火时间1-3分钟。
进一步地,所述硅片为p型硅片。
进一步地,所述p型硅片为金刚线切割的多晶硅片,电阻率为1-3Ω•cm,硅片厚度200±20μm。
本发明具有以下优点:
(1)本发明采用金属催化化学腐蚀法制备黑硅绒面,正面形成纳米孔径绒面降低金刚线切多晶硅片的表面反射率,既解决了金刚线切多晶硅片采用常规制绒技术导致的表面反射率高的问题,提高了黑硅电池转换效率,又解决了表面色差问题,提升了黑硅电池良品率。选择性发射极黑硅双面PERC电池结构提高了金刚线切多晶电池的转换效率,降低了制造成本。
(2)本发明将激光掺杂形成选择性发射极技术与电镀技术相结合,不仅解决了背面印刷铝栅线与激光开窗栅线难对准的问题,同时本发明采用选择性发射极结构,比丝网印刷双面PERC电池的转换效率更高。
(3)本发明在金属化过程中均为低温工艺,完全避免了丝网印刷高温烧结形成金属栅线导致的电池片弯曲、隐裂等问题。本发明涉及的低温金属化工艺,可以兼容很高的方块电阻,避免了因为发射极方块电阻过高,在银电极烧结过程中出现电池漏电、短路等问题,提高了金刚线切多晶黑硅电池的转换效率。进一步地,本发明涉及的金属化工艺形成的金属栅线可以获得较高的高宽比,且高宽比可控,与丝网印刷形成的栅线相比,遮光损失更小,电池短路电流更高。
(4)本发明完全摒弃了传统丝网印刷形成银电极的工艺,取而代之的是成本低廉的电镀金属形成电极,进一步降低了多晶金刚线切太阳电池的制造成本。
附图说明
图1为金刚线黑硅电池与常规电池反射率对比示意图。
图2为选择性发射极太阳电池的结构示意图。
图3为单面PERC电池结构的示意图。
图4为双面PERC电池结构的示意图。
具体实施方式
下面结合具体附图对本发明作进一步说明。
实施例1:一种选择性发射极黑硅双面PERC晶体硅太阳能电池制作方法,包括以下步骤:
(1)制绒:选择156.75mm*156.75mm的P型金刚线切割多晶硅片为基体材料,电阻率3Ω•cm,经过碱抛、酸洗、沉银、挖孔、脱银、扩孔、碱洗、酸洗、水洗、烘干制备得到绒面,制绒减薄量0.38g,纳米绒面孔径550nm,制绒后硅片表面反射率20.3%;
(2)扩散:采用管式炉磷扩散的方法,在扩散炉中在830℃的温度下,采用三氯氧磷对硅片的正面进行磷扩散形成n型层,扩散工艺总时间80分钟,扩散方阻120Ω/□;
(3)刻蚀:采用链式正面水膜保护法去除背面及边缘pn结,减薄量0.08g,背表面反射率23%,最后HF清洗去除正面磷硅玻璃,最后加热压缩空气烘干硅片表面;
(4)正面镀膜:在硅片的正面PECVD沉积氮化硅减反射膜,正面氮化硅厚度78nm,折射率2.08;
(5)背面镀膜:在硅片的背面PECVD沉积氧化铝/氮化硅叠层钝化薄膜,三甲基铝(TMA)和笑气(N2O)与硅片反应生成氧化铝,沉积温度350℃,氧化铝厚度15nm;在氧化铝钝化膜基础上再PECVD沉积氮化硅,硅烷和氨气反应生成氮化硅,沉积温度450℃,氮化硅厚度150nm;
(6)背面激光开窗:使用波长532nm的激光器在硅片背表面打线,使背面钝化层从硅片背面剥离,线宽28μm,线间距2mm;
(7)正面喷涂磷源:在硅片正面喷涂5%的磷酸溶液,喷涂后使用加热的氮气干燥;
(8)激光掺杂:使用波长355nm的激光对硅片表面进行激光掺杂,形成相应的N++层。激光掺杂区域副栅线线宽10μm,线间距0.9mm;主栅线垂直于副栅线,单条主栅线由多条副栅重叠组成,主栅线总宽度1.0mm;
(9)电镀镍/铜/银电极:将半成品放于导电的金属电镀挂具上,将挂具浸入电镀溶液中,接通电源,使回路中有电流,电镀镍层厚度1-2μm;镀镍漂洗后继续电镀铜,工作原理同镀镍,通过调节外接整流器的电压调节回路中的电流密度;正面铜栅线宽度32μm,高度14μm,背面铜栅线宽度58μm,高度28μm;最后在铜栅线上电镀银防止铜栅线被氧化,银层厚度2μm;
(10)退火:将电镀后的电池放在氮气氛围的链式烧结炉中退火,退火过程中形成镍硅合金,增加金属栅线与硅的结合力。退火温度350℃,退火时间3分钟。
实施例2:一种选择性发射极黑硅双面PERC晶体硅太阳能电池制作方法,包括以下步骤:
(1)制绒:选择156.75mm*156.75mm的P型金刚线切割多晶硅片为基体材料,电阻率2Ω•cm,经过碱抛、酸洗、沉银、挖孔、脱银、扩孔、碱洗、酸洗、水洗、烘干制备得到绒面,制绒减薄量0.45g,纳米绒面孔径700nm,制绒后硅片表面反射率21.0%;
(2)扩散:采用管式炉磷扩散的方法,在扩散炉中在820℃的温度下,采用三氯氧磷对硅片的正面进行磷扩散形成n型层,扩散方阻控制在140Ω/□左右;
(3)刻蚀:采用链式正面水膜保护法去除背面pn结和正面磷硅玻璃,减薄量0.10g,背表面反射率27%;
(4)背面镀膜:在硅片的背面PECVD沉积氧化铝/氮化硅叠层钝化薄膜,氧化铝厚度10nm,氮化硅厚度150nm;
(5)正面镀膜:在硅片正面PECVD沉积氮化硅减反射膜,正面氮化硅厚度78nm,反射率2.10;
(6)正面甩涂磷源:在硅片正面甩涂3%的磷酸溶液,甩涂后使用加热的氮气干燥;
(7)激光掺杂:使用波长355nm的激光对硅片表面进行激光掺杂,形成相应的N++层;激光掺杂区域副栅线线宽12μm,线间距1mm;主栅线垂直于副栅线,单条主栅线由多条副栅重叠组成,主栅宽度1.5mm;激光掺杂后将正面残留的磷酸用清水洗净,用氮气或者压缩空气将硅片表面吹干;
(8)背面激光开窗:使用波长532nm的激光器在硅片背表面打线,使背面钝化层从硅片背面剥离,线宽30μm,线间距1.5mm;
(9)电镀镍/铜/银电极:将半成品放于导电的电镀挂具上,将挂具浸没放置在电镀溶液中,挂具与电源连接,接通电源,使回路中有电流,电镀镍层厚度1-2μm;镀镍漂洗后继续电镀铜,通过调节外接整流器的电压调节回路中的电流密度,将正面和背面分别与整流器连接,可以实现分开调整电流密度。正面铜栅线宽度32μm,高度13μm,背面铜栅线宽度60μm,高度29μm,最后在铜栅线上镀银,银层厚度2μm;
(10)退火:将电镀后的电池放在氮气氛围的链式烧结炉中退火,退火过程中形成镍硅合金,增加金属栅线与硅的结合力;退火温度400℃,退火时间2分钟。

Claims (8)

1.一种选择性发射极黑硅双面PERC晶体硅太阳能电池的制作方法,其特征是,包括以下步骤:
(1)在硅片正面和背面采用金属催化化学腐蚀法制备黑硅绒面,制绒减薄量为0.35-0.45g,制绒后硅片表面反射率20-21%;
(2)扩散:对硅片进行高温磷扩散形成PN结,扩散后表面方块电阻为100-150Ω/□,扩散温度800-850℃,扩散时间70-120分钟;
(3)去除扩散后硅片正面磷硅玻璃和背面及边缘的PN结;
(4)镀膜:在硅片的背面沉积氧化铝/氮化硅叠层钝化薄膜,在硅片的正面沉积氮化硅减反射膜层;硅片背面氧化铝/氮化硅叠层钝化薄膜中氧化铝的厚度为10-20nm,氮化硅的厚度为120-150nm,硅片正面氮化硅减反射膜层的厚度为75-85nm,平均折射率2.04-2.14;
(5)使用激光器在硅片背面打线,使背面的氧化铝/氮化硅叠层钝化薄膜从硅片背面剥离,得到打线槽;
(6)在硅片正面喷涂或者甩涂磷酸溶液;
(7)激光掺杂:采用激光对硅片正面进行激光掺杂得到主栅线和副栅线图形区域,在硅片背面进行激光开窗;
(8)将硅片与外置电源的阴极连接,在打线槽中沉积镍/铜/银金属,硅片的正面和背面同时电镀,电镀后正面栅线宽度30-35μm,高度13-15μm,背面栅线宽度50-65μm,高度25-32μm;
(9)退火。
2.如权利要求1所述的选择性发射极黑硅双面PERC晶体硅太阳能电池的制作方法,其特征是:所述步骤(1)中黑硅绒面孔径500-700nm。
3.如权利要求1所述的选择性发射极黑硅双面PERC晶体硅太阳能电池的制作方法,其特征是:所述步骤(4)中,先对硅片正面镀膜再对硅片背面镀膜,或者先对硅片背面镀膜再对硅片正面镀膜。
4.如权利要求1所述的选择性发射极黑硅双面PERC晶体硅太阳能电池的制作方法,其特征是:所述步骤(5)中打线槽的宽度为20-40μm,间距为0.5-2mm。
5.如权利要求1所述的选择性发射极黑硅双面PERC晶体硅太阳能电池的制作方法,其特征是:所述步骤(7)中使用波长355nm或532nm的激光对硅片正面进行加热,得到激光掺杂的主栅线和副栅线图形区域;激光掺杂的副栅线线宽为8-15μm,线间距0.7-1.0mm;主栅线垂直于副栅线,单条主栅线由多条细栅线重叠组成,单条主栅的宽度为1.0-1.5mm。
6.如权利要求1所述的选择性发射极黑硅双面PERC晶体硅太阳能电池的制作方法,其特征是:所述退火温度为350-450℃,退火时间1-3分钟。
7.如权利要求1所述的选择性发射极黑硅双面PERC晶体硅太阳能电池的制作方法,其特征是:所述硅片为p型硅片。
8.如权利要求7所述的选择性发射极黑硅双面PERC晶体硅太阳能电池的制作方法,其特征是:所述p型硅片为金刚线切割的多晶硅片,电阻率为1-3Ω•cm,硅片厚度200±20μm。
CN201810167076.1A 2018-02-28 2018-02-28 选择性发射极黑硅双面perc晶体硅太阳能电池的制作方法 Pending CN108470781A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810167076.1A CN108470781A (zh) 2018-02-28 2018-02-28 选择性发射极黑硅双面perc晶体硅太阳能电池的制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810167076.1A CN108470781A (zh) 2018-02-28 2018-02-28 选择性发射极黑硅双面perc晶体硅太阳能电池的制作方法

Publications (1)

Publication Number Publication Date
CN108470781A true CN108470781A (zh) 2018-08-31

Family

ID=63264108

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810167076.1A Pending CN108470781A (zh) 2018-02-28 2018-02-28 选择性发射极黑硅双面perc晶体硅太阳能电池的制作方法

Country Status (1)

Country Link
CN (1) CN108470781A (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109855327A (zh) * 2018-12-24 2019-06-07 中国科学院宁波材料技术与工程研究所 一种选择性吸收发射体
CN110277470A (zh) * 2019-03-13 2019-09-24 国家电投集团西安太阳能电力有限公司 一种太阳能perc电池的制备方法
CN110473929A (zh) * 2019-08-20 2019-11-19 浙江正泰太阳能科技有限公司 一种黑硅制备方法及太阳能电池
CN110534594A (zh) * 2019-09-06 2019-12-03 浙江晶科能源有限公司 一种p型太阳能电池的制备方法
CN110534595A (zh) * 2019-09-06 2019-12-03 江西展宇新能源股份有限公司 一种perc双面太阳能电池及其制备方法
CN111682090A (zh) * 2020-06-17 2020-09-18 广东爱旭科技有限公司 选择性发射极太阳能电池的制备方法及太阳能电池
CN112133766A (zh) * 2020-09-18 2020-12-25 江苏东鋆光伏科技有限公司 一种采用电镀法制备的晶硅电池电极及其制备工艺
CN114220882A (zh) * 2021-11-24 2022-03-22 天津爱旭太阳能科技有限公司 一种太阳能晶硅电池的制备方法及太阳能晶硅电池
CN115132854A (zh) * 2022-07-28 2022-09-30 苏州工业职业技术学院 一种perc晶体硅太阳能电池片的减反射膜、制备方法和用途
CN115896888A (zh) * 2021-09-23 2023-04-04 环晟光伏(江苏)有限公司 一种太阳能电池片电镀方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105576081A (zh) * 2016-03-02 2016-05-11 江西展宇新能源股份有限公司 一种黑硅双面电池的制作方法
CN106449876A (zh) * 2016-10-17 2017-02-22 无锡尚德太阳能电力有限公司 选择性发射极双面perc晶体硅太阳能电池的制作方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105576081A (zh) * 2016-03-02 2016-05-11 江西展宇新能源股份有限公司 一种黑硅双面电池的制作方法
CN106449876A (zh) * 2016-10-17 2017-02-22 无锡尚德太阳能电力有限公司 选择性发射极双面perc晶体硅太阳能电池的制作方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109855327A (zh) * 2018-12-24 2019-06-07 中国科学院宁波材料技术与工程研究所 一种选择性吸收发射体
CN109855327B (zh) * 2018-12-24 2021-04-16 中国科学院宁波材料技术与工程研究所 一种选择性吸收发射体
CN110277470A (zh) * 2019-03-13 2019-09-24 国家电投集团西安太阳能电力有限公司 一种太阳能perc电池的制备方法
CN110473929B (zh) * 2019-08-20 2021-09-21 浙江正泰太阳能科技有限公司 一种黑硅制备方法及太阳能电池
CN110473929A (zh) * 2019-08-20 2019-11-19 浙江正泰太阳能科技有限公司 一种黑硅制备方法及太阳能电池
CN110534594A (zh) * 2019-09-06 2019-12-03 浙江晶科能源有限公司 一种p型太阳能电池的制备方法
CN110534595A (zh) * 2019-09-06 2019-12-03 江西展宇新能源股份有限公司 一种perc双面太阳能电池及其制备方法
CN111682090A (zh) * 2020-06-17 2020-09-18 广东爱旭科技有限公司 选择性发射极太阳能电池的制备方法及太阳能电池
CN112133766A (zh) * 2020-09-18 2020-12-25 江苏东鋆光伏科技有限公司 一种采用电镀法制备的晶硅电池电极及其制备工艺
CN115896888A (zh) * 2021-09-23 2023-04-04 环晟光伏(江苏)有限公司 一种太阳能电池片电镀方法
CN114220882A (zh) * 2021-11-24 2022-03-22 天津爱旭太阳能科技有限公司 一种太阳能晶硅电池的制备方法及太阳能晶硅电池
CN115132854A (zh) * 2022-07-28 2022-09-30 苏州工业职业技术学院 一种perc晶体硅太阳能电池片的减反射膜、制备方法和用途
CN115132854B (zh) * 2022-07-28 2024-03-08 苏州工业职业技术学院 一种perc晶体硅太阳能电池片的减反射膜、制备方法和用途

Similar Documents

Publication Publication Date Title
CN106449876B (zh) 选择性发射极双面perc晶体硅太阳能电池的制作方法
CN108470781A (zh) 选择性发射极黑硅双面perc晶体硅太阳能电池的制作方法
CN109256440A (zh) 一种选择性钝化接触晶体硅太阳能电池及其制备方法
CN101853897A (zh) 一种n型晶体硅局部铝背发射极太阳电池的制备方法
CN108365022A (zh) 选择性发射极黑硅多晶perc电池结构的制备方法
WO2015043028A1 (zh) 一种双面透光的局部铝背场太阳能电池及其制备方法
CN103456804A (zh) 在多晶硅上形成倒金字塔型多孔表面纳米织构的方法及制备短波增强型太阳电池的方法
CN113809205B (zh) 太阳能电池的制备方法
CN105914249B (zh) 全背电极接触晶硅太阳能电池结构及其制备方法
CN102403369A (zh) 一种用于太阳能电池的钝化介质膜
CN102956723B (zh) 一种太阳能电池及其制备方法
CN109285897A (zh) 一种高效钝化接触晶体硅太阳电池及其制备方法
CN116705915B (zh) 一种新型双面TOPCon电池的制备方法
CN208352305U (zh) 一种p型背接触太阳电池
CN110350039A (zh) 一种双面发电太阳能电池及其制备方法
CN103219426A (zh) 一种超小绒面太阳电池及其制备方法
CN113314627B (zh) 一种perc太阳能电池及制备方法
CN114050105A (zh) 一种TopCon电池的制备方法
CN104362209B (zh) 一种背面抛光晶硅太阳能电池及其制备工艺
CN115176345A (zh) 一种太阳能电池叠层钝化结构及其制备方法
CN107978645A (zh) 一种n型晶硅电池的制备方法
CN111640807B (zh) 具有v型槽绒面结构的制绒片及其制备方法和应用
CN111524982A (zh) 太阳电池
CN114695593B (zh) 背接触电池的制备方法及背接触电池
Dong et al. Passivation of high aspect ratio silicon nanowires by using catalytic chemical vapor deposition for radial heterojunction solar cell application

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180831

RJ01 Rejection of invention patent application after publication