CN113314627B - 一种perc太阳能电池及制备方法 - Google Patents

一种perc太阳能电池及制备方法 Download PDF

Info

Publication number
CN113314627B
CN113314627B CN202110587769.8A CN202110587769A CN113314627B CN 113314627 B CN113314627 B CN 113314627B CN 202110587769 A CN202110587769 A CN 202110587769A CN 113314627 B CN113314627 B CN 113314627B
Authority
CN
China
Prior art keywords
silicon wafer
solar cell
front surface
perc solar
doped region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110587769.8A
Other languages
English (en)
Other versions
CN113314627A (zh
Inventor
董建文
张佳舟
王敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou Shichuang Energy Co Ltd
Original Assignee
Changzhou Shichuang Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou Shichuang Energy Co Ltd filed Critical Changzhou Shichuang Energy Co Ltd
Priority to CN202110587769.8A priority Critical patent/CN113314627B/zh
Publication of CN113314627A publication Critical patent/CN113314627A/zh
Application granted granted Critical
Publication of CN113314627B publication Critical patent/CN113314627B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • H01L31/0288Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种PERC太阳能电池及制备方法,所述制备方法包括如下步骤:对硅片依次进行制绒;正面进行局部损伤处理;扩散;背面去除PSG及碱抛光;正面热氧化生长一层二氧化硅;背面沉积氧化铝及氮化硅薄膜;正面沉积氮化硅薄膜;背面激光开槽;丝网印刷电极及烧结,得到PERC太阳能电池。本发明不需要激光掺杂,便可实现PERC太阳能电池的选择性发射极,简化了工艺流程,大大降低了制造成本。

Description

一种PERC太阳能电池及制备方法
技术领域
本发明涉及一种太阳能电池及制备方法,具体涉及一种PERC太阳能电池及制备方法。
背景技术
当前太阳能电池制造领域的两大主线主要围绕降本和提效进行,因此开发成本低、效率高的太阳能电池是光伏行业攻克的课题。主流的太阳能电池为晶体硅太阳能电池,其中背钝化(PERC)太阳能电池占了80%以上的市场份额,随着选择性发射极和背面碱抛光技术的开发和导入,使得产业化PERC太阳能电池的转换效率提升至23%左右。一方面,选择性发射极实现了金属区和非金属区不同的掺杂曲线,金属区重掺杂降低了金属区的复合电流密度和接触电阻,非金属区轻掺杂降低了PN结的反向饱和电流密度并提升了光谱响应,可以有效提升电池的转换效率;另一方面,背面碱抛光技术使得硅片背面更加平整,有利于表面钝化,可以降低表面复合速率,进一步提升电池的开路电压和转换效率。
现有PERC太阳能电池的制备方法主要包括如下步骤:制绒、扩散、正面激光掺杂选择性发射极、氧化、背面碱抛光及刻蚀、背面沉积氧化铝钝化膜、背面沉积氮化硅薄膜、正面沉积氮化硅薄膜、背面激光开槽、丝网印刷电极、烧结。可以看出,现有产业化的选择性发射极主要通过激光掺杂来实现,其原理是先利用扩散工序在硅片表面形成PSG层,再利用激光局部作用在PSG上,激光提供高温能量,将PSG中的磷原子掺杂到硅片表面形成重掺杂区。但是该技术存在一定的局限性,由于激光掺杂的一部分磷源来自于扩散工序形成的PSG层,所以扩散推结完成后需要额外增加一步来沉积PSG,延长了扩散工艺时间,增加了制造成本,而且PSG沉积过程会影响推结完成后硅片表面的掺杂曲线,限制了轻掺杂区低表面浓度高方阻技术的开发;激光掺杂的另一部分磷源来自于已扩散进入硅片表面的磷,激光能量较高,同时也会将硅片浅表面的磷杂质掺入到硅片基体中,因此硅片表面10~20nm处的掺杂浓度会在激光掺杂后有所降低。为了保证激光掺杂区具有良好的金属欧姆接触,要求硅片表面的掺杂浓度大于2E20cm-3,然而非激光掺杂的轻掺杂区表面掺杂浓度也要求大于2E20cm-3,这更加限制了轻掺杂区低表面浓度高方阻技术的开发,影响PERC太阳能电池的转换效率进一步提高。
而且,产业化背面碱抛光技术导入PERC太阳能电池的制备方法中,碱抛光技术和激光掺杂选择性发射极技术之间存在匹配性的问题。因为在背面碱抛光工艺中,硅片背面有PSG保护不会被抛光,而硅片正面重掺杂区的PSG被激光掺杂工序已破坏,导致重掺杂区会被抛光。因此目前产业化解决方案为在激光掺杂选择性发射极和背面碱抛光之间,增加一步氧化工序,使激光掺杂区域也形成氧化层,保护激光掺杂区域不被碱抛光。所以,随着激光掺杂选择性发射极和背面碱抛光技术的产业化导入,虽然有效提升了PERC电池的转换效率,但是却增加了三道工序,分别是激光掺杂工序、氧化工序及背面碱抛工序,增加了PERC电池的工艺复杂性和制造成本。
发明内容
本发明的目的之一是提供一种PERC太阳能电池的制备方法,不仅能够简化PERC太阳能电池的工艺流程,降低制造成本;而且能够实现重掺杂区和轻掺杂区的浓度差异,实现轻掺杂区低表面浓度和高方阻的技术发展。
本发明的这一目的通过如下的技术方案来实现:
一种PERC太阳能电池的制备方法,包括如下步骤:对硅片依次进行制绒;正面进行局部损伤处理;扩散;背面去除PSG及碱抛光;正面热氧化生长一层二氧化硅;背面沉积氧化铝及氮化硅薄膜;正面沉积氮化硅薄膜;背面激光开槽;丝网印刷电极及烧结,得到PERC太阳能电池。
本发明的制备方法采用激光或离子束轰击对硅片正面进行局部损伤处理,进而在硅片正面形成损伤区或缺陷区,再对硅片进行扩散形成选择性发射极,其原理在于:扩散过程中损伤区或缺陷区杂质原子的扩散速率高于非损伤区或非缺陷区杂质原子的扩散速率,利用杂质原子的扩散速率差异,实现扩散后硅片正面的损伤区或缺陷区形成重掺杂区,非损伤区或非缺陷区形成轻掺杂区,实现选择性发射极。而且,本发明硅片在高温扩散过程及后续高温氧化过程中能够使得硅片正面由于损伤处理导致的相变区域得到进一步晶化,两次高温过程能够很好地修复硅片正面的损伤区或缺陷区,提高损伤区或缺陷区的硅片晶化程度,降低损伤处理对电池性能的影响。
优选的,采用激光或离子束轰击对所述硅片的正面进行局部损伤处理。
进一步优选的,所述激光的波长为532nm~1064nm,激光功率为20~35W。
进一步优选的,所述离子束轰击所用的离子为氩离子,离子束能量为100~1000eV。
优选的,所述硅片的正面进行局部损伤处理步骤中,硅片正面所形成的损伤层的深度为10~20nm。
优选的,所述硅片进行扩散步骤中,硅片正面损伤处理的区域形成重掺杂区。
优选的,所述硅片进行扩散步骤中,硅片正面非损伤处理的区域形成轻掺杂区。
本发明的目的之二是提供一种PERC太阳能电池,所述PERC太阳能电池根据上述制备方法制备而成。
由于采用了上述技术方案,本发明的有益效果是:
1、本发明中,先对硅片正面进行局部损伤处理,使局部损伤区域的大小同重掺杂区的大小保持一致,再进行高温扩散,高温扩散过程中损伤区域的杂质原子扩散速度快,使得硅片表面的掺杂浓度高,进而形成重掺杂区;非损伤区域的杂质原子扩散速度相对较慢,使得表面掺杂浓度低,进而形成轻掺杂区,可以看出,本发明在扩散推结完成后不需要在硅片表面额外沉积一层PSG,也不需要激光掺杂,便可实现PERC太阳能电池的选择性发射极,降低了扩散工序的工艺时间,简化了工艺流程,大大降低了制造成本。
2、本发明中,硅片正面进行局部损伤后进行扩散,局部损伤区域在扩散过程中形成PSG层,该PSG层能够有效保护重掺杂区在后续的碱抛光工艺中不被腐蚀,不需要额外的氧化工序,减少了电池制作工序,简化了工艺流程,降低了制造成本。
3、本发明中,重掺杂区的表面掺杂浓度与轻掺杂区的表面掺杂浓度的差异化明显增加,具体地,重掺杂区的表面掺杂浓度远大于2E20cm-3,保证了良好的金属欧姆接触,同时通过调整扩散工艺参数也可以实现轻掺杂区的表面掺杂浓度远低于2E20cm-3的目标,保证了轻掺杂区具有低表面浓度及高方阻,降低表面复合电流,增加电池的开路电压,提高了PERC太阳能电池的转换效率。
附图说明
图1是本发明实施例1的选择性发射极的掺杂ECV曲线;
图2是本发明对比例1的选择性发射极的掺杂ECV曲线。
具体实施方式
下面结合附图和实施例对本发明的技术方案作进一步的说明。
实施例1
一种PERC太阳能电池的制备方法,包括如下具体步骤:
(1)选取电阻率0.5~1.5ohm.cm、厚度170µm、规格尺寸210mm*210mm的P型单晶硅片,用KOH和H2O2的混合溶液去除硅片表面的机械损伤层,同时用KOH溶液对该硅片进行制绒,在硅片表面形成1~5µm金字塔绒面;
(2)采用激光对制绒后硅片的正面进行局部损伤处理,激光波长为1064nm,激光功率为20~35W,硅片正面形成的损伤区的深度为20nm,损伤区图形同电池正面银电极图形保持一致,该损伤区图形由150根平行的栅线组成,相邻两个栅线之间的间距为1.403nm,栅线宽度为100um;
(3)将步骤(2)中损伤处理后的硅片送入管式扩散炉进行磷源扩散,三氯氧磷流量为500~1000mL/min,氧气流量为500~1000mL/min,沉积温度780℃,沉积时间5~10min,推结温度860℃,推结时间30min,由于损伤区的掺杂曲线受硅片表面损伤程度的影响,因此可以通过调整扩散工艺参数温度、气体流量及时间,使得硅片正面的损伤区形成重掺杂区,硅片正面的非损伤区形成轻掺杂区,保证硅片表面10~20nm处重掺杂区的表面浓度远大于轻掺杂区的表面浓度,而且通过调整扩散工艺参数,可以实现重掺杂区的表面浓度为2E20cm-3~3E20cm-3,轻掺杂区的表面浓度为9E19cm-3~1E20cm-3的目标;此时硅片正面由于损伤处理导致的相变区域在高温扩散过程中进一步晶化,初步修复硅片正面的损伤区或缺陷区,提高损伤区或缺陷区的硅片晶化程度,降低损伤处理对电池性能的影响;
(4)采用链式滚轮带液的方式在HF溶液中去除硅片背面的PSG层,接着在KOH溶液中进行背面抛光,使得硅片背面的反射率大于40%;
(5)在热氧化炉管中对硅片进行高温热氧化,使得硅片正面生长一层二氧化硅进行表面钝化,此时硅片正面由于损伤处理导致的相变区域在高温氧化过程中进一步得到修复,大大提高了损伤区或缺陷区的硅片晶化程度,降低了损伤处理对电池性能的影响;
(6)采用PECVD的方式在硅片背面先沉积一层5~15nm厚度的氧化铝,再沉积一层70~100nm厚度的氮化硅,在硅片背面形成氧化铝/氮化硅叠层钝化膜;
(7)采用PECVD的方式在硅片正面沉积一层75~80nm后的氮化硅;
(8)使用激光对硅片背面进行局部开槽形成多根平行的栅线,其中栅线之间的间距为1.2mm,栅线根数173根,栅线宽度35um;
(9)丝网印刷背面银电极、背面铝浆、正面银电极并烘干,保证正面银电极与硅片正面的重掺杂区域重合,最后将硅片送入烧结炉进行烧结,完成PERC太阳能电池的制备。
实施例2
取实施例1步骤(3)完成选择性发射极的硅片,测试重掺杂区域和轻掺杂区域的表面掺杂浓度,测试结果如图1所示。
实施例3
一种PERC太阳能电池的制备方法,包括如下具体步骤:
(1)选取电阻率0.5~1.5ohm.cm、厚度180µm、规格尺寸182mm*182mm的P型单晶硅片,用KOH和H2O2的混合溶液去除硅片表面的机械损伤层,同时用KOH溶液对该硅片进行制绒,在硅片表面形成2~3µm金字塔绒面;
(2)采用离子束轰击对制绒后硅片的正面进行局部损伤处理,其中离子束轰击所用的离子为氩离子,离子束能量为100~1000eV,硅片正面形成的损伤区的深度为10nm,损伤区图形同电池正面银电极图形保持一致,该损伤区图形由150根平行的栅线组成,相邻两个栅线之间的间距为1.403nm,栅线宽度为100um;
(3)将步骤(2)中损伤处理后的硅片送入管式扩散炉进行磷源扩散,三氯氧磷流量为600~1000mL/min,氧气流量为800~1000mL/min,沉积温度780℃,沉积时间5~10min,推结温度860℃,推结时间20min,由于损伤区的掺杂曲线受硅片表面损伤程度的影响,因此可以通过调整扩散工艺参数温度、气体流量及时间,使得硅片正面的损伤区形成重掺杂区域,硅片正面的非损伤区形成轻掺杂区,保证硅片表面10~20nm处重掺杂区的表面浓度远大于轻掺杂区的表面浓度,而且通过调整扩散工艺参数,可以实现重掺杂区的表面浓度为2E20cm-3~3E20cm-3,轻掺杂区的表面浓度为9E19cm-3~1E20cm-3的目标;此时硅片正面由于损伤处理导致的相变区域在高温扩散过程中进一步晶化,初步修复硅片正面的损伤区或缺陷区,提高损伤区或缺陷区的硅片晶化程度,降低损伤处理对电池性能的影响;
(4)采用链式滚轮带液的方式在HF溶液中去除硅片背面的PSG层,接着在KOH溶液中进行背面抛光,使得硅片背面的反射率大于40%;
(5)在热氧化炉管中对硅片进行高温热氧化,使得硅片正面生长一层二氧化硅层进行表面钝化;此时硅片正面由于损伤处理导致的相变区域在高温氧化过程中进一步修复,大大提高了损伤区或缺陷区的硅片晶化程度,降低了损伤处理对电池性能的影响;
(6)采用PECVD的方式在硅片背面先沉积一层5~15nm厚度的氧化铝,再沉积一层70~100nm厚度的氮化硅,在硅片背面形成氧化铝/氮化硅叠层钝化膜;
(7)采用PECVD的方式在硅片正面沉积一层75~80nm后的氮化硅;
(8)使用激光对硅片背面进行局部开槽形成多根平行的栅线,其中栅线之间的间距为1.2mm,栅线根数173根,栅线宽度35um;
(9)丝网印刷背面银电极、背面铝浆、正面银电极并烘干,保证正面银电极与硅片正面的重掺杂区域重合,最后将硅片送入烧结炉进行烧结,完成PERC太阳能电池的制备。
对比例1
采用现有的制备工艺,包括如下步骤:制绒、扩散、正面激光掺杂选择性发射极、氧化、背面碱抛光及刻蚀、背面沉积氧化铝钝化膜、背面沉积氮化硅薄膜、正面沉积氮化硅薄膜、背面激光开槽、丝网印刷电极和烧结,完成PERC太阳能电池的制备。
对比例2
取对比例1完成选择性发射极的硅片,测试重掺杂区和轻掺杂区的表面掺杂浓度,测试结果如图2所示。
从图1可以看出,本发明实施例1制备的选择性发射极的重掺杂区的最高表面浓度为9.6E20cm-3,轻掺杂区的最高表面浓度为4.9E20cm-3,而且重掺杂区的表面掺杂浓度与轻掺杂区的表面掺杂浓度没有出现相互交叠的区域,两者的浓度差异明显,重掺杂区的表面掺杂浓度远大于轻掺杂区的掺杂浓度,实现了重掺杂区具有较高的表面掺杂浓度,进而能够保证正面银电极同重掺杂区具有良好的金属欧姆接触;同时通过调整扩散工艺参数也可以实现轻掺杂区较低的表面掺杂浓度,因此轻掺杂区能够实现高方阻,降低硅片的表面复合,增加电池的开路电压,最终提高了PERC太阳能电池的转换效率。
从图2可以看出,对比例1制备的选择性发射极的重掺杂区的最高表面浓度为2.3E20cm-3,轻掺杂区的最高表面浓度为3.9E20cm-3,而且重掺杂区的表面掺杂浓度与轻掺杂区的表面掺杂浓度具有相互交叠的区域,两者的浓度差异不明显,重掺杂区的表面掺杂浓度甚至会出现低于轻掺杂区的表面掺杂浓度,因此导致正面银电极同重掺杂区不能实现良好的欧姆接触;而且轻掺杂区的表面掺杂浓度太高,无法提高该区域的方阻,最终使得PERC太阳能电池的转换效率降低。

Claims (6)

1.一种PERC太阳能电池的制备方法,其特征在于,包括如下步骤:对硅片依次进行制绒,采用激光或离子束轰击对所述硅片的正面进行局部损伤处理,扩散,背面去除PSG及碱抛光,正面热氧化生长一层二氧化硅,背面沉积氧化铝及氮化硅薄膜,正面沉积氮化硅薄膜,背面激光开槽,丝网印刷电极及烧结,得到PERC太阳能电池;
所述硅片的正面进行局部损伤处理步骤中,硅片正面所形成的损伤层的深度为10~20nm。
2.根据权利要求1所述的PERC太阳能电池的制备方法,其特征在于:所述激光的波长为532nm~1064nm,激光功率为20~35W。
3.根据权利要求1所述的PERC太阳能电池的制备方法,其特征在于:所述离子束轰击所用的离子为氩离子,离子束能量为100~1000eV。
4.根据权利要求1所述的PERC太阳能电池的制备方法,其特征在于:所述硅片进行扩散步骤中,硅片正面损伤处理的区域形成重掺杂区。
5.根据权利要求4所述的PERC太阳能电池的制备方法,其特征在于:所述硅片进行扩散步骤中,硅片正面非损伤处理的区域形成轻掺杂区。
6.一种PERC太阳能电池,其特征在于:所述PERC太阳能电池根据权利要求1-5中任一项所述的制备方法制备而成。
CN202110587769.8A 2021-05-28 2021-05-28 一种perc太阳能电池及制备方法 Active CN113314627B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110587769.8A CN113314627B (zh) 2021-05-28 2021-05-28 一种perc太阳能电池及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110587769.8A CN113314627B (zh) 2021-05-28 2021-05-28 一种perc太阳能电池及制备方法

Publications (2)

Publication Number Publication Date
CN113314627A CN113314627A (zh) 2021-08-27
CN113314627B true CN113314627B (zh) 2023-03-24

Family

ID=77375653

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110587769.8A Active CN113314627B (zh) 2021-05-28 2021-05-28 一种perc太阳能电池及制备方法

Country Status (1)

Country Link
CN (1) CN113314627B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114050202B (zh) * 2021-11-02 2023-07-25 横店集团东磁股份有限公司 一种叠加se的碱抛光太阳能电池的制备方法及太阳能电池
CN117352597B (zh) * 2023-12-05 2024-04-02 一道新能源科技股份有限公司 一种太阳能电池的制备方法、太阳能电池和用电设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106449876A (zh) * 2016-10-17 2017-02-22 无锡尚德太阳能电力有限公司 选择性发射极双面perc晶体硅太阳能电池的制作方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102779739B (zh) * 2012-07-12 2015-04-15 清华大学 功率半导体器件背面制造工艺
US10014425B2 (en) * 2012-09-28 2018-07-03 Sunpower Corporation Spacer formation in a solar cell using oxygen ion implantation
CN103311376A (zh) * 2013-06-26 2013-09-18 英利集团有限公司 一种n型太阳能电池的制作方法
CN110828607A (zh) * 2019-08-27 2020-02-21 横店集团东磁股份有限公司 一种高转换效率se-perc太阳能电池的制备方法
CN110993704A (zh) * 2019-12-20 2020-04-10 浙江爱旭太阳能科技有限公司 用于制造太阳能电池的方法和太阳能电池
CN112349809B (zh) * 2020-10-22 2023-06-06 泰州中来光电科技有限公司 一种局域发射极的太阳能电池及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106449876A (zh) * 2016-10-17 2017-02-22 无锡尚德太阳能电力有限公司 选择性发射极双面perc晶体硅太阳能电池的制作方法

Also Published As

Publication number Publication date
CN113314627A (zh) 2021-08-27

Similar Documents

Publication Publication Date Title
CN102598311B (zh) 太阳能电池及制造所述太阳能电池的方法
JP5374504B2 (ja) エミッタ構造の作製方法とその結果のエミッタ構造
US20080216893A1 (en) Process for Manufacturing Photovoltaic Cells
US20050189013A1 (en) Process for manufacturing photovoltaic cells
US20070295399A1 (en) Back-Contact Photovoltaic Cells
US20150027522A1 (en) All-black-contact solar cell and fabrication method
CN108470781A (zh) 选择性发射极黑硅双面perc晶体硅太阳能电池的制作方法
EP2740149B1 (en) Method for forming patterns of differently doped regions
KR20130052627A (ko) 선택적 전면 필드를 구비한 후면 접합 태양전지
CN113314627B (zh) 一种perc太阳能电池及制备方法
CN113809205B (zh) 太阳能电池的制备方法
CN111477695B (zh) 一种正面无电极的太阳能电池片及其制备方法
KR20160090287A (ko) 나노구조의 실리콘계 태양 전지 및 나노구조의 실리콘계 태양 전지의 제조 방법
CN111509057A (zh) 一种n型电池及其制备方法
JPWO2014174613A1 (ja) 太陽電池の製造方法
CN115483310A (zh) 太阳电池的制备方法、发射结及太阳电池
CN115763609A (zh) 一种隧穿型背接触异质结太阳能电池及其制作方法
CN116936677A (zh) 一种制备tbc电池的方法
US20090032091A1 (en) Solar cell
CN103618025B (zh) 一种晶体硅背结太阳能电池制备方法
KR101396027B1 (ko) 고효율 후면 접촉 후면 접합 태양 전지의 이온 주입 및 어닐링
CN110391319B (zh) 一种抗pid效应的高效黑硅电池片的制备方法
CN116864548A (zh) 一种p型背结TOPCon电池及其制备方法
US9490387B2 (en) Method of manufacturing a solar cell and equipment therefore
US20230136715A1 (en) Laminated passivation structure of solar cell and preparation method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant