CN116705915B - 一种新型双面TOPCon电池的制备方法 - Google Patents

一种新型双面TOPCon电池的制备方法 Download PDF

Info

Publication number
CN116705915B
CN116705915B CN202310974622.3A CN202310974622A CN116705915B CN 116705915 B CN116705915 B CN 116705915B CN 202310974622 A CN202310974622 A CN 202310974622A CN 116705915 B CN116705915 B CN 116705915B
Authority
CN
China
Prior art keywords
silicon substrate
layer
silicon
sided
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310974622.3A
Other languages
English (en)
Other versions
CN116705915A (zh
Inventor
肖奇
胡琴
张飞
孙铁囤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou EGing Photovoltaic Technology Co Ltd
Original Assignee
Changzhou EGing Photovoltaic Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou EGing Photovoltaic Technology Co Ltd filed Critical Changzhou EGing Photovoltaic Technology Co Ltd
Priority to CN202310974622.3A priority Critical patent/CN116705915B/zh
Publication of CN116705915A publication Critical patent/CN116705915A/zh
Application granted granted Critical
Publication of CN116705915B publication Critical patent/CN116705915B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0684Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells double emitter cells, e.g. bifacial solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明提供一种新型双面TOPCon电池的制备方法,在正面电极图形区域的遂穿氧化层及多晶硅层上面涂覆掩膜,形成一层掩膜层;此掩膜的成分含有硼源;隧穿氧化层和非晶硅层的设置,用于隔开栅线与硅基体,避免栅线与硅基体直接接触。掩膜对其覆盖区域的遂穿氧和非晶硅起到保护作用,避免被碱抛掉。

Description

一种新型双面TOPCon电池的制备方法
技术领域
本发明涉及太阳能电池技术领域,具体是一种新型双面TOPCon电池的制备方法。
背景技术
在制备双面TOPCon电池时,电池背表面一般由二氧化硅和掺杂的多晶硅组成钝化接触结构,而前表面仅由氧化铝钝化,使用烧穿型浆料,容易导致栅线与硅基体直接接触。
因此,如何改进TOPCon电池的制备工艺,避免栅线与硅基体直接接触,成为了本领域技术人员亟待解决的问题。
发明内容
为解决背景技术中的技术问题,本发明公开了一种新型双面TOPCon电池的制备方法。
本发明提供一种新型双面TOPCon电池的制备方法,包括以下步骤:
S1、硅基体双面制绒;
S2、硅基体正面进行硼扩散;
S3、硅基体背面去除BSG层;
S4、硅基体背面抛光;
S5、硅基体正面使用激光对电极图形区域进行开膜,去除BSG层;
S6、硅基体双面沉积遂穿氧化层和非晶硅层;
S7、在正面电极图形区域的遂穿氧化层及多晶硅层上面涂覆掩膜,形成一层掩膜层;此掩膜的成分含有硼源;
S8、对硅基体背面进行磷扩散,实现非晶硅层的掺杂和晶化,将非晶硅层转化为掺磷的多晶硅层;磷扩散时,硅基体正面掩膜中硼原子向硅基体正面的多晶硅掺杂形成重掺杂;
S9、去除硅基体正面的PSG层;
S10、通过酸洗碱抛的方式去除硅基体正面无掩膜保护区域的非晶硅,去除硅基体正面的掩膜以及BSG层,去除硅基体背面的PSG层;
S11、硅基体的正面沉积氧化铝膜;
S12、硅基体双面沉积氮化硅膜;
S13、在硅基体的正反两面进行丝网印刷,制得双面TOPCon电池。
隧穿氧化层和非晶硅层的设置,用于隔开栅线与硅基体,避免栅线与硅基体直接接触。由于步骤S10中,遂穿氧和非晶硅容易被碱抛掉,因此掩膜对正面电极图形区域内的遂穿氧和非晶硅起到保护作用,避免被碱抛掉。
由于硼在硅中的固相浓度低,导致硼扩掺杂浓度低,为了实现更好的接触,正面细栅从银浆转变为了银铝浆,为了达到同样的导电效果,银铝浆栅线宽度必须大约银浆,从而导致电流密度降低,因此在对硅基体背面进行磷扩散时,掩膜中的硼原子还会扩散到正面图形化区域的多晶硅中,实现金属化区域的重掺杂,形成选择性发射极,从而降低了接触电阻,提高了电流密度。
如硼扩散方阻过高,会引起严重的俄歇复合,方阻过低,Pn结的内建电场强度较弱,会降低开路电压,基于此,进一步的设计是:硅基体的正面硼扩散方阻范围为170-210Ω。
如隧穿氧化层的过薄,影响钝化效果;过厚,无法实现载流子的遂穿,基于此,进一步的改进在于:硅基体双面沉积遂穿氧化层的厚度为1-2nm。
如非晶硅层过薄,会影响钝化效果,而且栅线烧结容易出现烧穿;如过厚,寄生吸收会增大,电流密度会降低,基于此,进一步的改进在于:硅基体双面沉积非晶硅层的厚度为100-150nm。
如重掺杂的掺杂浓度过低,会增加栅线与硅基体的接触电阻,欧姆接触变差;如掺杂浓度过高,会增加复合,降低少子寿命,基于此,进一步的设计是:硅基体背面磷扩散时,重掺杂的掺杂浓度为5E19-1E20atoms/cm3 ,同时完成晶化。
硅基体正面绒面的反射率,直接影响太阳能电池对光的利用率,基于此,进一步的设计是:硅基体正面的绒面反射率在10%以下。
如硅基体背面绒面的反射率过小,会降低内反射,降低光的利用率;如反射率过大,硅基体会过于光滑,会增加栅线与硅基体的接触电阻,降低填充因子,基于此,进一步的设计是:硅基体背面绒面的反射率为30%-40%。
如氧化铝膜的厚度低于3nm,会降低钝化效果;如高于10nm,不仅不会提高钝化效果,还会导致TMA用量增加,增加生产时间及成本,基于此,进一步的改进在于:氧化铝膜的厚度为3-10nm。
如氮化硅膜过薄,减反射及钝化效果较差;如过厚,氮化硅的颜色会变成浅蓝色、硅本色、浅黄色或黄色,并将对应的颜色反射出去,从而影响硅基体对光谱的吸收,所以进一步地改进解决这一问题,具体的,氮化硅膜的厚度为70-90nm。
具体实施方式
实施例一:
本发明提供一种新型双面TOPCon电池的制备方法,包括以下步骤:
S1、选取电阻率为0.8-1.5ohm·cm,厚度为150nm,尺寸为182mm×182mm,少子寿命﹥20ms的N型单晶硅片;
对硅基体的正面和背面进行双面制绒;先在KOH和H2O2的混合溶液中去除硅片表面的损失层,然后在氢氧化钠溶液或者氢氧化钾溶液中进行制绒,硅片表面形成金字塔绒面,金字塔绒面大小为5μm,正面反射率为8%,背面反射率为30%;正面反射率的设置,用于减少反射的光,提高电池对光的利用率;背面反射率的设置,用于提高内反射,提高光的利用率,降低栅线与硅基体的接触电阻,提高填充因子;
S2、硅基体正面进行硼扩散,硼扩散温度为1045℃,扩散后掺杂浓度为8E18atoms/cm3 ,结深为1200nm,硼源为BCL3;硼扩散方阻为170Ω;如此设置,不仅避免了俄歇复合,还提高了Pn结的内建电场强度,保持开路电压稳定;
S3、采用链式HF酸洗去除硅基体背面的BSG(硼硅玻璃)层;HF浓度为40%。
S4、硅基体背面抛光;采用碱刻蚀方式,碱抛液为氢氧化钠溶液,正面由于有BSG层保护不会被抛光,背面碱抛后使硅片背面反射率为40%,碱抛形成的塔基大小为10μm;
S5、硅基体正面使用激光对电极图形区域进行开膜,去除BSG层,使金属化区域沉积的遂穿氧、多晶硅与硅基体接触;激光功率为30W;
S6、采用LPCVD工艺在硅片双面依次沉积制备遂穿氧化层和非晶硅层,遂穿氧化层的厚度为1nm,非晶硅层的厚度为100nm;隧穿氧化层的厚度设置,不仅确保了钝化效果,还确保了载流子的遂穿稳定性;
S7、采用丝网印刷方式在正面电极图形区域沉积掩膜,掩膜沉积宽度大于等于栅线宽度,掩膜含6%浓度的硼源,而后烘干形成稳定的掩膜层,厚度为20nm;
S8、温度保持在870℃,通入POCL3进行扩散实现非晶硅层的掺杂和晶化,时间为600s;
扩散后非电极图形区域掺杂浓度为5E20atoms/cm3 ,结深为120nm,同时正面掩膜中硼源向电极图形区域非晶硅进行扩散,扩散后电极图形区域掺杂浓度为5E19atoms/cm3,结深为120nm;如此设置,不仅降低了栅线与硅基体的接触电阻,欧姆接触更佳,而且还降低了复合,延长了少字寿命;
S9、采用链式HF酸洗去除硅基体正面的PSG(磷硅玻璃)层,HF浓度为3%;
S10、通过RCA清洗的方式去除硅基体正面非电极图形区域的非晶硅,碱液为NaOH溶液,浓度为5%,温度为65℃;
RCA后设有HF槽,装设有40%浓度的HF,通过酸洗的方式去除硅基体背面的PSG层,去除硅基体正面的掩膜和BSG层;
S11、通过ALD设备在硅基体的正面沉积氧化铝膜,厚度为3nm;如此设置,不仅确保钝化效果,还降低了TMA的用量,降低了生产时间和成本;
S12、通过PECVD设备硅基体双面沉积氮化硅膜,厚度为70nm;如此设置,不仅确保了减反射和钝化效果,还使得氮化硅的颜色不会发生改变,从而避免影响硅基体对光谱的吸收;
S13、在硅基体的正反两面进行丝网印刷,制得双面TOPCon电池。
隧穿氧化层和非晶硅层的设置,用于隔开栅线与硅基体,避免栅线与硅基体直接接触。由于步骤S10中,遂穿氧和非晶硅容易被碱抛掉,因此掩膜对正面电极图形区域内的遂穿氧和非晶硅起到保护作用,避免被碱抛掉。
由于硼在硅中的固相浓度低,导致硼扩掺杂浓度低,为了实现更好的接触,正面细栅从银浆转变为了银铝浆,为了达到同样的导电效果,银铝浆栅线宽度必须大约银浆,从而导致电流密度降低,因此在对硅基体背面进行磷扩散时,掩膜中的硼原子还会扩散到正面图形化区域的多晶硅中,实现金属化区域的重掺杂,形成选择性发射极,从而降低了接触电阻,提高了电流密度。
实施例二:
与实施例一相比,区别之处为:
S1、硅基体正面绒面反射率为10%,背面绒面反射率为40%;
S2、硼扩散方阻为210Ω;
S6、遂穿氧化层的厚度为2nm,非晶硅层的厚度为150nm;
S7、采用激光转印方式在正面电极图形区域沉积掩膜,其掩膜层为22nm;
S8、扩散后电极图形区域掺杂浓度为1E20atoms/cm3
S11、氧化铝膜的厚度为10nm;
S12、氮化硅膜的厚度为90nm。
对比例一:
与实施例一相比,区别之处为:
S1、选取电阻率为0.8-1.5ohm·cm,厚度为150nm,尺寸为182mm×182mm,少子寿命﹥20ms的N型单晶硅片;
对硅基体的正面和背面进行双面制绒;先在KOH和H2O2的混合溶液中去除硅片表面的损失层,然后在氢氧化钠溶液或者氢氧化钾溶液中进行制绒,硅片表面形成金字塔绒面,金字塔绒面大小为5μm,正面反射率为8%,背面反射率为35%;
S2、硅基体正面进行硼扩散,硼扩散温度为1045℃,扩散后掺杂浓度为8E18atoms/cm3 ,结深为1200nm,硼源为BCL3
S3、采用链式HF酸洗去除硅基体背面的BSG(硼硅玻璃)层;HF浓度为40%;
S4、硅基体背面抛光;采用碱刻蚀方式,碱抛液为氢氧化钠溶液,正面由于有BSG层保护不会被抛光,背面碱抛后使硅片背面反射率为40%,碱抛形成的塔基大小为10μm;
S5、硅基体正面使用激光对电极图形区域进行开膜,去除BSG层,使金属化区域沉积的遂穿氧、多晶硅与硅基体接触;激光功率为30W;
S6、采用LPCVD工艺在硅片双面依次沉积制备遂穿氧化层和非晶硅层,遂穿氧化层的厚度为1.3nm,非晶硅层的厚度为130nm;
S7、采用链式HF酸洗去除硅基体正面的PSG(磷硅玻璃)层,HF浓度为3%;
S8、通过RCA清洗的方式去除硅基体正面非电极图形区域的非晶硅,碱液为NaOH溶液,浓度为5%,温度为65℃;
RCA后设有HF槽,装设有40%浓度的HF,通过酸洗的方式去除硅基体背面的PSG层,去除硅基体正面的掩膜和BSG层;
S9、通过ALD设备在硅基体的正面沉积氧化铝膜,厚度为6nm;
S10、通过PECVD设备硅基体双面沉积氮化硅膜,厚度为80nm;
S11、在硅基体的正反两面进行丝网印刷,制得双面TOPCon电池。
对比例2:
S1、选取电阻率为0.8-1.5ohm·cm,厚度为150nm,尺寸为182mm×182mm,少子寿命﹥20ms的N型单晶硅片;
对硅基体的正面和背面进行双面制绒;先在KOH和H2O2的混合溶液中去除硅片表面的损失层,然后在氢氧化钠溶液或者氢氧化钾溶液中进行制绒,硅片表面形成金字塔绒面,金字塔绒面大小为5μm,正面反射率为8%,背面反射率为35%;
S2、硅基体正面进行硼扩散,硼扩散温度为945℃,扩散后掺杂浓度为8E18atoms/cm3 ,结深为300nm,硼源为BCL3
S3、使用激光设备对电极图形区域进行重掺杂,激光功率为50W;
S4、温度保持在1045℃,氧化推结,时间为3600s,氧化推结完成后,电极图形重掺区域掺杂浓度为1E19atoms/cm3 ,结深为1500nm,非电极图形区域掺杂浓度为5E18atoms/cm3 ,结深为1200nm,形成SE(选择性发射极)结构;
S5、采用链式HF酸洗去除硅基体背面的BSG(硼硅玻璃)层;HF浓度为40%;
S6、硅基体背面抛光;采用碱刻蚀方式,碱抛液为氢氧化钠溶液,正面由于有BSG层保护不会被抛光,背面碱抛后使硅片背面反射率为40%,碱抛形成的塔基大小为10μm;
S7、采用LPCVD工艺在硅片双面依次沉积制备遂穿氧化层和非晶硅层,遂穿氧化层的厚度为1.3nm,非晶硅层的厚度为130nm;
S8、温度保持在870℃,通入POCL3进行扩散实现非晶硅层的掺杂和晶化,时间为600s;
扩散后非电极图形区域掺杂浓度为5E20atoms/cm3 ,结深为120nm;
S9、采用链式HF酸洗去除硅基体正面的PSG(磷硅玻璃)层,HF浓度为3%;
S10、通过RCA清洗的方式去除硅基体正面非电极图形区域的非晶硅,碱液为NaOH溶液,浓度为5%,温度为65℃;
RCA后设有HF槽,装设有40%浓度的HF,通过酸洗的方式去除硅基体背面的PSG层,去除硅基体正面的掩膜和BSG层;
S11、通过ALD设备在硅基体的正面沉积氧化铝膜,厚度为6nm;
S12、通过PECVD设备硅基体双面沉积氮化硅膜,厚度为80nm;
S13、在硅基体的正反两面进行丝网印刷,制得双面TOPCon电池。
实施例一、实施例二、对比例一以及对比例二对比如下:
ITEM Voc(mV) Jsc(mA/ cm2) FF(%) EFF(%)
实施例一(实施例二) 725.4 41.67 83.96 25.51
对比例一 715.8 41.41 83.68 25.22
对比例二 723.6 41.49 83.97 25.41
注:Voc表示开路电压,Jsc表示电流密度,FF表示填充因子,EFF表示转换效率。
从表可以看出,实施例一(实施例二)为采用本发明制备的双面TOPCON电池,同时完成了SE结构的制备,实施例一(实施例二)与对比例一相比,效率高0.29%,一方面是因为本发明在栅线下面制备了遂穿氧和非晶硅层,避免了栅线和硅基低直接接触,减少金属复合,另一方面是本发明制备了SE结构,实现了电极图形区域重掺杂,非电极图形区域轻掺杂,重掺杂有利于降低栅线与硅的接触电阻,而轻掺杂可以减少非电极图形区域的复合,实施例一(实施例二)与对比例一相比实现了电性能的大幅提升,实施例一(实施例二)与对比例二相比,对比例二也完成了SE结构的制备,从实验结果看,实施例一(实施例二)效率要比对比例二效率高0.1%,主要因为对比例二没有双面制备遂穿氧及非晶硅,即对比例二栅线依旧与硅基体接触,有金属复合,而实施例一(实施例二)没有金属复合。本发明通过在栅线下面制备遂穿氧和非晶硅实现了双面钝化,同时完成了发射极区域的轻重掺杂,实现了SE结构制备。
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (9)

1.一种新型双面TOPCon电池的制备方法,其特征在于,包括以下步骤:
S1、硅基体双面制绒;
S2、硅基体正面进行硼扩散;
S3、硅基体背面去除BSG层;
S4、硅基体背面抛光;
S5、硅基体正面使用激光对电极图形区域进行开膜,去除BSG层;
S6、硅基体双面沉积遂穿氧化层和非晶硅层;
S7、在正面电极图形区域的遂穿氧化层及多晶硅层上面涂覆掩膜,形成一层掩膜层;此掩膜的成分含有硼源;
S8、对硅基体背面进行磷扩散,实现非晶硅层的掺杂和晶化,将非晶硅层转化为掺磷的多晶硅层;磷扩散时,硅基体正面掩膜中硼原子向硅基体正面的多晶硅掺杂形成重掺杂;
S9、去除硅基体正面的PSG层;
S10、通过酸洗碱抛的方式去除硅基体正面无掩膜保护区域的非晶硅,去除硅基体正面掩膜以及BSG层,去除硅基体背面的PSG层;
S11、硅基体的正面沉积氧化铝膜;
S12、硅基体双面沉积氮化硅膜;
S13、在硅基体的正反两面进行丝网印刷,制得双面TOPCon电池。
2.根据权利要求1所述的一种新型双面TOPCon电池的制备方法,其特征在于:硅基体的正面硼扩散方阻范围为170-210Ω。
3.根据权利要求1所述的一种新型双面TOPCon电池的制备方法,其特征在于:硅基体双面沉积遂穿氧化层的厚度为1-2nm。
4.根据权利要求1所述的一种新型双面TOPCon电池的制备方法,其特征在于:硅基体双面沉积非晶硅层的厚度为100-150nm。
5.根据权利要求1所述的一种新型双面TOPCon电池的制备方法,其特征在于:硅基体背面磷扩散时,重掺杂的掺杂浓度为5E19-1E20atoms/cm3 ,同时完成晶化。
6.根据权利要求1所述的一种新型双面TOPCon电池的制备方法,其特征在于:硅基体正面的绒面反射率在10%以下。
7.根据权利要求1所述的一种新型双面TOPCon电池的制备方法,其特征在于:硅基体背面的反射率为30%-40%。
8.根据权利要求1所述的一种新型双面TOPCon电池的制备方法,其特征在于:氧化铝膜的厚度为3-10nm。
9.根据权利要求1所述的一种新型双面TOPCon电池的制备方法,其特征在于:氮化硅膜的厚度为70-90nm。
CN202310974622.3A 2023-08-04 2023-08-04 一种新型双面TOPCon电池的制备方法 Active CN116705915B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310974622.3A CN116705915B (zh) 2023-08-04 2023-08-04 一种新型双面TOPCon电池的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310974622.3A CN116705915B (zh) 2023-08-04 2023-08-04 一种新型双面TOPCon电池的制备方法

Publications (2)

Publication Number Publication Date
CN116705915A CN116705915A (zh) 2023-09-05
CN116705915B true CN116705915B (zh) 2023-10-20

Family

ID=87837784

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310974622.3A Active CN116705915B (zh) 2023-08-04 2023-08-04 一种新型双面TOPCon电池的制备方法

Country Status (1)

Country Link
CN (1) CN116705915B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116914033B (zh) * 2023-09-12 2023-11-28 常州亿晶光电科技有限公司 一种双面TOPCon电池的制备方法
CN116960231A (zh) * 2023-09-21 2023-10-27 常州亿晶光电科技有限公司 一种高透光性双面TOPCon电池的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109980022A (zh) * 2019-04-24 2019-07-05 通威太阳能(成都)有限公司 一种p型隧穿氧化物钝化接触太阳能电池及其制备方法
CN110137274A (zh) * 2019-05-24 2019-08-16 通威太阳能(安徽)有限公司 一种双面钝化接触的p型高效电池及其制备方法
CN209592051U (zh) * 2019-05-24 2019-11-05 通威太阳能(安徽)有限公司 一种双面钝化接触的p型高效电池
CN111524983A (zh) * 2020-04-03 2020-08-11 常州大学 一种双面选择性发射极高效晶硅电池及其制备方法
CN111628047A (zh) * 2020-06-01 2020-09-04 江苏顺风光电科技有限公司 一种N型TOPCon太阳能电池的制作方法
CN115020544A (zh) * 2022-06-08 2022-09-06 中节能太阳能科技(镇江)有限公司 硼掺杂选择性发射极N型TOPCon电池的制造方法
CN115020546A (zh) * 2022-07-08 2022-09-06 三一集团有限公司 双面钝化接触太阳电池及其制备方法
CN115148852A (zh) * 2022-06-30 2022-10-04 英利能源发展有限公司 一种双面topcon电池的制备方法
CN115863480A (zh) * 2022-11-30 2023-03-28 江苏顺风新能源科技有限公司 背面多种元素掺杂的N型TOPCon太阳能电池的制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109980022A (zh) * 2019-04-24 2019-07-05 通威太阳能(成都)有限公司 一种p型隧穿氧化物钝化接触太阳能电池及其制备方法
CN110137274A (zh) * 2019-05-24 2019-08-16 通威太阳能(安徽)有限公司 一种双面钝化接触的p型高效电池及其制备方法
CN209592051U (zh) * 2019-05-24 2019-11-05 通威太阳能(安徽)有限公司 一种双面钝化接触的p型高效电池
CN111524983A (zh) * 2020-04-03 2020-08-11 常州大学 一种双面选择性发射极高效晶硅电池及其制备方法
CN111628047A (zh) * 2020-06-01 2020-09-04 江苏顺风光电科技有限公司 一种N型TOPCon太阳能电池的制作方法
CN115020544A (zh) * 2022-06-08 2022-09-06 中节能太阳能科技(镇江)有限公司 硼掺杂选择性发射极N型TOPCon电池的制造方法
CN115148852A (zh) * 2022-06-30 2022-10-04 英利能源发展有限公司 一种双面topcon电池的制备方法
CN115020546A (zh) * 2022-07-08 2022-09-06 三一集团有限公司 双面钝化接触太阳电池及其制备方法
CN115863480A (zh) * 2022-11-30 2023-03-28 江苏顺风新能源科技有限公司 背面多种元素掺杂的N型TOPCon太阳能电池的制备方法

Also Published As

Publication number Publication date
CN116705915A (zh) 2023-09-05

Similar Documents

Publication Publication Date Title
CN110518088B (zh) 一种se太阳能电池的制备方法
CN110010721B (zh) 一种基于se的碱抛光高效perc电池工艺
CN116705915B (zh) 一种新型双面TOPCon电池的制备方法
CN110265497B (zh) 一种选择性发射极的n型晶体硅太阳电池及其制备方法
CN210926046U (zh) 太阳能电池
CN111864008A (zh) P型异质结全背电极接触晶硅光伏电池制备方法
CN110854240A (zh) Perc电池及其制备方法
CN114975691A (zh) 一种具有选择性发射极的钝化接触太阳电池及其制备方法、组件和系统
CN211182223U (zh) 一种太阳能电池背面结构及太阳能电池
CN112820793A (zh) 太阳能电池及其制备方法
WO2023077772A1 (zh) 太阳能电池及其制备方法
CN117153953B (zh) 开膜式双面TOPCon电池的制备方法
CN115513307A (zh) 背接触太阳能电池及其制备方法
CN111816714A (zh) 一种激光硼掺杂背钝化太阳能电池及其制备方法
CN112397596A (zh) 一种低成本的高效太阳能电池及其制备方法
CN115483298A (zh) 一种N型晶体硅TOPCon电池结构及其制备方法
CN115020507A (zh) 一种选择性钝化接触电池及其制备方法
CN116914033B (zh) 一种双面TOPCon电池的制备方法
CN114050105A (zh) 一种TopCon电池的制备方法
CN210956692U (zh) Perc电池
CN115176345A (zh) 一种太阳能电池叠层钝化结构及其制备方法
CN102983225A (zh) 一种局部背场的制备工艺
CN219696463U (zh) 太阳能电池
CN115692516A (zh) 一种新型topcon电池及其制作方法
CN114695593B (zh) 背接触电池的制备方法及背接触电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant