CN108461518A - 包括导电熔丝材料层的交叉点阵列器件 - Google Patents

包括导电熔丝材料层的交叉点阵列器件 Download PDF

Info

Publication number
CN108461518A
CN108461518A CN201711327488.9A CN201711327488A CN108461518A CN 108461518 A CN108461518 A CN 108461518A CN 201711327488 A CN201711327488 A CN 201711327488A CN 108461518 A CN108461518 A CN 108461518A
Authority
CN
China
Prior art keywords
material layer
electrode
conductive fuel
fuel material
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711327488.9A
Other languages
English (en)
Inventor
李宰演
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Hynix Inc
Original Assignee
Hynix Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hynix Semiconductor Inc filed Critical Hynix Semiconductor Inc
Publication of CN108461518A publication Critical patent/CN108461518A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/525Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections
    • H01L23/5256Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections comprising fuses, i.e. connections having their state changed from conductive to non-conductive
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0004Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising amorphous/crystalline phase transition cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/003Cell access
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0033Disturbance prevention or evaluation; Refreshing of disturbed memory data
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C17/00Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
    • G11C17/14Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM
    • G11C17/16Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM using electrically-fusible links
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C17/00Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
    • G11C17/14Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM
    • G11C17/16Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM using electrically-fusible links
    • G11C17/165Memory cells which are electrically programmed to cause a change in resistance, e.g. to permit multiple resistance steps to be programmed rather than conduct to or from non-conduct change of fuses and antifuses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C17/00Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
    • G11C17/14Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM
    • G11C17/18Auxiliary circuits, e.g. for writing into memory
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/10Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having two electrodes, e.g. diodes or MIM elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/20Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/20Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes
    • H10B63/24Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes of the Ovonic threshold switching type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of the switching material, e.g. layer deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of the switching material, e.g. layer deposition
    • H10N70/028Formation of the switching material, e.g. layer deposition by conversion of electrode material, e.g. oxidation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/231Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/841Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/10Resistive cells; Technology aspects
    • G11C2213/15Current-voltage curve
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/76Array using an access device for each cell which being not a transistor and not a diode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)

Abstract

在一个实施例中,交叉点阵列器件包括设置在第一导电线与第二导电线交叠的交叉区域中的柱状结构。柱状结构包括设置在第一导电线与第二导电线之间的电阻变化材料层。柱状结构包括一个或更多个导电熔丝材料层,每个导电熔丝材料层设置在第一导电线或第二导电线与电阻变化材料层之间。

Description

包括导电熔丝材料层的交叉点阵列器件
相关申请的交叉引用
本申请要求2017年1月25日提交的申请号为10-2017-0012325的韩国专利申请的优先权,其全部内容通过引用合并于此。
技术领域
本公开的各种实施例总体而言涉及一种交叉点阵列器件,更具体而言,涉及一种包括导电熔丝材料层的交叉点阵列器件。
背景技术
交叉点阵列器件已经应用于高度集成的半导体器件的单元阵列区域中。具体而言,交叉点阵列器件已被应用于诸如电阻式随机存取存储(ReRAM)器件、相变随机存取存储(PcRAM)器件、磁随机存取存储(MRAM)器件等的电阻变化器件的单元结构。单元结构可以包括形成在下电极与上电极的交叉点处的多个柱状结构,所述下电极与上电极彼此交叉并设置在不同的平面上。
在交叉点阵列器件中,难以在结构上抑制相邻单元之间的寄生电流的发生。寄生电流可能在交叉点阵列器件的单元中导致写入错误和读取错误。
发明内容
根据本公开的一个方面,提供一种交叉点阵列器件。该交叉点阵列器件包括设置在第一导电线与第二导电线交叠的交叉区域中的柱状结构。该柱状结构包括设置在第一导电线与第二导电线之间的电阻变化材料层。该柱状结构包括一个或更多个导电熔丝材料层,每个导电熔丝材料层设置在第一导电线或第二导电线与电阻变化材料层之间。
根据本公开的另一个方面,提供一种交叉点阵列器件。该交叉点阵列器件包括:多个第一导电线,所述多个第一导电线在第一方向上延伸;多个第二导电线,所述多个第二导电线在与第一方向交叉的第二方向上延伸;多个存储单元,所述多个存储单元设置在所述多个第一导电线与所述多个第二导电线交叠的交叉区域中;以及导电熔丝材料层,其设置在所述多个存储单元中。当过量电流被提供给所述多个存储单元中的一个存储单元时,一个或更多个导电熔丝材料层抑制所述过量电流流过所述一个存储单元,以防止在对与所述一个存储单元相邻的存储单元的读取操作或写入操作期间发生信息错误,所述过量电流等于或大于阈值电流,所述一个或更多个导电熔丝材料层设置在所述一个存储单元中。
附图说明
图1是示意性地示出根据本公开的一个实施例的交叉点阵列器件的透视图。
图2是示出根据比较示例的在交叉点阵列器件中可能发生的操作错误的示意图。
图3是示出根据另一比较示例的在交叉点阵列器件中可能发生的操作错误的示意图。
图4是示意性地示出根据本公开的一个实施例的交叉点阵列器件的透视图。
图5A至图5C是示意性地示出根据本公开的实施例的图4的交叉点阵列器件的柱状结构的示图。
图6A至图6C是示意性地示出根据本公开的实施例的图4的交叉点阵列器件的柱状结构的示图。
图7是示意性地示出根据本公开的一个实施例的交叉点阵列器件的透视图。
图8A至图8C是示意性地示出根据本公开的实施例的图7的交叉点阵列器件的柱状结构的示图。
图9是示出根据本公开的一个实施例的存储单元的操作的曲线图。
图10是示意性地示出根据本公开的一个实施例的交叉点阵列器件的透视图。
图11A至图11C是示意性地示出根据本公开的实施例的图10的交叉点阵列器件的柱状结构的示图。
图12A至图12D是示意性地示出根据本公开的实施例的图10的交叉点阵列器件的柱状结构的示图。
图13是示意性地示出根据本公开的一个实施例的交叉点阵列器件的透视图。
图14A至图14E是示意性地示出根据本公开的实施例的图13的交叉点阵列器件的柱状结构的示图。
图15是示意性地示出根据本公开的一个实施例的存储单元的操作的曲线图。
具体实施方式
下面将参照附图来描述各种实施例。附图中,为了清楚地说明,层和区域的大小可能被夸大。以观察者的视角来描述这些附图。如果一个要素被称为位于另一要素上,则可以理解,该要素直接位于另一要素上,或者其它要素可以介于该要素与另一要素之间。贯穿本公开的说明书,相同的附图标记表示相同的要素。
另外,单数形式的词的表达应理解为包括该词的复数形式,除非上下文另有明确指出。还应当理解的是,当术语“包括”或“具有”意在指定存在特征、数量、步骤、操作、要素、部件,或其组合,但不用于排除存在或可能添加一个或更多个其它特征、数量、步骤、操作、要素、部件,或其组合。
图1是示意性地示出了根据本公开的一个实施例的交叉点阵列器件1的透视图。参见图1,交叉点阵列器件1可以包括:第一导电线10,其在x方向上延伸并设置在y方向上;第二导电线20,其在y方向上延伸并设置在x方向上;以及柱状结构30,其在z方向上延伸并设置在第一导电线10与第二导电线20之间的交叉区域中。在图1所示的实施例中,尽管示出了x方向、y方向和z方向的直角坐标系,但这些实施例不应被限于直角坐标系,而是各种非直角坐标系的任一种都可以用于描述交叉点阵列器件1。柱状结构30可以沿x方向和y方向构成单元阵列。
图1所示的交叉点阵列器件1可以用作电阻变化存储器件。该电阻变化存储器件可以被定义为这样的存储器件,即,将不同的电子信号储存在柱状结构30中并通过检测流过选中的柱状结构30的电流的量来读出所储存的信号。选中的柱状结构30设置在第一导电线10与第二导电线20之间的预定位置处。
更具体地,每个柱状结构30可以包括产生电阻变化的有源层和设置于有源层两端的电极层。有源层可以具有响应于经由电极层向其施加的电压而改变的电阻。有源层可以以非易失性方式储存改变的电阻。结果,交叉点阵列器件1可以是使用储存在每个柱状结构30的有源层中的可变电阻作为信号信息的非易失性存储装置。电阻变化存储器件可以包括电阻式RAM(RRAM)器件、相变RAM(PRAM)器件、磁性RAM(MRAM)器件、铁电式RAM(MRAM)器件等。
图2是示出在作为比较示例的交叉点阵列器件2中可能发生的操作错误的示意图。参见图2,交叉点阵列器件2可以包括在x方向上延伸并布置在y方向上的第一导电线10a、10b和10c;在y方向上延伸并布置在x方向上的第二导电线20a、20b和20c;以及在z方向上延伸并设置在第一导电线10a、10b和10c与第二导电线20a、20b和20c交叠的交叉区域中的柱状结构30aa、30ab、30ac、30ba、30bb、30bc、30ca、30cb和30cc。柱状结构30aa、30ab、30ac、30ba、30bb、30bc、30ca、30cb和30cc中的每个柱状结构可以包括产生电阻变化的有源层和设置于有源层两端的电极层。
图2示出了柱状结构30cc的有源层被电破坏从而过量的泄露电流流过柱状结构30cc的有源层的情况。在图2中,用于对选中的柱状结构30ac执行写入操作和读取操作的理想电流流动用‘Fa’表示。由于过量的泄露电流导致在交叉点阵列器件2中产生的异常的实际电流流动用‘Fb’表示。
参见图2,在柱状结构30cc的有源层被电破坏的情况下,当对设置在第一导电线10a与第二导电线20c之间的选中的柱状结构30ac执行写入操作时,写入电流可以流过与同一第二导电线20c连接的柱状结构30cc。结果,可能不向选中的柱状结构30ac提供用于执行写入操作所需的足够的电驱动力。类似地,当对选中的柱状结构30ac执行读取操作时,可能通过柱状结构30cc产生寄生电流,从而寄生电流可能流过选中的柱状结构30ac。相应地,储存在选中的柱状结构30ac中的电阻可能不被可靠地读出。因此,在通过第一导电线10c或第二导电线20c与被电破坏的柱状结构30cc相连接的柱状结构30ac、30bc、30ca和30cb中可能发生写入错误或读取错误。
图3是示出在根据另一比较示例的交叉点阵列器件3中可能发生的操作错误的示意图。参见图3,交叉点阵列器件3可以包括在x方向上延伸并布置在y方向上的第一导电线10a、10b和10c;在y方向上延伸并布置在x方向上的第二导电线20a、20b和20c;以及在z方向上延伸并设置在第一导电线10a、10b和10c与第二导电线20a、20b和20c交叠的交叉区域中的柱状结构30aa、30ab、30ac、30ba、30bb、30bc、30ca、30cb和30cc。柱状结构30aa、30ab、30ac、30ba、30bb、30bc、30ca、30cb和30cc中的每个柱状结构可以包括产生电阻变化的有源层和设置于有源层的相对两端的电极层。
图3示出了柱状结构30cb和30cc的有源层被电破坏从而过量的泄露电流流过柱状结构30cb和30cc的有源层的情况。在图3中,用于对选中的柱状结构30ac执行写入操作和读取操作的理想电流流动用‘Fc’表示。由于过量的泄露电流导致在交叉点阵列器件3中产生的异常的实际电流流动用‘Fd’表示。
参见图3,当对设置在第一导电线10a与第二导电线20c之间的选中的柱状结构30ac执行写入操作时,写入电流可以通过柱状结构30cb和30cc流至第一导电线10c和第二导电线20b。结果,可能不向选中的柱状结构30ac提供用于执行写入操作所需的足够的电驱动力。类似地,当对选中的柱状结构30ac执行读取操作时,可能通过柱状结构30cb和30cc产生寄生电流。结果,储存在选中的柱状结构30ac中的电阻可能不被可靠地读出。
更具体地,在寄生电流通过柱状结构30cb和30cc流至第一导电线10c和第二导电线20b之后,寄生电流可能流过与第二导电线20b连接的柱状结构30ab、30bb和30cb之中仍处于低电阻状态的至少一个柱状结构(例如柱状结构30ab)。结果,针对选中的柱状结构30ac的写入操作和读取操作不能被可靠地执行。
这样,当共享同一第一导电线10c的一对柱状结构30cb和30cc的有源层被电破坏时,写入错误和读取错误可能同时发生在柱状结构30ab、30bc、30ac和30bb(其分别共享与一对柱状结构30cb和30cc连接的第二导电线20b和20c)中。类似地,当交叉点阵列器件3中共享同一第二导电线的一对柱状结构中发生电击穿(electrical breakdown)时,写入错误和读取错误可能同时发生在共享与该对柱状结构连接的同一第一导电线的多个柱状结构中。
图4是示意性地示出根据本公开的一个实施例的交叉点阵列器件4的透视图。参见图4,交叉点阵列器件4可以包括彼此交叉并且设置在不同平面上的第一导电线10和第二导电线20。交叉点阵列器件4还可以包括设置在第一导电线10与第二导电线20交叠的交叉区域中的柱状结构30A,该交叉区域是在第一导电线10与第二导电线20之间的区域。柱状结构30A可以对应于交叉点阵列器件4的存储单元。虽然未示出,但交叉点阵列器件4可以包括布置在多个第一导电线10与多个第二导电线20之间的交叉区域中的多个柱状结构30A。
柱状结构30A可以包括电阻变化材料层120。柱状结构30A可以包括分别设置在电阻变化材料层120的上部和下部上的第一电极110和第二电极130。相应地,利用电阻变化材料层120的可变电阻特性,图4中所示的交叉点阵列器件4可以用作电阻变化存储器件。
电阻变化材料层120可以包括例如过渡金属氧化物、钙钛矿基材料、硫族化物基材料、铁电材料、铁磁材料等。因此,电阻变化材料层120可以用作例如RRAM器件、PRAM器件、MRAM器件、FRAM器件等的有源层。
第一电极110和第二电极130可以包括金属、导电氮化物、导电氧化物等。在一个实施例中,第一电极110和第二电极130中的至少一个电极可以包括导电熔丝材料层。
当等于或大于预定阈值电流的过量电流被提供给导电熔丝材料层时,导电熔丝材料层可以阻止过量电流流过柱状结构30A。此时,阈值电流可以大于处于低电阻状态的电阻变化材料层中所允许的操作电流。
当柱状结构30A中的电阻变化材料层120具有缺陷或者易受到过量电流的影响从而电阻变化材料层120被外加电压电破坏时,可能发生一种情况的示例,即,等于或大于阈值电流的过量电流被提供给导电熔丝材料层。当超过容限的电压或电流从外部施加到柱状结构30A并由此电阻变化材料层120被电破坏时,可能发生该情况的另一个示例,即,过量电流被提供给导电熔丝材料层。当电阻变化材料层120被电破坏时,等于或大于阈值电流的过量泄漏电流可能流过柱状结构30A。
因此,如上所述,在柱状结构30A中发生的过量泄漏电流可能在相邻的柱状结构中引起写入错误和读取错误。然而,在该实施例中,导电熔丝材料层可以在电阻变化材料层120被电破坏之前抑制过量电流流过柱状结构30A。结果,防止了在与柱状结构30A相邻的另一柱状结构中发生写入错误和读取错误。
图5A至图5C是示意性地示出根据本公开的实施例的柱状结构30AA、30AB和30AC的示图。在图5A至图5C中示出的柱状结构30AA、30AB和30AC可以对应于根据本公开的实施例的图4的交叉点阵列器件4的存储单元。
参见图5A,柱状结构30AA可以包括第一电极110a、电阻变化材料层120和第二电极130。第一电极110a可以包括第一子电极层112、导电熔丝材料层114和第二子电极层116。导电熔丝材料层114可以设置在第一电极110a的内部。也就是说,导电熔丝材料层114可以设置在第一子电极层112与第二子电极层116之间。因此,相对于图5A的朝向,导电熔丝材料层114可以不与设置在第一电极110a上的电阻变化材料层120和设置在第一电极110a下方的图4的第一导电线10物理接触。也就是说,导电熔丝材料层114可以与电阻变化材料层120和图4的第一导电线10隔开。
第一子电极层112和第二子电极层116中的每个可以包括例如金属、导电氮化物、导电氧化物等。第一子电极层112和第二子电极层116中的每个可以包括例如金(Au)、铝(Al)、铂(Pt)、铜(Cu)、银(Ag)、钌(Ru)、钛(Ti)、铱(Ir)、钨(W)、氮化钛(TiN)、氮化钽(TaN)、氧化钌(RuO2)等。第一子电极层112和第二子电极层116可以由相同的材料或不同的材料制成。
当等于或大于预定阈值电流的过量电流被提供给导电熔丝材料层114时,导电熔丝材料层114可以阻止过量电流流过柱状结构30AA。当电阻变化材料层120处于低电阻状态时,阈值电流可以大于电阻变化材料层120中所允许的操作电流。例如过量电流可以具有与当电阻变化材料层120被电破坏时产生的泄漏电流相同的大小。
在一个实施例中,当过量电流被提供给导电熔丝材料层114时,导电熔丝材料层114可以从低电阻状态改变为高电阻状态。相应地,当过量电流被提供给第一电极110a时,第一子电极层112和第二子电极层116可以通过导电熔丝材料层114而彼此电绝缘。
在另一个实施例中,导电熔丝材料层114可以包括相变材料,当过量电流被提供给导电熔丝材料层114时,该相变材料从低电阻晶态改变为高电阻非晶态。例如导电熔丝材料层114可以包括硫族化物基材料作为相变材料。导电熔丝材料层114可以包括铟(In)-锑(Sb)-碲(Te)基合金、锗(Ge)-锑(Sb)基合金等。
在又一个实施例中,当过量电流被提供给导电熔丝材料层114时,导电熔丝材料层114可以被熔化和去除。在此,导电熔丝材料层114的去除意味着导电熔丝材料层114的至少一部分被去除,使得作为下层的第一子电极层112和作为上层的第二子电极层116因气体部分而彼此电绝缘,该气体部分充满气体并且通过去除该部分的导电熔丝材料层114而产生。导电熔丝材料层114被熔化和去除,从而能够抑制流过导电熔丝材料层114的电流。导电熔丝材料层114可以包括具有比第一子电极层112和第二子电极层116的熔点低的熔点的材料。例如考虑到第一子电极层112和第二子电极层116的熔点,导电熔丝材料层114可以包括选自锌(Zn)、铜(Cu)、银(Ag)、铝(Al)及其合金之中的一种。
电阻变化材料层120可以包括例如过渡金属氧化物、钙钛矿基材料、硫族化物基材料、铁电材料、铁磁材料等。电阻变化材料层120可以用作诸如RRAM器件、PRAM器件、MRAM器件、FRAM器件等的电阻变化存储器件的有源层。
第二电极130可以包括例如金属、导电氮化物、导电氧化物等。第二电极130可以包括例如金(Au)、铝(Al)、铂(Pt)、铜(Cu)、银(Ag)、钌(Ru)、钛(Ti)、铱(Ir)、钨(W)、氮化钛(TiN)、氮化钽(TaN)、氧化钌(RuO2)等。
如上所述,在柱状结构30AA中,导电熔丝材料层114可以设置在第一电极110a的内部。当过量电流被提供给导电熔丝材料层114时,导电熔丝材料层114能够抑制过量电流作为泄露电流流过柱状结构30AA。结果,防止了柱状结构30AA由于过量电流而变成导电状态。因此,防止了在与该柱状结构相邻的另一柱状结构中发生写入错误或读取错误,其中过量电流被导电熔丝材料层抑制流动。
参见图5B,柱状结构30AB可以包括第一电极110、电阻变化材料层120和第二电极130a。柱状结构30AB的配置可以为与上述参照图5A描述的柱状结构30AA基本相同的配置,除了导电熔丝材料层设置在第二电极130a的内部而不是图5A的第一电极110a的内部。
第二电极130a可以包括第一子电极层132、导电熔丝材料层134和第二子电极层136。第一子电极层132和第二子电极层136中的每个可以包括例如金属、导电氮化物、导电氧化物等。第一子电极层132和第二子电极层136中的每个可以包括例如金(Au)、铝(Al)、铂(Pt)、铜(Cu)、银(Ag)钌(Ru)、钛(Ti)、铱(Ir)、钨(W)、氮化钛(TiN)、氮化钽(TaN)、氧化钌(RuO2)等。第一子电极层132和第二子电极层136可以由相同的材料或不同的材料制成。
导电熔丝材料层134可以具有与上述参照图5A描述的柱状结构30AA的导电熔丝材料层114基本相同的配置和功能。导电熔丝材料层134可以设置在第二电极130a内部,并且可以不与设置在第二电极130a下方的电阻变化材料层120以及图4的第二导电线20(其相对于图5B的朝向被设置在第二电极130a上)物理接触。也就是说,导电熔丝材料层134可以与电阻变化材料层120和第二导电线20间隔开。
参见图5C,柱状结构30AC可以包括第一电极110a、电阻变化材料层120和第二电极130a。柱状结构30AC可以具有与上述参照图5A描述的柱状结构30AA或者参考图5B描述的柱状结构30AB基本相同的配置,除了导电熔丝材料层设置在第一电极110a和第二电极130a中的每个的内部。在图5C中,导电熔丝材料层114设置在第一电极110a的内部,而导电熔丝材料层134设置在第二电极130a的内部。
导电熔丝材料层114或导电熔丝材料层134可以分别具有与上述参照图5A或图5B描述的柱状结构30AA的导电熔丝材料层114或者柱状结构30AB的导电熔丝材料层134基本相同的配置和功能。
图6A至图6C是示意性地示出根据本公开的实施例的柱状结构30AD、30AE和30AF的示图。图6A至图6C中公开的柱状结构30AD、30AE和30AF可以对应于根据本公开的实施例的图4的交叉点阵列器件4的存储单元。
参见图6A,柱状结构30AD可以包括第一电极110b、电阻变化材料层120和第二电极130。第一电极110b可以包括电极材料层113和导电熔丝材料层115。导电熔丝材料层115可以设置在电极材料层113与电阻变化材料层120之间的界面处。
电极材料层113可以包括例如金属、导电氮化物、导电氧化物等。电极材料层113可以包括例如金(Au)、铝(Al)、铂(Pt)、铜(Cu)、银(Ag)、钌(Ru)、钛(Ti)、铱(Ir)、钨(W)、氮化钛(TiN)、氮化钽(TaN)、氧化钌(RuO2)等。
当等于或大于预定阈值电流的过量电流被提供给导电熔丝材料层115时,导电熔丝材料层115可以阻止过量电流流过柱状结构30AD。当电阻变化材料层120处于低电阻状态时,阈值电流可以大于电阻变化材料层120中所允许的操作电流。例如过量电流可以是电阻变化材料层120被电破坏时产生的泄露电流。
导电熔丝材料层115的配置和功能可以与上述参考图5A至图5C描述的柱状结构30AA、30AB和30AC的导电熔丝材料层114或导电熔丝材料层134的配置和功能基本相同。
在另一个实施例中,与图6A所示的实施例不同,电极材料层113的一个表面(例如电极材料层113的上表面)可以接触电阻变化材料层120,而电极材料层113的另一个表面(例如电极材料层113的下表面)可以接触导电熔丝材料层115。换句话说,导电熔丝材料层115可以相对于图6A的朝向而被设置在电极材料层113下方。
参见图6B,柱状结构30AE可以包括第一电极110、电阻变化材料层120和第二电极130b。柱状结构30AE的配置可以与上述参考图6A描述的柱状结构30AD的配置基本相同,除了第二电极130b而不是第一电极110包括导电熔丝材料层。因此,第二电极130b可以包括电极材料层133和导电熔丝材料层135。导电熔丝材料层135可以设置在电极材料层133与电阻变化材料层120之间的界面处。
电极材料层133可以包括例如金属、导电氮化物、导电氧化物等。电极材料层133可以包括例如金(Au)、铝(Al)、铂(Pt)、铜(Cu)、银(Ag)、钌(Ru)、钛(Ti)、铱(Ir)、钨(W)、氮化钛(TiN)、氮化钽(TaN)、氧化钌(RuO2)等。
导电熔丝材料层135可以具有与上述参照图6A描述的柱状结构30AD的导电熔丝材料层115基本相同的配置和功能。
在另一个实施例中,与图6B所示的实施例不同,电极材料层133的一个表面(例如电极材料层133的下表面)可以接触电阻变化材料层120,而电极材料层133的另一个表面(例如电极材料层133的上表面)可以接触导电熔丝材料层135。换句话说,导电熔丝材料层135可以相对于图6B的朝向而被设置在电极材料层133上方。
参见图6C,柱状结构30AF可以包括第一电极110b、电阻变化材料层120和第二电极130b。柱状结构30AF的配置可以与上述参照图6A描述的柱状结构30AD或者上面参照图6B描述的柱状结构30AE的配置基本相同,除了第一电极110b和第二电极130b分别包括导电熔丝材料层115和导电熔丝材料层135。
导电熔丝材料层115和导电熔丝材料层135可以设置在与电阻变化材料层120的界面处。导电熔丝材料层115或导电熔丝材料层135可以分别具有与上述参照图6A或图6B描述的柱状结构30AD的导电熔丝材料层115或柱状结构30AE的导电熔丝材料层135基本相同的配置和功能。
在另一个实施例中,与图6C所示的实施例不同,导电熔丝材料层115和导电熔丝材料层135可以设置成不与电阻变化材料层120物理接触。换句话说,导电熔丝材料层115和导电熔丝材料层135可以与电阻变化材料层120间隔开。例如相对于图6C的朝向,导电熔丝材料层115可以设置在电极材料层113的下方,而导电熔丝材料层135可以设置在电极材料层133的上方。
如上所述,参照图4、图5A至图5C和图6A至图6C描述的柱状结构可以对应于根据本公开的实施例的交叉点阵列器件的存储单元。相应地,导电熔丝材料层可以设置在存储单元中。当等于或大于阈值电流的过量电流被提供给多个存储单元之一时,设置在该一个存储单元中的导电熔丝材料层能够抑制过量电流流过该一个存储单元,并且能够因此防止在对与该一个存储单元相邻的另一个存储单元执行的读取操作或写入操作期间发生信息错误。在此,阈值电流可以大于与储存在存储单元中的低电阻信号相对应的操作电流。
图7是示意性地示出根据本公开的一个实施例的交叉点阵列器件5的透视图。参见图7,交叉点阵列器件5可以包括彼此交叉并设置在不同平面上的第一导电线10和第二导电线20。包括电阻变化材料层120的柱状结构30B可以设置在第一导电线10与第二导电线20交叠的交叉区域中。
在该实施例中,第一导电线10和第二导电线20可以用作设置在电阻变化材料层120的两端的电极层。导电熔丝材料层(未示出)可以设置在第一导电线10和第二导电线20中的至少一个与电阻变化材料层120之间。
图8A至图8C是示意性地示出根据本公开的实施例的图7的交叉点阵列器件的柱状结构30BA、30BB和30BC的示图。参见图8A,柱状结构30BA可以包括电阻变化材料层120以及导电熔丝材料层710和720。导电熔丝材料层710和导电熔丝材料层720可以分别设置在图7的电阻变化材料层120与第一导电线10之间,以及在图7的电阻变化材料层120与第二导电线20之间。
参见图8B,柱状结构30BB可以包括电阻变化材料层120和导电熔丝材料层710。导电熔丝材料层710可以仅设置在图7的电阻变化材料层120与第一导电线10之间。
参见图8C,柱状结构30BC可以包括电阻变化材料层120和导电熔丝材料层720。导电熔丝材料层720可以仅设置在图7的电阻变化材料层120与第二导电线20之间。
上述导电熔丝材料层710和导电熔丝材料层720的配置可以与上述参考图4、图5A至图5C和图6A至图6C描述的柱状结构30AA、30AB、30AC、30AD、30AE和30AF的导电熔丝材料层114、115、134和135中的任一个的配置基本相同。
图9是示意性地示出根据本公开的一个实施例的存储单元的操作的曲线图。存储单元可以具有上面参考图4、图5A至图5C、图6A至图6C、图7和图8A至图8C描述的交叉点阵列器件的任一个柱状结构。柱状结构可以包括电阻变化材料层和一个或更多个导电熔丝材料层。
参见图9,第一曲线图90a示出正常存储单元的电流-电压(I-V)特性,而第二曲线图90b示出异常存储单元的电流-电压(I-V)特性。电阻随机存取存储(RRAM)器件的存储单元被用作根据本公开的一个实施例的存储单元的示例,但是根据该实施例的存储单元不一定限于RRAM的存储单元,并且可以应用于PRAM器件、MRAM器件或FRAM器件。异常存储单元可以处于电阻变化材料层被电破坏的状态,或者处于电阻变化材料层的破坏是由外加电压引起的状态。
参考图9中的第一曲线图90a,当具有正偏压的电压被施加到最初处于高电阻状态的正常存储单元时,相对低的操作电流流过该存储单元,直到施加电压达到设定电压Vset。当施加电压达到设定电压Vset时,对存储单元执行设定操作,从而该存储单元的电阻状态从高电阻状态转换为低电阻状态。因此,通过设定操作,该存储单元的操作电流增加到设定电流(Iset)电平。随后,当针对已经转换为低电阻状态的存储单元的施加电压降低时,操作电流可以相应地减小。
同时,当具有负偏压的电压被施加到处于低电阻状态的存储单元时,相对高的操作电流流过该存储单元,直到施加电压达到复位电压Vreset。当施加电压达到复位电压Vreset时,对存储单元执行复位操作,从而该存储单元的电阻状态从低电阻状态转换为高电阻状态。因此,通过复位操作,存储单元的操作电流减小到复位电流(Ireset)电平。随后,当针对已经转换为高电阻状态的存储单元的施加电压降低时,操作电流可以减小。
参见图9的第二曲线图90b,当具有正偏压的电压被施加到异常存储单元时,因为存储单元中的电阻变化材料层被电破坏,所以流过该存储单元的操作电流相对于其它操作电流的变化可能大大增加。当操作电流达到阈值电流IC1时,存储单元中的导电熔丝材料层能够抑制过量电流流入存储单元。阈值电流IC1可以大于与存储单元的低电阻信号相对应的设定电流Iset。
如图9所示,当施加电压达到导电熔丝材料层起作用的阈值电压Vcp时,流入存储单元的电流可以从阈值电流IC1减小到第一绝缘电流IC2。第一绝缘电流IC2可以是存储单元被电绝缘的足够低的电流。阈值电压Vcp可以小于存储单元的设定电压Vset。结果,能够防止发生在电阻变化材料层被电破坏的异常存储单元中的电流流动。
类似地,在具有负偏压的电压被施加到包括被电破坏的电阻变化材料层的异常存储单元的情况下,流入异常存储单元的操作电流可以相对于其它操作电流的变化而大大增加。当操作电流达到阈值电流IC3时,导电熔丝材料层能够抑制电流流入存储单元。例如阈值电流IC3的绝对值可以大于当具有负偏压的电压被施加到正常存储单元时所允许的操作电流IC5的绝对值。
如图9所示,当施加电压达到阈值电压Vcn时,流入异常存储单元的电流的绝对值可以从阈值电流IC3减小到第二绝缘电流IC4。第二绝缘电流IC4可以是存储单元被电绝缘的足够低的电流。阈值电压Vcn可以小于存储单元的复位电压Vreset。结果,能够防止在异常存储单元中发生的带电现象。
图10是示意性地示出根据本公开的一个实施例的交叉点阵列器件6的透视图。参见图10,交叉点阵列器件6可以包括彼此交叉并设置在不同平面上的第一导电线10和第二导电线20。交叉点阵列器件6还可以包括设置在第一导电线10与第二导电线20交叠的交叉区域中的柱状结构30C。柱状结构30C可以对应于交叉点阵列器件6的存储单元。
柱状结构30C可以包括第一电极110、电阻变化材料层120、第二电极130、阈值开关操作层220和第三电极230。第一电极110、电阻变化材料层120和第二电极130可以构成存储元件31。第二电极130、阈值开关操作层220和第三电极230可以构成选择元件32。存储元件31和选择元件32可以共享第二电极130。
在图10所示实施例中,阈值开关操作层220设置在电阻变化材料层120上方。然而,在另一实施例中,阈值开关操作层220可以设置在电阻变化材料层120下方。
在柱状结构30C中,存储元件31具有存储特性,并且因此可以存储可变电阻作为电信号。选择元件32具有非存储特性,并且因此可以实现阈值开关操作。选择元件32可以与存储元件31串联电连接,并且可以用作针对存储元件31的电开关。
第一电极至第三电极110、130和230可以包括例如金属、导电氮化物、导电氧化物等。第一电极至第三电极110、130和230可以包括金(Au)、铝(Al)、铂(Pt)、铜(Cu)、银(Ag)、钌(Ru)、钛(Ti)、铱(Ir)、钨(W)、氮化钛(TiN)、氮化钽(TaN)、氧化钌(RuO2)等中的任一种。
电阻变化材料层120可以包括例如过渡金属氧化物材料、钙钛矿基材料、硫族化物基材料、铁电材料、铁磁材料等。
当施加到选择元件32的电压增加到超过阈值电压时,阈值开关操作层220可以具有低电阻状态。当施加到选择元件32的电压降低到阈值电压以下时,阈值开关操作层220可以具有高电阻状态。
阈值开关操作层220可以包括例如氧化硅材料、氮化硅材料、金属氧化物材料和金属氮化物材料以及其组合中的任何一种。例如阈值开关操作层220可以包括氧化铝材料、氧化锆材料、氧化铪材料、氧化钨材料、氧化钛材料、氧化镍材料、氧化铜材料、氧化锰材料、氧化钽材料、氧化铌材料、氧化铁材料及其组合中的任何一种。阈值开关操作层220可以包括含有碲(Te)、硒(Se)、硅(Si)、钛(Ti)、硫(S)、锑(Sb)、锗(Ge)和砷(As)中至少一种的硫族化物基材料。
阈值开关操作层220可以包括具有不满足化学计量比的组成的化合物材料。阈值开关操作层220可以具有非晶结构。
在该实施例中,第一电极至第三电极110、130和230中的至少一个电极可以包括导电熔丝材料层。当等于或大于预定阈值电流的过量电流被提供给导电熔丝材料层时,导电熔丝材料层能够阻挡电流流过柱状结构30C。当电阻变化材料层120处于低电阻状态时,阈值电流可以大于通过电阻变化材料层120的允许的操作电流。
在一个示例中,当电阻变化材料层120或阈值开关操作层220具有缺陷时,过量电流可能被提供给导电熔丝材料层,并且因此电阻变化材料层120或阈值开关操作层220被外部施加电压电破坏。在另一示例中,当超过容限的电压或电流从外部被施加到柱状结构30C时,过量电流可能流过柱状结构30C,因此电阻变化材料层120或阈值开关操作层220被电破坏。当电阻变化材料层120或阈值开关操作层220被电破坏时,等于或大于阈值电流的过量泄漏电流可能流过柱状结构30C。
如上所述,当过量泄漏电流发生在柱状结构中时,在与发生过量泄漏电流的柱状结构相邻的其它柱状结构中可能发生写入错误或读取错误。然而,根据本实施例,当电阻变化材料层120被电破坏时,导电熔丝材料层能够抑制过量泄露电流流过柱状结构。结果,防止了在与发生过量泄漏电流的柱状结构相邻的其它柱状结构中发生写入错误或读取错误。
图11A至图11C是示意性示出根据本公开的实施例的柱状结构30CA、30CB和30CC的示图。在图11A至图11C中公开的柱状结构30CA、30CB和30CC可以对应于根据本公开的实施例的图10的交叉点阵列器件6的存储单元。
参见图11A,柱状结构30CA可以包括第一电极110a、电阻变化材料层120、第二电极130、阈值开关操作层220和第三电极230。第一电极110a可以包括第一子电极层112、导电熔丝材料层114和第二子电极层116。
导电熔丝材料层114可以设置在第一电极110a的内部。也就是说,导电熔丝材料层114可以不与图10的电阻变化材料层120和第一导电线10物理接触。也就是说,导电熔丝材料层114可以与电阻变化材料层120和第一导电线10间隔开。第一导电线10可以相对于图11A的朝向而设置在第一电极110a下方。在此实施例中,导电熔丝材料层114设置在第一子电极层112与第二子电极层116之间。
第一子电极层112和第二子电极层116中的每个可以包括例如金属、导电氮化物材料、导电氧化物材料等。第一子电极层112和第二子电极层116可以由相同的材料或不同的材料制成。
当等于或大于阈值电流的过量电流被提供给导电熔丝材料层114时,导电熔丝材料层114可以从导体转换成非导体。导电熔丝材料层114可以包括因过量电流而从低电阻晶态变成高电阻非晶态的相变材料。例如导电熔丝材料层114可以包括硫族化物基材料。导电熔丝材料层114可以包括铟(In)-锑(Sb)-碲(Te)基合金、锗(Ge)-锑(Sb)基合金等。
可选择地,当过量电流被提供给导电熔丝材料层114时,导电熔丝材料层114可以被熔化并去除。在此,去除导电熔丝材料层114意味着导电熔丝材料层114的至少一部分被去除,使得位于导电熔丝材料层114下方的第一子电极层112和位于导电熔丝材料层114上方的第二子电极层116因气体部分而彼此电绝缘,该气体部分充满气体并且通过去除该部分的导电熔丝材料层114而产生。
导电熔丝材料层114可以包括具有低于第一子电极层112和第二子电极层116的熔点的熔点的材料。例如考虑到第一电极层112和第二电极层116的熔点,导电熔丝材料层114可以包括锌(Zn)、铜(Cu)、银(Ag)、铝(Al)或其合金。
参见图11B,柱状结构30CB可以包括第一电极110、电阻变化材料层120、第二电极130a、阈值开关操作层220和第三电极230。柱状结构30CB的配置可以与上述参考图11A描述的柱状结构30CA的配置基本相同,除了导电熔丝材料层设置在第二电极130a中而不是第一电极110中。
第二电极130a可以包括第一子电极层132、导电熔丝材料层134和第二子电极层136。第一子电极层132和第二子电极层136中的每个可以包括例如金属、导电氮化物材料、导电氧化物材料等。第一子电极层132和第二子电极层136中的每个可以包括例如金(Au)、铝(Al)、铂(Pt)、铜(Cu)、银(Ag)、钌(Ru)、钛(Ti)、铱(Ir)、钨(W)、氮化钛(TiN)、氮化钽(TaN)、氧化钌(RuO2)等。第一子电极层132和第二子电极层136可以由相同的材料或不同的材料制成。
导电熔丝材料层134可以具有与上述参照图11A描述的柱状结构30CA的导电熔丝材料层114基本相同的配置和功能。导电熔丝材料层134可以设置在第二电极130a中,并且可以不与电阻变化材料层120和阈值开关操作层220物理接触。也就是说,导电熔丝材料层134可以与电阻变化材料层120和阈值开关操作层220间隔开。在本实施例中,导电熔丝材料层134设置在第一子电极层132与第二子电极层136之间。
参见图11C,柱状结构30CC可以包括第一电极110、电阻变化材料层120、第二电极130、阈值开关操作层220和第三电极230a。柱状结构30CC的配置可以与上述参照图11A描述的柱状结构30CA的配置基本相同,除了导电熔丝材料层设置在第三电极230a中而不是第一电极110中。
第三电极230a可以包括第一子电极层232、导电熔丝材料层234和第二子电极层236。第一子电极层232和第二子电极层236中的每个可以包括例如金属、导电氮化物材料、导电氧化物材料等。第一子电极层232和第二子电极层236中的每个可以包括例如金(Au)、铝(Al)、铂(Pt)、铜(Cu)、银(Ag)、钌(Ru)、钛(Ti)、铱(Ir)、钨(W)、氮化钛(TiN)、氮化钽(TaN)、氧化钌(RuO2)等。第一子电极层232和第二子电极层236可以由相同的材料或不同的材料制成。
导电熔丝材料层234可以具有与上述参照图11A描述的柱状结构30CA的导电熔丝材料层114基本相同的配置和功能。在该实施例中,导电熔丝材料层234可以设置在第二电极230a的内部,并且可以不与图10的阈值开关操作层220和第二导电线20物理接触,该第二导电线20相对于图11C的朝向设置在第三电极230a的上方。也就是说,导电熔丝材料层234可以与阈值开关操作层220和第二导电线20间隔开。在该实施例中,导电熔丝材料层234设置在第一子电极层232与第二子电极层236之间。
在一些实施例中,导电熔丝材料层可以设置在第一电极和第二电极中的每个中、第二电极和第三电极中的每个中或者第一电极和第三电极中的每个中,使得两个导电熔丝材料层可以被包括在柱状结构中。可选择地,导电熔丝材料层可以设置在第一电极、第二电极和第三电极中的每个中,使得三个导电熔丝材料层可以被包括在柱状结构中。
图12A至图12D是示意性示出根据本公开的实施例的柱状结构30CD、30CE、30CF和30CG的示图。在图12A到图12D中公开的柱状结构30CD、30CE、30CF、30CG可以对应于根据本公开的实施例的图10的交叉点阵列器件6的存储单元。
参见图12A,柱状结构30CD可以包括第一电极110b、电阻变化材料层120、第二电极130、阈值开关操作层220和第三电极230。第一电极110b可以包括电极材料层113和导电熔丝材料层115。导电熔丝材料层115可以设置在电极材料层113与电阻变化材料层120之间的界面处。
导电熔丝材料层115可以具有与上述分别参照图11A、图11B或图11C描述的柱状结构30CA、30CB或30CC的导电熔丝材料层114、134或234基本相同的配置和功能。
在一些其它实施例中,与图12A所示的实施例不同,可以设置电极材料层113和导电熔丝材料层115,使得导电熔丝材料层115不接触电阻变化材料层120。更具体地,电极材料层113的一个表面(例如电极材料层113的上表面)可以接触电阻变化材料层120,而电极材料层113的另一个表面(例如电极材料层113的下表面)可以接触导电熔丝材料层115。因此,导电熔丝材料层115可以接触相对于图12A的朝向设置在第一电极110b下方的图10的第一导电线10。因此,导电熔丝材料层115可以设置在电极材料层113与图10的第一导电线10之间。
参见图12B,柱状结构30CE可以包括第一电极110、电阻变化材料层120、第二电极130b、阈值开关操作层220和第三电极230。柱状结构30CE的配置可以与上述参照图12A描述的柱状结构30CD的配置基本相同,除了第二电极130b而不是第一电极110包括导电熔丝材料层。
第二电极130b可以包括电极材料层133和导电熔丝材料层135。导电熔丝材料层135可以设置在电极材料层133与电阻变化材料层120之间的界面处。
电极材料层133可以包括例如金属、导电氮化物材料、导电氧化物材料等。电极材料层133可以包括例如金(Au)、铝(Al)、铂(Pt)、铜(Cu)、银(Ag)、钌(Ru)、钛(Ti)、铱(Ir)、钨(W)、氮化钛(TiN)、氮化钽(TaN)、氧化钌(RuO2)等。
导电熔丝材料层135可以具有与上述参考图12A描述的柱状结构30CD的导电熔丝材料层115基本相同的配置和功能。
参见图12C,柱状结构30CF可以包括第一电极110、电阻变化材料层120、第二电极130c、阈值开关操作层220和第三电极230。第二电极130c可以包括电极材料层133和导电熔丝材料层137。导电熔丝材料层137可以设置在电极材料层133与阈值开关操作层220之间的界面处。
导电熔丝材料层137可以具有与上述参考图12A描述的柱状结构30CD的导电熔丝材料层115基本相同的配置和功能。
参见图12D,柱状结构30CG可以包括第一电极110、电阻变化材料层120、第二电极130、阈值开关操作层220和第三电极230b。第三电极230b可以包括电极材料层233和导电熔丝材料层235。导电熔丝材料层235可以设置在电极材料层233与阈值开关操作层220之间的界面处。
导电熔丝材料层235可以具有与上述参照图12A描述的柱状结构30CD的导电熔丝材料层115基本相同的配置和功能。
在一些其它实施例中,与图12D所示的实施例不同,可以将电极材料层233和导电熔丝材料层235设置为使得导电熔丝材料层235不接触阈值开关操作层220。更具体地,电极材料层233的一个表面(例如电极材料层233的下表面)可以接触阈值开关操作层220,而电极材料层233的另一个表面(例如电极材料层233的上表面)可以接触导电熔丝材料层235。导电熔丝材料层235可以接触相对于图12D的朝向设置在第三电极230b上方的图10的第二导电线20。因此,导电熔丝材料层235设置在电极材料层233与图10的第二导电线20之间。
如上所述,参照图10、图11A至图11C和图12A至图12D描述的柱状结构可以对应于根据本公开的实施例的交叉点阵列器件的存储单元。相应地,导电熔丝材料层可以设置在存储单元中。当等于或大于阈值电流的过量电流提供给在交叉点阵列器件中的多个存储单元中的一个存储单元时,在该一个存储单元中的导电熔丝材料层能够抑制该过量电流流过该一个存储单元,从而防止在对其它存储单元执行的读取操作或写入操作期间在与该一个存储单元相邻的其它存储单元中发生信息错误。
图13是示意性地示出根据本公开的一个实施例的交叉点阵列器件7的透视图。参见图13,交叉点阵列器件7可以包括彼此交叉并设置在不同平面上的第一导电线10和第二导电线20。交叉点阵列器件7还可以包括设置在第一导电线10与第二导电线20交叠的交叉区域中的柱状结构30D。柱状结构30D可以对应于交叉点阵列器件7的存储单元。
柱状结构30D具有其中省略上述参照图10描述的实施例的柱状结构30C中的第一电极110和第三电极230的结构。具体而言,柱状结构30D可以包括电阻变化材料层120、中间电极1300和阈值开关操作层220。电阻变化材料层120的下表面可以接触第一导电线10,而阈值开关操作层220的上表面可以接触第二导电线20。第一导电线10和第二导电线20可以用作针对电阻变化材料层120和阈值开关操作层220的电极。如下所述,导电熔丝材料层可以设置在柱状结构30D的内部。
图14A至图14E是示意性地示出根据本公开的实施例的图13的柱状结构30DA、30DB、30DC、30DD和30DE的示图。
参见图14A,柱状结构30DA包括相对于图14的朝向而设置在电阻变化材料层120下方的导电熔丝材料层1310。导电熔丝材料层1310可以设置在电阻变化材料层120与图13的第一导电线10之间。
参见图14B,柱状结构30DB包括设置在中间电极1300a内部的导电熔丝材料层。中间电极1300a可以包括第一子电极层1321、导电熔丝材料层1341和第二子电极层1361。
参见图14C,柱状结构30DC包括中间电极1300b,中间电极1300b包括电极材料层1331和导电熔丝材料层1351。导电熔丝材料层1351可以接触电阻变化材料层120。因此,在该实施例中,导电熔丝材料层1351设置在电阻变化材料层120与电极材料层1331之间。
参见图14D,柱状结构30DD包括中间电极1300c,中间电极1300c包括电极材料层1331和导电熔丝材料层1371。导电熔丝材料层1371可以接触阈值开关操作层220。因此,在该实施例中,导电熔丝材料层1371设置在电极材料层1331与阈值开关操作层220之间。
参见图14E,柱状结构30DE包括设置在阈值开关操作层220上的导电熔丝材料层1320。导电熔丝材料层1320可以设置在阈值开关操作层220与图13的第二导电线20之间。
图15是示意性地示出根据本公开的一个实施例的存储单元的操作的曲线图。存储单元可以对应于上述参照图10、图11A至图11C、图12A至图12D、图13以及图14A至图14E描述的交叉点阵列器件的柱状结构中的任一个。每个柱状结构可以包括电阻变化材料层、阈值开关操作层以及至少一个导电熔丝材料层。
参见图15,第一曲线图1500a示出了正常存储单元的电流-电压(I-V)特性,而第二曲线图1500b示出了异常存储单元的电流-电压(I-V)特性。电阻式存储(RRAM)器件的存储单元用作上述存储单元的示例。但是,上述存储单元不一定限于RRAM的存储单元,其也可以应用于PRAM器件、MRAM器件、FRAM器件。异常存储单元可以包括被电破坏的电阻变化材料层。电阻变化材料层的破坏可能因外部施加的电压或电阻变化材料层中的缺陷而进行。
参见图15的第一曲线图1500a,当具有正偏压的电压施加到最初处于高电阻状态的正常存储单元时,相对较低的操作电流流入存储单元中,直到施加电压达到开关电压Vsp,然后达到设定电压Vset。开关电压Vsp是存储单元中的选择元件导通时的电压。当施加电压达到设定电压Vset时,对存储单元执行设置操作,从而存储单元的高电阻状态转换为低电阻状态。相应地,存储单元的操作电流可以通过设定操作而大大增加到设定电流(Iset)电平。随后,当针对处于低电阻状态的存储单元的施加电压降低时,操作电流可以根据降低的施加电压而降低。当施加电压降低到开关电压Vsp时,存储单元中的选择元件可以关断,因此操作电流可以相对于其它操作电流变化而大大减小。
同时,当具有负偏压的电压施加到处于低电阻状态的存储单元时,相对较低的操作电流流入存储单元,直到施加电压达到开关电压Vsn。当施加电压达到开关电压Vsn时,存储单元中的选择元件导通,因此存储单元的操作电流可以相对于其它操作电流的变化而大大增加。因此,相对较高的操作电流可以流入存储单元,直到施加电压达到复位电压Vreset。当施加电压达到复位电压Vreset时,对存储单元执行复位操作,从而存储单元的电阻状态从低电阻状态转换为高电阻状态。因此,存储单元的操作电流通过复位操作而降低到复位电流(Ireset)电平。之后,当针对通过复位操作已经转换到高电阻状态的存储单元的施加电压的绝对值减小时,操作电流可以进一步减小。同时,当施加电压的绝对值减小到开关电压Vsn时,选择元件可以关断。
参见图15的第二曲线图1500b,当具有正偏压的电压被施加到异常存储单元时,流入存储单元的操作电流可以相对于其它操作电流的变化而大大增加。当操作电流达到阈值电流IC1时,存储单元中的导电熔丝材料层能够抑制电流流入存储单元中。阈值电流IC1可以大于与存储单元的低电阻信号相对应的设定电流Iset。
如图15所示,当施加电压达到阈值电压Vcp时,流入存储单元的电流可以从阈值电流IC1减小到第一绝缘电流IC2。第一绝缘电流IC2可以是存储单元被电绝缘的足够低的电流。阈值电压Vcp可以小于存储单元的开关电压Vsp或设定电压Vset。结果,能够防止在包括被电破坏的电阻变化材料层的异常存储单元中发生的带电现象。
类似地,当具有负偏压的电压被施加到其中电阻变化材料层被电破坏的异常存储单元时,流入存储单元的操作电流可以相对于其它操作电流的变化而大大增加。当操作电流达到阈值电流IC3时,存储单元中的导电熔丝材料层能够抑制电流流入存储单元。当具有负偏压的电压被施加给正常存储单元时,阈值电流IC3可以具有比允许的操作电流IC6的绝对值大的绝对值。
如图所示,当施加电压达到阈值电压Vcn时,流入异常存储单元的电流的绝对值可以从阈值电流IC3降低到第二绝缘电流IC4。第二绝缘电流IC4可以是存储单元被电绝缘的足够低的电流。阈值电压Vcn可以小于存储单元的复位电压Vreset。结果,能够防止在包括被电破坏的电阻变化材料层的异常存储单元中发生的带电现象。
以上为了说明的目的描述了本公开的实施例。本领域普通技术人员将会理解,在不脱离如所附权利要求所公开的本公开的范围和精神的情况下,可以进行各种修改、添加和替换。

Claims (20)

1.一种交叉点阵列器件,包括:
柱状结构,其设置在第一导电线与第二导电线交叠的交叉区域中,
其中,柱状结构包括:
电阻变化材料层,其设置在第一导电线与第二导电线之间;以及
一个或更多个导电熔丝材料层,每个导电熔丝材料层设置在第一导电线或第二导电线与电阻变化材料层之间。
2.根据权利要求1所述的交叉点阵列器件,
其中,柱状结构还包括设置在电阻变化材料层的上方或下方的阈值开关操作层。
3.根据权利要求1所述的交叉点阵列器件,
其中,电阻变化材料层包括选自过渡金属氧化物材料、钙钛矿基材料、铁电材料和铁磁材料中的任何一种。
4.根据权利要求1所述的交叉点阵列器件,还包括:
第一电极;以及
第二电极;
其中,第一电极和第二电极分别设置在电阻变化材料层的下方和上方,以及
其中,一个或更多个导电熔丝材料层中的每个导电熔丝材料层设置在第一电极或第二电极内部。
5.根据权利要求1所述的交叉点阵列器件,
其中,一个或更多个导电熔丝材料层接触电阻变化材料层。
6.根据权利要求1所述的交叉点阵列器件,
其中,当过量电流被提供给一个或更多个导电熔丝材料层时,所述一个或更多个更导电熔丝材料层抑制所述过量电流流过柱状结构,所述过量电流等于或大于预定阈值电流。
7.根据权利要求6所述的交叉点阵列器件,
其中,所述预定阈值电流大于当电阻变化材料层处于低电阻状态时流过电阻变化材料层的操作电流。
8.根据权利要求6所述的交叉点阵列器件,
其中,当过量电流被提供给一个或更多个导电熔丝材料层时,所述一个或更多个导电熔丝材料层的电阻状态从低电阻状态变为高电阻状态。
9.根据权利要求8所述的交叉点阵列器件,
其中,一个或更多个导电熔丝材料层包括相变材料,所述相变材料因所述过量电流而从结晶态变为非晶态。
10.根据权利要求6所述的交叉点阵列器件,
其中,当过量电流被提供给一个或更多个导电熔丝材料层时,所述一个或更多个导电熔丝材料层的至少一部分被熔化并去除。
11.根据权利要求10所述的交叉点阵列器件,
其中,一个或更多个导电熔丝材料层包括一种材料,所述材料具有比与所述一个或更多个导电熔丝材料层相接触的电极层的熔点低的熔点。
12.一种交叉点阵列器件,包括:
多个第一导电线,所述多个第一导电线在第一方向上延伸;
多个第二导电线,所述多个第二导电线在与第一方向交叉的第二方向上延伸;
多个存储单元,所述多个存储单元设置在所述多个第一导电线与所述多个第二导电线交叠的交叉区域中;以及
导电熔丝材料层,其设置在所述多个存储单元中;
其中,当过量电流被提供给所述多个存储单元中的一个存储单元时,一个或更多个导电熔丝材料层抑制所述过量电流流过所述一个存储单元,以防止在对与所述一个存储单元相邻的存储单元的读取操作或写入操作期间发生信息错误,所述过量电流等于或大于阈值电流,所述一个或更多个导电熔丝材料层设置在所述一个存储单元中。
13.根据权利要求12所述的交叉点阵列器件,
其中,所述阈值电流大于与储存在所述一个存储单元中的低电阻信号相对应的操作电流。
14.根据权利要求12所述的交叉点阵列器件,
其中,所述一个存储单元包括柱状结构,所述柱状结构包括第一电极、电阻变化材料层和第二电极,以及
其中,第一电极和第二电极中的一个或两者包括所述一个或更多个导电熔丝材料层,所述一个或更多个导电熔丝材料层中的每个导电熔丝材料层包括在第一电极和第二电极中的所述一个或两者的每个电极中。
15.根据权利要求14所述的交叉点阵列器件,
其中,所述一个或更多个导电熔丝材料层设置在第一电极和第二电极中的至少一个的内部。
16.根据权利要求14所述的交叉点阵列器件,
其中,所述一个或更多个导电熔丝材料层接触电阻变化材料层。
17.根据权利要求12所述的交叉点阵列器件,
其中,所述一个存储单元包括包含电阻变化材料层的柱状结构,以及
其中,所述一个或更多个导电熔丝材料层中的每个导电熔丝材料层设置在第一导电线中的一个第一导电线或第二导电线中的一个第二导电线与电阻变化材料层之间。
18.根据权利要求12所述的交叉点阵列器件,
其中,所述一个存储单元包括柱状结构,所述柱状结构包括第一电极、电阻变化材料层、第二电极、阈值开关操作层和第三电极,以及
其中,第一电极至第三电极中的至少一个电极包括一个或更多个导电熔丝材料层。
19.根据权利要求18所述的交叉点阵列器件,
其中,所述一个或更多个导电熔丝材料层中的每个导电熔丝材料层设置在第一电极至第三电极中的至少一个电极的每个电极的内部。
20.根据权利要求18所述的交叉点阵列器件,
其中,所述一个或更多个导电熔丝材料层中的每个导电熔丝材料层设置在第一电极与电阻变化材料层之间的第一界面、电阻变化材料层与第二电极之间的第二界面、第二电极与阈值开关操作层之间的第三界面以及阈值开关操作层与第三电极之间的第四界面中的至少一个界面的每个界面处。
CN201711327488.9A 2017-01-25 2017-12-13 包括导电熔丝材料层的交叉点阵列器件 Pending CN108461518A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170012325A KR20180087801A (ko) 2017-01-25 2017-01-25 전도성 퓨즈 물질층을 구비하는 크로스 포인트 어레이 장치
KR10-2017-0012325 2017-01-25

Publications (1)

Publication Number Publication Date
CN108461518A true CN108461518A (zh) 2018-08-28

Family

ID=62906598

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711327488.9A Pending CN108461518A (zh) 2017-01-25 2017-12-13 包括导电熔丝材料层的交叉点阵列器件

Country Status (3)

Country Link
US (1) US20180211913A1 (zh)
KR (1) KR20180087801A (zh)
CN (1) CN108461518A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115863306A (zh) * 2023-02-23 2023-03-28 长鑫存储技术有限公司 反熔丝结构及其制备方法、反熔丝阵列结构、存储器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10734579B2 (en) * 2018-01-03 2020-08-04 International Business Machines Corporation Protuberant contacts for resistive switching devices
KR20200092759A (ko) 2019-01-25 2020-08-04 삼성전자주식회사 가변 저항 메모리 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6982901B1 (en) * 2003-01-31 2006-01-03 Hewlett-Packard Development Company, L.P. Memory device and method of use
CN102376888A (zh) * 2010-08-04 2012-03-14 美光科技公司 与熔丝阵列一起形成电阻式随机存取存储器
CN103052990A (zh) * 2011-08-02 2013-04-17 松下电器产业株式会社 电阻变化型非易失性存储装置及其驱动方法
CN104900805A (zh) * 2014-03-03 2015-09-09 英飞凌科技股份有限公司 存储器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6982901B1 (en) * 2003-01-31 2006-01-03 Hewlett-Packard Development Company, L.P. Memory device and method of use
CN102376888A (zh) * 2010-08-04 2012-03-14 美光科技公司 与熔丝阵列一起形成电阻式随机存取存储器
CN103052990A (zh) * 2011-08-02 2013-04-17 松下电器产业株式会社 电阻变化型非易失性存储装置及其驱动方法
CN104900805A (zh) * 2014-03-03 2015-09-09 英飞凌科技股份有限公司 存储器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KAILIANG ZHANG, BAOLIN WANG, FANG WANG, YEMEI HAN, XIAOCHUAN JIA: "VO2-Based Selection Device for Passive Resistive", 《IEEE ELECTRON DEVICE LETTERS》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115863306A (zh) * 2023-02-23 2023-03-28 长鑫存储技术有限公司 反熔丝结构及其制备方法、反熔丝阵列结构、存储器

Also Published As

Publication number Publication date
KR20180087801A (ko) 2018-08-02
US20180211913A1 (en) 2018-07-26

Similar Documents

Publication Publication Date Title
US10224367B2 (en) Selector device incorporating conductive clusters for memory applications
US8565004B2 (en) Nonvolatile memory device and method for programming the same
CN106206940B (zh) 电阻式随机存取存储器
EP2592624A2 (en) Metal doped non-volatile resistive memory elements
JP5551769B2 (ja) メモリ素子、積層体、メモリマトリックス及びそれらの動作方法
US8339835B2 (en) Nonvolatile memory element and semiconductor memory device including nonvolatile memory element
CN103238215A (zh) 非易失性存储器单元阵列
CN103907192A (zh) 具有合金化电极的电阻切换器件及其形成方法
KR20120021539A (ko) 비휘발성 메모리요소 및 이를 포함하는 메모리소자
US20120305878A1 (en) Resistive switching memory device
US20140061579A1 (en) Nonvolatile memory element and nonvolatile memory device
JP5450911B2 (ja) 不揮発性記憶素子のデータ読み出し方法及び不揮発性記憶装置
CN109904312A (zh) 阻变器件
CN108461518A (zh) 包括导电熔丝材料层的交叉点阵列器件
US20130256625A1 (en) Variable resistance memory device
KR20090026580A (ko) 저항 메모리 소자 및 그 형성방법
TW201241830A (en) Memory cells, methods of forming memory cells, and methods of programming memory cells
CN109786548B (zh) 交叉点阵列器件及其制造方法
US9153778B2 (en) Resistive switching devices and memory devices including the same
KR102462182B1 (ko) 기억 장치
US20130248806A1 (en) Variable resistance memory device and method for fabricating the same
KR20190005665A (ko) 저항 변화 메모리 소자
US9105332B2 (en) Variable resistance nonvolatile memory device
US11848039B2 (en) Cross-point MRAM including self-compliance selector
CN103871464A (zh) 可程序编辑电阻元件记忆体、操作方法及电子系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180828