CN108459507A - 一种基于可调阶次滤波器的分数阶自抗扰运动控制方法 - Google Patents

一种基于可调阶次滤波器的分数阶自抗扰运动控制方法 Download PDF

Info

Publication number
CN108459507A
CN108459507A CN201810268472.3A CN201810268472A CN108459507A CN 108459507 A CN108459507 A CN 108459507A CN 201810268472 A CN201810268472 A CN 201810268472A CN 108459507 A CN108459507 A CN 108459507A
Authority
CN
China
Prior art keywords
adjustable
order
order filter
fractional
control method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810268472.3A
Other languages
English (en)
Other versions
CN108459507B (zh
Inventor
施昕昕
黄家才
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Institute of Technology
Original Assignee
Nanjing Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Institute of Technology filed Critical Nanjing Institute of Technology
Priority to CN201810268472.3A priority Critical patent/CN108459507B/zh
Publication of CN108459507A publication Critical patent/CN108459507A/zh
Application granted granted Critical
Publication of CN108459507B publication Critical patent/CN108459507B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明公开了一种基于可调阶次滤波器的分数阶自抗扰运动控制方法,包括:根据牛顿运动定律,建立运动控制系统的非线性动力学模型;使用可调阶次滤波器对测量噪声进行滤波;调节滤波器的阶次以达到较好的滤波效果;采用扩张状态观测器提高系统的扰动抑制效果;采用分数阶比例微分算法,设计运动控制器,使输出跟踪参考输入。本发明方法,具有参数调节灵活、易于工程实现的优点,并有效改善了运动控制系统对测量噪声和干扰的抑制能力。

Description

一种基于可调阶次滤波器的分数阶自抗扰运动控制方法
技术领域
本发明涉及一种基于可调阶次滤波器的分数阶自抗扰运动控制方法,属于运动控制技术领域。
背景技术
运动控制技术在当今工业中应用广泛,如电机运动控制、数控机床、机器人控制等。运动控制是指对位置/位移、速度、加速度等运动量进行控制。采用电动机作为运动执行器,相比其它类型的运动执行器,具有结构简单、响应快、精度和效率高等优点,有利于实现高速或低速、高精度等高性能运动控制,在现代工业、民用、医疗、交通和军事等领域具有广泛的应用前景。
由于运动控制系统存在摩擦力、系统参数变化、负载扰动力等因素影响,尤其是系统非线性因素(如信号测量噪声)和不确定干扰,很大程度上影响系统的运动精度。因此对运动控制器的性能提出了很高的要求。
目前,有越来越多的先进控制算法被运用到运动控制研究中,常见的有迭代学习控制、自适应鲁棒控制、神经网络控制和自抗扰控制等,其中自抗扰控制被公认为较为有效的技术。然而,普通自抗扰控制器具有较高的增益,同时会放大测量噪声,容易对控制性能产生影响。
发明内容
本发明所要解决的技术问题是克服现有技术的缺陷,提供一种基于可调阶次滤波器的分数阶自抗扰运动控制方法,通过可调阶次滤波器对测量噪声进行滤波,采用分数阶比例微分算法,设计运动控制器,使输出跟踪参考输入。
本发明采用如下技术方案解决上述技术问题:
一种基于可调阶次滤波器的分数阶自抗扰运动控制方法,包括以下步骤:
1)根据牛顿运动定律,建立运动控制系统的非线性动力学模型;
2)设计可调阶次滤波器对测量噪声进行滤波;
3)调节可调阶次滤波器的阶次;
4)采用扩张状态观测器对运动控制系统的外部扰动力进行估计;
5)采用分数阶比例微分控制器对外部扰动力估计值进行补偿后得出控制量,从而控制被控对象的输出跟踪参考输入。
前述的步骤1)中,运动控制系统的非线性动力学模型为:
其中,u为运动执行器相电压,即控制量,i为运动执行器相电流;R和L分别为运动执行器相电阻和相电感;m为运动质量,x为运动位移,即状态变量;Km和Ke分别为力系数和反电动势系数;Ff和Fd分别为运动系统摩擦力和外部扰动力;d为微分算子;t表示时间。
前述的步骤2)中,可调阶次滤波器设计为:
其中,G为可调阶次滤波器的传递函数,s为拉普拉斯算子,ω为截止频率,α为可调参数,2(1-α)即为可调阶次滤波器的阶次,α的取值范围为(0,1)范围内的任意实数。
前述的截止频率ω为50Hz,可调参数α为0.25。
前述的步骤2)中,测量噪声为:
其中,A为噪声幅值,ωn为角频率,为相位,B为偏差值。
前述的步骤4)中,扩张状态观测器的表达式为:
其中,e=z1,1-x表示表示状态变量x的估计值与实际值之间的误差,h11,h12,h13,δ为待选参数,b为系统参数,u为控制量,z1,1是状态变量x的估计值,z1,2是x微分的估计值,z1,3是外部扰动力Fd的估计值;
h11,h12,h13,δ的计算方式为:h11=1/h,h12=1/(1.6h1.5),h13=1/(8.6h2.2),δ=25h,h为采样周期;
fal(e,0.5,δ),fal(e,0.25,δ)为非线性函数,非线性函数fal(e,γ,δ)的表达式如下:
其中,γ为幂指数,在0~1之间取值,sgn(·)为符号函数。
前述的步骤5)中,分数阶比例微分控制器设计为:
u=Kp·e0+Kd·e0·sμ
其中,u为分数阶比例微分控制器的输出,e0=xd-x,xd为参考输入,KP和Kd分别为比例系数和微分系数,s为拉普拉斯算子,μ为分数阶次,取值为0到1之间的任意实数;
补偿后的控制量为u′:u′=u-z1,3
前述的μ取为0.835。
本发明所达到的有益效果:
(1)本发明提出的可调阶次滤波器,与常规滤波器相比,可以灵活调节滤波器的阶次,提高滤波效果,降低测量噪声的放大效应;
(2)本发明提出的分数阶比例微分算法,与常规整数阶比例微分算法相比,多了一个可调参数,即微分环节的分数阶次,因此可进一步提高控制器的控制精度;
(3)本发明方法,具有参数调节灵活、易于工程实现的优点,且不需要提前预知系统的干扰作用和模型,可以自动观测与估计系统扰动的作用,有效改善了运动控制系统对测量噪声和干扰作用的抵抗抑制能力。
附图说明
图1是本发明方法的流程图;
图2是本发明的控制方法实现原理图;
图3是常规自抗扰控制器的运动控制误差图;
图4是采用本发明的运动控制误差图;
图5是采用本发明的运动控制系统扰动抑制效果图。
具体实施方式
下面对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
如图1所示,本发明的基于可调阶次滤波器的分数阶自抗扰运动控制方法,包括以下步骤:
步骤一,根据牛顿运动定律,建立运动控制系统的非线性动力学模型。
运动控制系统的微分方程描述如下:
其中,u为运动执行器相电压,即控制量,i为运动执行器相电流;R和L分别为运动执行器相电阻和相电感;m为运动质量,x为运动位移,即状态变量;Km和Ke分别为力系数和反电动势系数;Ff和Fd分别为运动系统摩擦力和外部扰动力;d为微分算子;t表示时间。
为了较为准确地模拟实际摩擦力的作用,运动系统摩擦力Ff可采用经典的LuGre摩擦力模型。外部扰动力Fd可采用突变的外部作用力进行模拟,该外部作用力施加于系统一段时间之后便撤去,来检验运动控制系统抵抗和抑制扰动的能力。
步骤二,根据步骤一中建立的非线性动力学模型,设计可调阶次滤波器对测量噪声进行滤波。可以通过设置不同的阶次,获得理想的性能:1)在截止频率附近,幅值衰减更剧烈;2)在截止频率之后,相频曲线变成直线。这两个特性可以使可调阶次滤波器具有较好的滤波性能,从而有效降低噪声对系统的影响。
可调阶次滤波器传递函数表达式为,
其中,s为拉普拉斯算子,ω为截止频率(此处设为50Hz),α为可调参数(此处设为0.25)。
同时,系统测量噪声可用正弦信号来模拟表示,具体表达式为:
其中,A为噪声幅值(此处设为0.0025),ωn为角频率(此处设为200π),为相位(此处设为-0.5π),B为偏差值(此处设为0.0025)。
步骤三,调节可调阶次滤波器的阶次,以达到较好的滤波效果;可调阶次滤波器的阶次为2(1-α),调节α的取值即调节可调节滤波器的阶次。可调阶次滤波器的阶次调节原则为:α在(0,1)范围内取任意实数,则可调阶次滤波器的阶次2(1-α)在(0,2)范围内取任意实数。
步骤四,采用扩张状态观测器对系统的外部扰动力Fd进行估计,得到外部扰动力Fd的估计值z1,3。扩张状态观测器将作用于系统的各种不确定因素归结为总和扰动并进行估计与补偿,可以有效地抑制各种扰动等不确定因素对控制系统的影响。
扩张状态观测器的表达式为,
其中,e=z1,1-x表示状态变量x的估计值与实际值之间的误差,h11,h12,h13,δ为待选参数,计算公式是:h11=1/h,h12=1/(1.6h1.5),h13=1/(8.6h2.2),δ=25h,h为采样周期,这里具体取值为:h=0.0002,h11=5000,h12=220970,h13=15967450,δ=0.005,
b为系统参数,取值为72,u为控制量,z1,1是状态变量x的估计值,z1,2是x微分的估计值,z1,3是外部扰动力Fd的估计值。
非线性函数fal(e,γ,δ)的表达式如下:
其中,γ为幂指数,在0~1之间取值,sgn(·)为符号函数。
步骤五,采用分数阶比例微分算法,设计运动控制器,最终得到考虑外部扰动力的补偿后的实际控制量。与常规整数阶控制器相比,分数阶比例微分算法多了一个可调微分阶次,也即多了一个可调参数,因此可以进一步提高系统的控制性能。
分数阶比例微分算法的具体表达式如下:
u=Kp·e0+Kd·e0·sμ
最终实际作用的控制量为:u′=u-z1,3
其中,e0=xd-x,xd为参考输入,KP和Kd分别为比例系数和微分系数(这里分别取为10000和300),s为拉普拉斯算子,μ为分数阶次,取值为0到1之间的任意实数,经过调节之后取为0.835,u′为补偿扰动作用后最终实际的控制量,z1,3为外部扰动力Fd的估计值。本实施例可以获得较为满意的结果。
图2是本发明的控制方法实现原理图,可调阶次滤波器对输出信号进行噪声滤波,通过扩张状态观测器估计外部扰动力以及输出量,分数阶比例微分控制器对扰动估计值进行补偿后得出控制量,从而控制被控对象的输出跟踪参考输入。
图3是常规自抗扰控制器的运动控制误差图;图4是采用本发明的运动控制误差图;对比图3和图4可知,采用本发明的运动控制方法,可以较好地减小测量噪声的影响,从而降低运动控制误差,提高控制精度。图5是采用本发明的运动控制系统扰动抑制效果图,上图为外部扰动力,下图为运动控制误差。由图5可知,采用本发明的运动控制方法,可有效提高系统对扰动的抵抗抑制能力。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (8)

1.一种基于可调阶次滤波器的分数阶自抗扰运动控制方法,其特征在于,包括以下步骤:
1)根据牛顿运动定律,建立运动控制系统的非线性动力学模型;
2)设计可调阶次滤波器对测量噪声进行滤波;
3)调节可调阶次滤波器的阶次;
4)采用扩张状态观测器对运动控制系统的外部扰动力进行估计;
5)采用分数阶比例微分控制器对外部扰动力估计值进行补偿后得出控制量,从而控制被控对象的输出跟踪参考输入。
2.根据权利要求1所述的一种基于可调阶次滤波器的分数阶自抗扰运动控制方法,其特征在于,所述步骤1)中,运动控制系统的非线性动力学模型为:
其中,u为运动执行器相电压,即控制量,i为运动执行器相电流;R和L分别为运动执行器相电阻和相电感;m为运动质量,x为运动位移,即状态变量;Km和Ke分别为力系数和反电动势系数;Ff和Fd分别为运动系统摩擦力和外部扰动力;d为微分算子;t表示时间。
3.根据权利要求1所述的一种基于可调阶次滤波器的分数阶自抗扰运动控制方法,其特征在于,所述步骤2)中,可调阶次滤波器设计为:
其中,G为可调阶次滤波器的传递函数,s为拉普拉斯算子,ω为截止频率,α为可调参数,2(1-α)即为可调阶次滤波器的阶次,α的取值范围为(0,1)范围内的任意实数。
4.根据权利要求3所述的一种基于可调阶次滤波器的分数阶自抗扰运动控制方法,其特征在于,所述截止频率ω为50Hz,可调参数α为0.25。
5.根据权利要求1所述的一种基于可调阶次滤波器的分数阶自抗扰运动控制方法,其特征在于,所述步骤2)中,测量噪声为:
其中,A为噪声幅值,ωn为角频率,为相位,B为偏差值。
6.根据权利要求1所述的一种基于可调阶次滤波器的分数阶自抗扰运动控制方法,其特征在于,所述步骤4)中,扩张状态观测器的表达式为:
其中,e=z1,1-x表示表示状态变量x的估计值与实际值之间的误差,h11,h12,h13,δ为待选参数,b为系统参数,u为控制量,z1,1是状态变量x的估计值,z1,2是x微分的估计值,z1,3是外部扰动力Fd的估计值;
h11,h12,h13,δ的计算方式为:h11=1/h,h12=1/(1.6h1.5),h13=1/(8.6h2.2),δ=25h,h为采样周期;
fal(e,0.5,δ),fal(e,0.25,δ)为非线性函数,非线性函数fal(e,γ,δ)的表达式如下:
其中,γ为幂指数,在0~1之间取值,sgn(·)为符号函数。
7.根据权利要求6所述的一种基于可调阶次滤波器的分数阶自抗扰运动控制方法,其特征在于,所述步骤5)中,分数阶比例微分控制器设计为:
u=Kp·e0+Kd·e0·sμ
其中,u为分数阶比例微分控制器的输出,e0=xd-x,xd为参考输入,KP和Kd分别为比例系数和微分系数,s为拉普拉斯算子,μ为分数阶次,取值为0到1之间的任意实数;
补偿后的控制量为u′:u′=u-z1,3
8.根据权利要求7所述的一种基于可调阶次滤波器的分数阶自抗扰运动控制方法,其特征在于,所述μ取为0.835。
CN201810268472.3A 2018-03-29 2018-03-29 一种基于可调阶次滤波器的分数阶自抗扰运动控制方法 Active CN108459507B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810268472.3A CN108459507B (zh) 2018-03-29 2018-03-29 一种基于可调阶次滤波器的分数阶自抗扰运动控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810268472.3A CN108459507B (zh) 2018-03-29 2018-03-29 一种基于可调阶次滤波器的分数阶自抗扰运动控制方法

Publications (2)

Publication Number Publication Date
CN108459507A true CN108459507A (zh) 2018-08-28
CN108459507B CN108459507B (zh) 2021-05-25

Family

ID=63236944

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810268472.3A Active CN108459507B (zh) 2018-03-29 2018-03-29 一种基于可调阶次滤波器的分数阶自抗扰运动控制方法

Country Status (1)

Country Link
CN (1) CN108459507B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109541935A (zh) * 2018-11-23 2019-03-29 广西大学 一种参数自适应分数阶自抗扰自动发电控制方法
CN109828454A (zh) * 2019-01-29 2019-05-31 中国海洋大学 基于海况等级切换的多策略融合auv运动控制方法
CN110095985A (zh) * 2019-04-26 2019-08-06 北京工商大学 一种观测器设计方法和抗干扰控制系统
CN114063654A (zh) * 2021-12-15 2022-02-18 北京航空航天大学 基于分数阶自抗扰的火星无人机设计方法和系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120170639A1 (en) * 2011-01-04 2012-07-05 Johnson Controls Technology Company Delay compensation for feedback controllers
CN103985090A (zh) * 2014-04-25 2014-08-13 南京航空航天大学 一种分数阶零相位滤波器及其滤波方法
CN104392093A (zh) * 2014-10-14 2015-03-04 南京航空航天大学 一种基于分数阶复合积分算子的零相位滤波器及其滤波方法
CN105549383A (zh) * 2016-02-29 2016-05-04 南京工程学院 直线电机精密轨迹跟踪装置及方法
CN107069723A (zh) * 2016-12-08 2017-08-18 河海大学常州校区 有源电力滤波器分数阶PIλ及自抗扰混合控制方法
CN107357171A (zh) * 2017-08-14 2017-11-17 哈尔滨理工大学 船载三轴稳定平台的控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120170639A1 (en) * 2011-01-04 2012-07-05 Johnson Controls Technology Company Delay compensation for feedback controllers
CN103985090A (zh) * 2014-04-25 2014-08-13 南京航空航天大学 一种分数阶零相位滤波器及其滤波方法
CN104392093A (zh) * 2014-10-14 2015-03-04 南京航空航天大学 一种基于分数阶复合积分算子的零相位滤波器及其滤波方法
CN105549383A (zh) * 2016-02-29 2016-05-04 南京工程学院 直线电机精密轨迹跟踪装置及方法
CN107069723A (zh) * 2016-12-08 2017-08-18 河海大学常州校区 有源电力滤波器分数阶PIλ及自抗扰混合控制方法
CN107357171A (zh) * 2017-08-14 2017-11-17 哈尔滨理工大学 船载三轴稳定平台的控制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XINXIN SHI等: "Extended state observer–based fractional order proportional-derivative controller for precision trajectory tracking control of a novel linear motor", 《PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING》 *
李远禄等: "分数阶差分滤波器及边缘检测", 《光学工程》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109541935A (zh) * 2018-11-23 2019-03-29 广西大学 一种参数自适应分数阶自抗扰自动发电控制方法
CN109541935B (zh) * 2018-11-23 2022-03-11 广西大学 一种参数自适应分数阶自抗扰自动发电控制方法
CN109828454A (zh) * 2019-01-29 2019-05-31 中国海洋大学 基于海况等级切换的多策略融合auv运动控制方法
CN110095985A (zh) * 2019-04-26 2019-08-06 北京工商大学 一种观测器设计方法和抗干扰控制系统
CN114063654A (zh) * 2021-12-15 2022-02-18 北京航空航天大学 基于分数阶自抗扰的火星无人机设计方法和系统

Also Published As

Publication number Publication date
CN108459507B (zh) 2021-05-25

Similar Documents

Publication Publication Date Title
CN108459507A (zh) 一种基于可调阶次滤波器的分数阶自抗扰运动控制方法
CN103941583B (zh) 抗扰动复合非线性伺服控制器的参数化设计方法
Zhao et al. Fractional order control to the electro-hydraulic system in insulator fatigue test device
Ladaci et al. Indirect fractional order pole assignment based adaptive control
CN106773694B (zh) 压电精密位置平台自适应输出反馈逆控制方法
Dukkipati Analysis and design of control systems using MATLAB
Ibraheem et al. On the improved nonlinear tracking differentiator based nonlinear PID controller design
CN101571705B (zh) 位置伺服系统与方法
CN106325073A (zh) 基于分数阶的伺服系统位置ip控制器无模型自校正方法
CN111546346B (zh) 一种柔性关节扰动观测方法、力矩控制方法和设备
CN111506996B (zh) 一种基于辨识误差受限的转台伺服系统自适应辨识方法
Shirazi et al. An LPV design approach for voltage control of an electrostatic MEMS actuator
CN105425580A (zh) 一种itae最优n型系统构建方法
CN112462606B (zh) 一种基于自适应控制的挠性关节动力学参数辨识方法
CN113517832A (zh) 一种低压伺服离散线性自抗扰控制方法
Eielsen et al. PI2-controller applied to a piezoelectric nanopositioner using conditional integrators and optimal tuning
Yordanov et al. Comparative analysis of control quality between PI and FUZZY controller of experimental electrohydraulic servosystem
Yoo et al. A robust controller for an electro-mechanical fin actuator
Ngadengon et al. Controller design for inverted pendulum system using discrete sliding mode control
CN110609568B (zh) 一种大型无人机uav的强自耦pi协同控制方法
CN108832836B (zh) 一种超声波电机伺服控制系统滑模控制方法
Yokoyama et al. Robustness analysis of two-mass system control using acceleration-aided Kalman filter
Zhao et al. Design of MRAC and Modified MRAC for the Turntable
Baboshkin et al. Fractional order PID-controller based on fractional impedance component
Paing et al. Adaptive gain parabolic sliding mode filter augmented with vibration observer

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant