CN108447819A - 一种无界面气泡绝缘层上锗键合方法 - Google Patents

一种无界面气泡绝缘层上锗键合方法 Download PDF

Info

Publication number
CN108447819A
CN108447819A CN201810347003.0A CN201810347003A CN108447819A CN 108447819 A CN108447819 A CN 108447819A CN 201810347003 A CN201810347003 A CN 201810347003A CN 108447819 A CN108447819 A CN 108447819A
Authority
CN
China
Prior art keywords
pieces
insulating layer
sio
bonding method
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810347003.0A
Other languages
English (en)
Other versions
CN108447819B (zh
Inventor
陈松岩
柯少颖
吴金庸
李成
黄巍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN201810347003.0A priority Critical patent/CN108447819B/zh
Publication of CN108447819A publication Critical patent/CN108447819A/zh
Application granted granted Critical
Publication of CN108447819B publication Critical patent/CN108447819B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Recrystallisation Techniques (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

一种无界面气泡绝缘层上锗键合方法,1)将Ge片、SiO2/Si片分别超声清洗;2)超声清洗后的SiO2/Si片用H2SO4和H2O2的混合溶液煮沸后冲洗,再用NH4OH、H2O2和H2O的混合溶液煮沸后冲洗,用HCl、H2O2和H2O的混合溶液煮沸后冲洗;3)超声清洗后的Ge片用盐酸溶液浸泡,漂洗;4)重复步骤3)5次,然后将处理后Ge片放入氢氟酸溶液中浸泡,冲洗,甩干后溅射生长一层a‑Si过渡层;5)将步骤2)冲洗后的SiO2/Si片与步骤4)溅射后的Ge片置于氨水溶液中处理,甩干后贴合得Ge/SiO2/Si贴合片;6)Ge/SiO2/Si贴合片放入晶片键合机中热压键合。方法简易,成本低。

Description

一种无界面气泡绝缘层上锗键合方法
技术领域
本发明涉及GOI材料的制备方法,尤其是涉及利用直流磁控溅射非晶硅(a-Si)薄膜实现无界面气泡GOI键合的一种无界面气泡绝缘层上锗键合方法。
背景技术
随着现代通信技术、集成电路和光通信技术的发展,半导体材料科学和技术领域也得到了迅速的发展。目前,以硅材料为主导的32nm的微纳米集成电路工艺已经进入了工业化阶段,随着器件特征尺寸的进一步缩小,集成电路的发展遇到了诸多瓶颈,特征线宽的进一步降低导致的器件性能弱化等原因导致MOSFET研究陷入僵局[1,2]。因此,寻找新的高性能材料、新的器件结构工艺,是进一步提高器件性能的必然途径。
锗(Ge)材料由于具有高的电子和空穴迁移率[3,4],且在通信波段有较高的吸收系数[5,6],此外Ge材料的工艺与成熟的Si CMOS工艺基本兼容,Ge器件在Si基光电集成方面具有非常良好的应用。因此,近年来Ge材料受到了越来越多的关注。然而,与Si器件相比,Ge器件在低功耗、抗辐射、耐高温等方面的性能并无明显优势。而且由于Ge的禁带宽度较小,Ge器件也承受着大漏电流的致命缺点,这也严重阻碍了Ge器件的更广泛应用。绝缘层上锗(GOI)继承了SOI衬底材料的低功耗、抗辐射、耐高温、高集成度等特点很好的解决了体Ge材料的缺点,成为提升器件性能的首选材料[7,8]
目前制备GOI的方法有Ge浓缩法[9],液相外延法[10]和键合法[11]等,相比于其他方法,键合方法制备的GOI中Ge层的穿透位错密度最低(<106cm-2),材料质量最好,然而在键合过程中由于界面亲水反应的发生难免会在界面引入高密度的气泡,从而导致键合面积减少,气泡密度过多将导致GOI无法正常使用。因此,如何降低GOI键合过程中的气泡密度成为GOI键合的关键。
参考文献:
[1]Huang,X.,et al."Avoiding Si MOSFET avalanche and achieving zero-voltage switching for cascode GaN devices."IEEE Transactions on PowerElectronics 31.1(2016):593-600.
[2]Tsuchiyama,K.,et al."Monolithic integration of Si-MOSFET and GaN-LED using Si/SiO2/GaN-LED wafer."Applied Physics Express 9.10(2016):104101.
[3]Kim,J.,et al."The efficacy of metal-interfacial layer-semiconductor source/drain structure on sub-10-nm n-type Ge FinFETperformances."IEEE Electron Device Letters 35.12(2014):1185-1187.
[4]Li,C.,et al."Improved electrical characteristics of Ge pMOSFETswith ZrO2/HfO2stack gate dielectric."IEEE Electron Device Letters 37.1(2016):12-15.
[5]Wang,C.,et al."High-Performance Ge pn Photodiode Achieved WithPreannealing and Excimer Laser Annealing."IEEE Photonics technology letters27.14(2015):1485-1488.
[6]Yu,H.,et al."High-efficiency pin photodetectors on selective-area-grown Ge for monolithic integration."IEEE Electron Device Letters 30.11(2009):1161-1163.
[7]Yu,X.,et al."Evaluation of Mobility Degradation Factors andPerformance Improvement of Ultrathin-Body Germanium-on-Insulator MOSFETs byGOI Thinning Using Plasma Oxidation."IEEE Transactions on Electron Devices64.4(2017):1418-1425.
[8]Poborchii,V.,et al."Raman spectroscopic characterization ofgermanium-on-insulator nanolayers."Applied Physics Letters 108.8(2016):083107.
[9]Tezuka,T.,et al."A novel fabrication technique of ultrathin andrelaxed SiGe buffer layers with high Ge fraction for sub-100nm strainedsilicon-on-insulator MOSFETs."Japanese Journal of Applied Physics 40.4S(2001):2866.
[10]Liu,Y.et al."High-quality single-crystal Ge on insulator byliquid-phase epitaxy on Si substrates."Applied Physics Letters 84.14(2004):2563-2565.
[11]Yu,C-Y.,et al."Low-temperature fabrication and characterizationof Ge-on-insulator struc tures."Applied Physics Letters 89.10(2006):101913.
发明内容
本发明的目的在于针对GOI在键合过程中遇到的键合界面存在高密度气泡的问题,提供利用磁控溅射的a-Si界面过渡层来实现键合界面气泡消除的一种无界面气泡绝缘层上锗键合方法。
本发明包括以下步骤:
1)将基底材料Ge片、SiO2/Si片分别超声清洗,去除基底表面吸附颗粒物和有机物;
2)将步骤1)超声清洗后的SiO2/Si片用H2SO4和H2O2的混合溶液煮沸后冲洗,再用NH4OH、H2O2和H2O的混合溶液煮沸后冲洗,然后用HCl、H2O2和H2O的混合溶液煮沸后冲洗;
3)将步骤1)超声清洗后的Ge片用盐酸溶液浸泡,漂洗;
4)重复步骤3),然后将处理后Ge片放入氢氟酸溶液中浸泡,冲洗,甩干后放入磁控溅射系统,溅射生长一层a-Si过渡层;
5)将步骤2)冲洗后的SiO2/Si片与步骤4)溅射后的Ge片置于氨水溶液中处理,以增强基片表面亲水性,再甩干后进行贴合,得Ge/SiO2/Si贴合片;
6)将步骤5)得到的Ge/SiO2/Si贴合片热压键合,即完成无界面气泡绝缘层上锗键合。
在步骤1)中,所述超声清洗可采用丙酮、乙醇和去离子水依次超声清洗8~10min。
在步骤2)中,所述H2SO4和H2O2的混合溶液中H2SO4与H2O2的体积比可为4︰1;所述NH4OH、H2O2和H2O的混合溶液中NH4OH、H2O2、H2O的体积比可为1︰1︰4;所述HCl、H2O2和H2O的混合溶液中HCl、H2O2、H2O的体积比可为1︰1︰4;所述煮沸的时间均可为8~12min;所述冲洗均可采用去离子水冲洗10~15次。
在步骤3)中,所述盐酸溶液中HCl与H2O的体积比可为1︰4;所述浸泡的时间可为30s,所述漂洗可在去离子水中漂洗30s。
在步骤4)中,所述重复步骤3)可重复5次;所述氢氟酸溶液中HF与H2O的体积比可为1︰(19~21);所述浸泡的时间可为2min;所述冲洗可用去离子水冲洗15次;所述甩干可用甩干机甩干;所述溅射生长一层a-Si过渡层的具体方法可为:待溅射室本底真空度小于1×10-4Pa,向溅射室内充入纯度为5N的Ar气体,通过控制气压和转盘转速调控溅射a-Si表面的速率和平整度,通过直流磁控溅射生长一层2~5nm的a-Si过渡层。
在步骤5)中,所述氨水溶液中NH4OH与H2O的体积比可为1︰10;所述甩干后进行贴合可采用甩干机甩干;所述处理的时间可为30s。
在步骤6)中,所述热压键合可放入晶片键合机中对样品进行热压键合。
本发明在清洗后的Ge片表面采用磁控溅射技术生长一层平整的a-Si过渡层来实现GOI的键合,通过a-Si过渡层对键合界面的钝化效应来实现零气泡GOI键合。
本发明创造性地提出利用磁控溅射a-Si薄膜来实现无气泡GOI的键合,该方法不仅可以解决GOI亲水键合中由于界面亲水反应形成的气泡问题,而且能在极低温度(250℃)下实现GOI的键合。本发明提出的方法是一种简易且低成本的GOI材料制备新方法。
附图说明
图1为本发明实施例1所得样品AFM图。
图2为本发明实施例1所得样品超声波显微镜测试图。
图3为本发明实施例2所得样品AFM图。
图4为本发明实施例2所得样品超声波显微镜测试图。
具体实施方式
以下实施例将结合附图对本发明作进一步的说明。
实施例1
所用设备为TRP-450复合薄膜溅射沉积系统,生长室内安置两个直流靶位和一个射频靶位。所用的靶材为5N(99.999%以上)的高纯Si圆形靶材。所用的SiO2/Si衬底材料晶向为(100)的p型单晶Si片,单面抛光,电阻率为0.008~0.02Ω·cm,顶层热氧化SiO2的厚度为200nm,所用的Ge衬底材料为晶向(100)的p型单晶Ge片,单面抛光,电阻率为0.05Ω·cm。
一,SiO2/Si和Ge基底材料的处理
1)将SiO2/Si和Ge基底材料用丙酮、乙醇、去离子水分别依次超声清洗8min,去除基底表面附着颗粒物和有机物;
2)将有机超声清洗后的SiO2/Si片用H2SO4︰H2O2=4︰1的溶液煮沸8min,去离子水冲洗15次;
3)将H2SO4清洗后的SiO2/Si片接着用NH4OH︰H2O2︰H2O=1︰1︰4的溶液煮沸10min,去离子水冲洗15次;
4)将NH4OH清洗后的SiO2/Si片最后用HCl︰H2O2︰H2O=1︰1︰4的溶液中煮沸12min,去离子水冲洗15次;
5)将有机超声清洗后的Ge片置于盐酸溶液(HCl︰H2O=1︰4)中浸泡约30s,在去离子水中漂洗30s,重复清洗5遍,去离子水冲洗15次;
6)将HCl清洗后的Ge片用HF︰H2O=1︰20的溶液浸泡2min,去离子水冲洗15次。
二,Si薄膜的溅射与GOI的键合
1)将清洗后的Ge片用甩干机在4000rpm甩干30s后放入溅射沉积系统,待磁控溅射室本底真空度小于1×10-4Pa,向溅射室内充入纯度为5N的Ar气体,通过调节气体流量控制溅射室内的压强,当通入的气体流量为3sccm时溅射室内的压强保持在0.3Pa,同时开启直流溅射电源;
2)调节直流溅射电源电流为0.1A,样品托转速为10rpm,室温下,在Ge衬底上溅射一层厚度为2nm的a-Si薄膜,沉积速率为2.42nm/min;
3)将清洗后的SiO2/Si片与溅射完a-Si薄膜的Ge片置于稀释的氨水溶液(NH4OH︰H2O=1︰10)中处理30s,以增强基片表面亲水性;
4)将稀释的NH4OH处理后的Ge片和SiO2/Si片用甩干机甩干后在室温下进行贴合;
5)将贴合后的Ge/SiO2/Si样品放入晶片键合机,待键合机的真空度抽至10-5mbar后对Ge/SiO2/Si样品施加800N的力,并在100℃退火2h,150℃退火1h和250℃退火2h,升温和降温速率为5℃/min;
6)将溅射2nm a-Si的Ge片进行AFM测试,从图1可以看出,溅射2nm的Ge薄膜表面平整,粗糙度为0.58nm。接着对键合后的GOI样品界面气泡进行超声波显微镜测试,从图2可以看出,利用2nm a-Si层作为过渡层的样品界面的大气泡基本上消失,只剩下几个小气泡。
实施例2
所用设备为TRP-450复合薄膜溅射沉积系统,生长室内安置两个直流靶位和一个射频靶位。所用的靶材为5N(99.999%以上)的高纯Si圆形靶材。所用的SiO2/Si衬底材料晶向为(100)的p型单晶Si片,单面抛光,电阻率为0.008~0.02Ω·cm,顶层热氧化SiO2的厚度为200nm,所用的Ge衬底材料为晶向(100)的p型单晶Ge片,单面抛光,电阻率为0.05Ω·cm。
一,SiO2/Si和Ge基底材料的处理
1)将SiO2/Si和Ge基底材料用丙酮、乙醇、去离子水分别依次超声清洗10min,去除基底表面附着颗粒物和有机物;
2)将有机超声清洗后的SiO2/Si片用H2SO4︰H2O2=4︰1的溶液煮沸10min,去离子水冲洗15次;
3)将H2SO4清洗后的SiO2/Si片接着用NH4OH︰H2O2︰H2O=1︰1︰4的溶液煮沸10min,去离子水冲洗15次;
4)将NH4OH清洗后的SiO2/Si片最后用HCl︰H2O2︰H2O=1︰1︰4的溶液中煮沸10min,去离子水冲洗15次;
5)将有机超声清洗后的Ge片置于盐酸溶液(HCl︰H2O=1︰4)中浸泡约30s,在去离子水中漂洗30s,重复清洗5遍,去离子水冲洗15次;
6)将HCl清洗后的Ge片用HF︰H2O=1︰20的溶液浸泡2min,去离子水冲洗15次。
二,Si薄膜的溅射与GOI的键合
1)将清洗后的Ge片用甩干机在4000rpm甩干30s后放入溅射沉积系统,待磁控溅射室本底真空度小于1×10-4Pa,向溅射室内充入纯度为5N的Ar气体,通过调节气体流量控制溅射室内的压强,当通入的气体流量为3sccm时溅射室内的压强保持在0.3Pa,同时开启直流溅射电源;
2)调节直流溅射电源电流为0.1A,样品托转速为10rpm,室温下,在Ge衬底上溅射一层厚度为5nm的a-Si薄膜,沉积速率为2.42nm/min;
3)将清洗后的SiO2/Si片与溅射完a-Si薄膜的Ge片置于稀释的氨水溶液(NH4OH︰H2O=1︰10)中处理30s,以增强基片表面亲水性;
4)将稀释的NH4OH处理后的Ge片和SiO2/Si片用甩干机甩干后在室温下进行贴合;
5)将贴合后的Ge/SiO2/Si样品放入晶片键合机,待键合机的真空度抽至10-5mbar后对Ge/SiO2/Si样品施加800N的力,并在100℃退火2h,150℃退火1h和250℃退火2h,升温和降温速率为5℃/min;
6)将溅射完5nm a-Si的Ge片进行AFM测试,从图3可以看出,溅射5nm的a-Si薄膜表面较为平整,粗糙度为0.75nm。接着对键合后样品的界面气泡进行超声波显微镜测试,从图4可以看出,利用5nm a-Si层作为过渡层的样品界面的气泡已经完全消失。

Claims (10)

1.一种无界面气泡绝缘层上锗键合方法,其特征在于包括以下步骤:
1)将基底材料Ge片、SiO2/Si片分别超声清洗,去除基底表面吸附颗粒物和有机物;
2)将步骤1)超声清洗后的SiO2/Si片用H2SO4和H2O2的混合溶液煮沸后冲洗,再用NH4OH、H2O2和H2O的混合溶液煮沸后冲洗,然后用HCl、H2O2和H2O的混合溶液煮沸后冲洗;
3)将步骤1)超声清洗后的Ge片用盐酸溶液浸泡,漂洗;
4)重复步骤3),然后将处理后Ge片放入氢氟酸溶液中浸泡,冲洗,甩干后放入磁控溅射系统,溅射生长一层a-Si过渡层;
5)将步骤2)冲洗后的SiO2/Si片与步骤4)溅射后的Ge片置于氨水溶液中处理,以增强基片表面亲水性,再甩干后进行贴合,得Ge/SiO2/Si贴合片;
6)将步骤5)得到的Ge/SiO2/Si贴合片热压键合,即完成无界面气泡绝缘层上锗键合。
2.如权利要求1所述一种无界面气泡绝缘层上锗键合方法,其特征在于在步骤1)中,所述超声清洗采用丙酮、乙醇和去离子水依次超声清洗8~10min。
3.如权利要求1所述一种无界面气泡绝缘层上锗键合方法,其特征在于在步骤2)中,所述H2SO4和H2O2的混合溶液中H2SO4与H2O2的体积比为4︰1;所述NH4OH、H2O2和H2O的混合溶液中NH4OH、H2O2、H2O的体积比为1︰1︰4;所述HCl、H2O2和H2O的混合溶液中HCl、H2O2、H2O的体积比为1︰1︰4。
4.如权利要求1所述一种无界面气泡绝缘层上锗键合方法,其特征在于在步骤2)中,所述煮沸的时间均为8~12min;所述冲洗均采用去离子水冲洗10~15次。
5.如权利要求1所述一种无界面气泡绝缘层上锗键合方法,其特征在于在步骤3)中,所述盐酸溶液中HCl与H2O的体积比为1︰4;所述浸泡的时间为30s,所述漂洗是在去离子水中漂洗30s。
6.如权利要求1所述一种无界面气泡绝缘层上锗键合方法,其特征在于在步骤4)中,所述重复步骤3)是重复5次;所述氢氟酸溶液中HF与H2O的体积比为1︰(19~21);所述浸泡的时间为2min;所述冲洗是用去离子水冲洗15次;所述甩干是用甩干机甩干。
7.如权利要求1所述一种无界面气泡绝缘层上锗键合方法,其特征在于在步骤4)中,所述溅射生长一层a-Si过渡层的具体方法为:待溅射室本底真空度小于1×10-4Pa,向溅射室内充入纯度为5N的Ar气体,通过控制气压和转盘转速调控溅射a-Si表面的速率和平整度,通过直流磁控溅射生长一层2~5nm的a-Si过渡层。
8.如权利要求1所述一种无界面气泡绝缘层上锗键合方法,其特征在于在步骤5)中,所述氨水溶液中NH4OH与H2O的体积比为1︰10。
9.如权利要求1所述一种无界面气泡绝缘层上锗键合方法,其特征在于在步骤5)中,所述甩干后进行贴合是采用甩干机甩干;所述处理的时间为30s。
10.如权利要求1所述一种无界面气泡绝缘层上锗键合方法,其特征在于在步骤6)中,所述热压键合是放入晶片键合机中对样品进行热压键合。
CN201810347003.0A 2018-04-18 2018-04-18 一种无界面气泡绝缘层上锗键合方法 Active CN108447819B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810347003.0A CN108447819B (zh) 2018-04-18 2018-04-18 一种无界面气泡绝缘层上锗键合方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810347003.0A CN108447819B (zh) 2018-04-18 2018-04-18 一种无界面气泡绝缘层上锗键合方法

Publications (2)

Publication Number Publication Date
CN108447819A true CN108447819A (zh) 2018-08-24
CN108447819B CN108447819B (zh) 2021-06-11

Family

ID=63200758

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810347003.0A Active CN108447819B (zh) 2018-04-18 2018-04-18 一种无界面气泡绝缘层上锗键合方法

Country Status (1)

Country Link
CN (1) CN108447819B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110676158A (zh) * 2019-09-30 2020-01-10 闽南师范大学 一种实现晶格阻断的零气泡Ge/Si异质混合集成方法
CN110690108A (zh) * 2019-09-30 2020-01-14 闽南师范大学 一种无气泡坑超高质量SOI基Ge薄膜异质键合方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1875473A (zh) * 2003-11-03 2006-12-06 国际商业机器公司 绝缘体上硅锗(sgoi)和绝缘体上锗(goi)衬底的制造方法
CN101010781A (zh) * 2004-09-13 2007-08-01 国际商业机器公司 使用晶片键合技术制造无缺陷高Ge含量(25%)绝缘体上SIGE(SGOI)衬底的方法
CN105118804A (zh) * 2015-09-29 2015-12-02 厦门大学 超薄硅薄膜钝化制备绝缘体上锗的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1875473A (zh) * 2003-11-03 2006-12-06 国际商业机器公司 绝缘体上硅锗(sgoi)和绝缘体上锗(goi)衬底的制造方法
CN101010781A (zh) * 2004-09-13 2007-08-01 国际商业机器公司 使用晶片键合技术制造无缺陷高Ge含量(25%)绝缘体上SIGE(SGOI)衬底的方法
CN105118804A (zh) * 2015-09-29 2015-12-02 厦门大学 超薄硅薄膜钝化制备绝缘体上锗的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DANFENG MAO ET AL.: ""Innovative Ge-SiO2 bonding based on an intermediate ultra-thin silicon layer"", 《JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110676158A (zh) * 2019-09-30 2020-01-10 闽南师范大学 一种实现晶格阻断的零气泡Ge/Si异质混合集成方法
CN110690108A (zh) * 2019-09-30 2020-01-14 闽南师范大学 一种无气泡坑超高质量SOI基Ge薄膜异质键合方法
CN110676158B (zh) * 2019-09-30 2022-06-14 闽南师范大学 一种实现晶格阻断的零气泡Ge/Si异质混合集成方法

Also Published As

Publication number Publication date
CN108447819B (zh) 2021-06-11

Similar Documents

Publication Publication Date Title
US6911375B2 (en) Method of fabricating silicon devices on sapphire with wafer bonding at low temperature
US10748989B2 (en) Insulating layer structure for semiconductor product, and preparation method of insulating layer structure
EP2343729B1 (en) Method for manufacturing silicon thin film transfer insulating wafer
JP3257624B2 (ja) 半導体部材の製造方法
US7247545B2 (en) Fabrication of a low defect germanium film by direct wafer bonding
US6388290B1 (en) Single crystal silicon on polycrystalline silicon integrated circuits
CN101325154B (zh) 混合图形化单晶硅的绝缘层上锗结构、方法及应用
US20030089950A1 (en) Bonding of silicon and silicon-germanium to insulating substrates
US9824891B1 (en) Method of manufacturing the thin film
CN113421848B (zh) 一种功率绝缘体上的硅衬底的制备工艺
WO2010137589A1 (ja) 貼り合わせsos基板
KR20080006490A (ko) 전자 공학, 광학 또는 광전자 공학용의 2개 기판의 직접본딩 방법
WO2009116664A1 (ja) Soiウェーハの製造方法
CN108573878A (zh) 无氧化层半导体低温键合方法
CN108447819A (zh) 一种无界面气泡绝缘层上锗键合方法
EP3696869A1 (en) Nano-scale single crystal thin film
US7695564B1 (en) Thermal management substrate
Li et al. Room temperature wafer bonding by surface activated ALD-Al2O3
JP2007300115A (ja) 層構造の製造方法
CN101604631A (zh) 一种具有绝缘埋层的半导体衬底的制备方法
TWI483350B (zh) SOI wafer manufacturing method and glass cleaning method
Ma et al. Germanium surface hydrophilicity and low-temperature Ge layer transfer by Ge–SiO2 bonding
CN103137538B (zh) 一种图形化绝缘体上Si/NiSi2衬底材料及其制备方法
TWI743932B (zh) 半導體基板及其製造方法
TWI786782B (zh) 製造絕緣體上矽晶片的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant