CN108428878B - 一种用于锂离子电池的ZnO/NiO/C复合负极材料的制备方法 - Google Patents

一种用于锂离子电池的ZnO/NiO/C复合负极材料的制备方法 Download PDF

Info

Publication number
CN108428878B
CN108428878B CN201810264086.7A CN201810264086A CN108428878B CN 108428878 B CN108428878 B CN 108428878B CN 201810264086 A CN201810264086 A CN 201810264086A CN 108428878 B CN108428878 B CN 108428878B
Authority
CN
China
Prior art keywords
nio
zno
precursor
ethanol
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810264086.7A
Other languages
English (en)
Other versions
CN108428878A (zh
Inventor
刘嘉铭
徐志峰
王苏敏
付群强
王瑞祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi University of Science and Technology
Original Assignee
Jiangxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi University of Science and Technology filed Critical Jiangxi University of Science and Technology
Priority to CN201810264086.7A priority Critical patent/CN108428878B/zh
Publication of CN108428878A publication Critical patent/CN108428878A/zh
Application granted granted Critical
Publication of CN108428878B publication Critical patent/CN108428878B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种用于锂离子电池的ZnO/NiO/C复合负极材料的制备方法,所述的ZnO/NiO/C材料是通过制备金属‑有机框架材料前驱体,再将其高温煅烧而得。具体为将硝酸锌、乙酰丙酮镍和对苯二甲酸溶于二甲基乙酰胺与乙醇的混合溶液中,强力磁力搅拌至混合均匀;所得溶液移入至高压反应釜中在一定温度条件下反应,离心分离,真空干燥,得到混合金属有机框架前驱体,所得前驱体经煅烧后即可获得所述ZnO/NiO/C复合材料。本发明工艺成本低,步骤简单易操作,采用碳材料复合既可以加快锂离子和电子的传输速度,提高倍率性能,又可以增强负极材料的电化学活性,提高材料的储锂稳定性。

Description

一种用于锂离子电池的ZnO/NiO/C复合负极材料的制备方法
技术领域
本发明属于材料合成及能源技术领域,具体涉及一种锂离子电池用ZnO/NiO/C复合材料制备方法。
背景技术
锂离子电池具有能量密度高、工作电压高、循环寿命长、无记忆性等优点,在数码、储能、电动汽车等领域得到广泛的应用,成为应用前景最为明朗的高能电池体系。
目前商业化的锂离子电池多用石墨负极材料,但石墨材料存在比容量低的缺点,其理论容量只有372 mAh/g。因此,开发新型高性能负极材料是发展下一代高能量密度锂离子电池的关键。ZnO和NiO具有超高的可逆容量,是值得深入研究的新型锂离子电池负极材料。但是此类材料的电子传导率低,所以倍率性能不佳。此外,材料在循环过程中存在的膨胀效应会导致结构被破坏,影响循环寿命。
发明内容
针对以上问题,本发明通过多孔金属有机框架物前驱体的合成,设计制备了ZnO/NiO/C复合材料作为锂离子电池负极。该方法工艺简单,产品的理化性质均匀,材料具有较大比表面积,为膨胀效应提供了足够的空间,前驱体煅烧后残留的碳材料形成了导电网络,既可以加快锂离子和电子的传输速度,提高倍率性能,又可以增强材料的电化学活性,提高材料的储锂稳定性。
为达到上述目的,本发明采用的技术方案包括以下步骤。
(1)将硝酸锌、乙酰丙酮镍和对苯二甲酸溶于二甲基乙酰胺与乙醇的混合溶液中,强力磁力搅拌0.5-3h,将混合溶液倒入高压釜中,在70~180℃下反应,并恒温10~36h。
(2)用二甲基乙酰胺与乙醇的混合溶液将步骤(1)中产物冲洗,然后离心分离,再在70~120℃下真空干燥6~24h,得到混合金属有机框架前驱体Zn/Ni-MOF-2。
(3)将前驱体Zn/Ni-MOF-2,在氮气气氛下,600~900℃煅烧,即可得到用于锂离子电池的ZnO/NiO/C复合负极材料。
进一步地,步骤(1)中硝酸锌、乙酰丙酮镍的质量比为1: (1~2.5),硝酸锌与对苯二甲酸的质量比为1:(0.4~2.4)。
进一步地,步骤(1)和(2)中二甲基乙酰胺和乙醇的体积比为(4~6):3。
进一步地,步骤(3)中煅烧条件为:升温速率3~10℃/min,煅烧时间为1~5h。
进一步地,所述混合金属有机框架前驱体Zn/Ni-MOF-2为多孔结构,比表面积为100~400m2/g。
进一步地,所述ZnO/NiO/C复合负极材料中碳含量为2~15wt.% ,比表面积为100~400m2/g。
本发明所采用的技术方案与现有技术相比具有下列优点。
1、本发明首先制备电极材料的前驱体,通过煅烧将碳附着在金属氧化物颗粒表面,制备方法简单。
2、电极材料表面附着碳有利于加快电子和锂离子的传输速度,既提高材料倍率性能,又可以增强电化学活性,提高材料的储锂稳定性。
3、本发明制备的ZnO/NiO/C复合负极材料具有较强的循环性能,在200mA/g的高电流密度下循环50周可逆容量可达1125.5 mAh/g以上。
附图说明
图1 为实施例1中ZnO/NiO/C复合负极材料的XRD图。
图2 为实施例1中ZnO/NiO/C复合负极材料的SEM图。
图3 为实施例1中ZnO/NiO/C复合负极材料在200mA/g电流密度下的循环性能图。
图4 为实施例2中ZnO/NiO/C复合负极材料在200mA/g电流密度下的循环性能图。
图5为对比实施例中ZnO/NiO负极材料在200mA/g电流密度下的循环性能图。
具体实施方式
下面通过实施例对本发明作进一步的说明,但不限于此。
实施例1
一种用于锂离子电池的ZnO/NiO/C复合负极材料的制备方法,具体步骤如下。
(1)称取30mg的硝酸锌、39mg的乙酰丙酮镍和16.8mg的对苯二甲酸溶于二甲基乙酰胺与乙醇(v:v=5:3)的混合溶液中,强力磁力搅拌1h,将混合溶液放入高压反应釜中,在150℃下反应,并恒温12h。
(2)用二甲基乙酰胺与乙醇的混合溶液将步骤(1)中产物冲洗三次,然后离心分离,再在80℃下真空干燥15h,得到混合金属有机框前驱体Zn/Ni-MOF-2,前驱体为多孔结构,比表面积为265.3 m2/g。
(3)将前驱体Zn/Ni-MOF-2煅烧,升温速率3℃/min,煅烧温度600℃,煅烧时间为3h,煅烧气氛为氮气。待炉冷却至室温,得到ZnO/NiO/C材料,其中碳含量为3%,比表面积为280.1m2/g。
本实施例制备的ZnO/NiO/C材料的XRD图如图1所示,从图1可知,材料具有ZnO和NiO两种特征峰,碳以非晶态存在,图中没有明显特征峰出现。本实施例制备的ZnO/NiO/C材料的SEM图如图2所示,颗粒呈块状。
电化学性能测试:将所制得的电极材料与乙炔黑和PVDF 按质量比8:1:1混合均匀,加入适量N-甲基吡咯烷酮溶解,将浆料涂膜在铜箔上制得电极。将此试验电极在真空烘箱中110℃干燥24 小时,在高纯氩气氛手套箱中以EC/DEC/DMC=1:1:1(体积比)以LiPF6为电解质,以玻璃纤维滤纸为吸液膜,PP 膜为隔膜,金属锂为电池负极组装成2016 扣式电池。放充电条件:以相同的电流密度放电到0.02V后再充电到3V,选择的电流密度为200mA/g。对上述电池进行测试,得图3。从图3可知,按实施例1方法制备的电极材料在200mA/g电流密度下充放电,循环50周后可逆容量保持在1125.5mAh/g,说明ZnO/NiO/C材料具有较好的容量保持率和循环稳定性。
实施例2
一种用于锂离子电池的ZnO/NiO/C复合负极材料的制备方法,具体步骤如下。
(1)称取35mg的硝酸锌、52mg的乙酰丙酮镍和82mg的对苯二甲酸溶于二甲基乙酰胺与乙醇(v:v=5:3)的混合溶液中,强力磁力搅拌0.8h,将混合溶液放入高压反应釜中,在100℃下反应,并恒温22h。
(2)用二甲基乙酰胺与乙醇的混合溶液将步骤(1)中产物冲洗三次,然后离心分离,再在80℃下真空干燥15h,得到混合金属有机框前驱体Zn/Ni-MOF-2,前驱体为多孔结构,比表面积为324.8 m2/g。
(3)将前驱体Zn/Ni-MOF-2煅烧,升温速率6℃/min,煅烧温度800℃,煅烧时间为1.5h,煅烧气氛为氮气。待炉冷却至室温,得到ZnO/NiO/C材料,其中碳含量为15%,比表面积为340.2m2/g。
电化学性能测试:本实施例的电化学测试与实施例1相同,测试结果如图4所示,从图4可知,ZnO/NiO/C材料在200mA/g电流密度下循环50周后,可逆容量保持在1053.2mAh/g,说明ZnO/NiO/C材料具有较好的容量保持率和循环稳定性。
实施例3
一种用于锂离子电池的ZnO/NiO/C复合负极材料的制备方法,具体步骤如下。
(1)称取40mg的硝酸锌、69mg的乙酰丙酮镍和71mg的对苯二甲酸溶于二甲基乙酰胺与乙醇(v:v=4:3)的混合溶液中,强力磁力搅拌3h,将混合溶液放入高压反应釜中,在120℃下反应,并恒温18h。
(2)用二甲基乙酰胺与乙醇的混合溶液将步骤(1)中产物冲洗三次,然后离心分离,再在100℃下真空干燥8h,得到混合金属有机框前驱体Zn/Ni-MOF-2,前驱体为多孔结构,比表面积为186.1 m2/g。
(3)将前驱体Zn/Ni-MOF-2煅烧,升温速率5℃/min,煅烧温度900℃,煅烧时间为1h,煅烧气氛为氮气。待炉冷却至室温,得到ZnO/NiO/C材料,其中碳含量为11%,比表面积为229.6m2/g。
电化学性能测试:本实施例的电化学测试与实施例1相同,本实施例ZnO/NiO/C材料在200mA/g电流密度下循环50周的可逆容量和实施例1相近,说明ZnO/NiO/C材料具有较好的容量保持率和循环稳定性。
实施例4
一种用于锂离子电池的ZnO/NiO/C复合负极材料的制备方法,具体步骤如下。
(1)称取25mg的硝酸锌、49mg的乙酰丙酮镍和22.5mg的对苯二甲酸溶于二甲基乙酰胺与乙醇(v:v=6:3)的混合溶液中,强力磁力搅拌2.4h,将混合溶液放入高压反应釜中,在70℃下反应,并恒温36h。
(2)用二甲基乙酰胺与乙醇的混合溶液将步骤(1)中产物冲洗三次,然后离心分离,再在110℃下真空干燥6h,得到混合金属有机框前驱体Zn/Ni-MOF-2,前驱体为多孔结构,比表面积为124.9 m2/g。
(3)将前驱体Zn/Ni-MOF-2煅烧,升温速率10℃/min,煅烧温度900℃,煅烧时间为1h,煅烧气氛为氮气。待炉冷却至室温,得到ZnO/NiO/C材料,其中碳含量为6%,比表面积为150.7m2/g。
电化学性能测试:本实施例的电化学测试与实施例1相同,本实施例ZnO/NiO/C材料在200mA/g电流密度下循环50周的可逆容量和实施例1相近,说明ZnO/NiO/C材料具有较好的容量保持率和循环稳定性。
实施例5
一种用于锂离子电池的ZnO/NiO/C复合负极材料的制备方法,具体步骤如下。
(1)称取32.5mg的硝酸锌、48.1mg的乙酰丙酮镍和44.6mg的对苯二甲酸溶于二甲基乙酰胺与乙醇(v:v=4.8:3)的混合溶液中,强力磁力搅拌1.5h,将混合溶液放入高压反应釜中,在130℃下反应,并恒温18h。
(2)用二甲基乙酰胺与乙醇的混合溶液将步骤(1)中产物冲洗三次,然后离心分离,再在105℃下真空干燥11h,得到混合金属有机框前驱体Zn/Ni-MOF-2,前驱体为多孔结构,比表面积为345.2 m2/g。
(3)将前驱体Zn/Ni-MOF-2煅烧,升温速率4℃/min,煅烧温度850℃,煅烧时间为1.6h,煅烧气氛为氮气。待炉冷却至室温,得到ZnO/NiO/C材料,其中碳含量为9%,比表面积为385.5m2/g。
电化学性能测试:本实施例的电化学测试与实施例1相同,本实施例ZnO/NiO/C材料在200mA/g电流密度下循环50周的可逆容量和实施例1相近,说明ZnO/NiO/C材料具有较好的容量保持率和循环稳定性。
对比实施例
固相法制备锂离子电池用ZnO/NiO材料,具体步骤如下。
(1)称取3.1g的硝酸锌、4.6g的硝酸镍,用研磨将硝酸盐磨碎混合,过400目筛。
(2)将步骤(1)混合粉末倒入坩埚内,对坩埚进行煅烧处理。煅烧气氛为空气,煅烧温度700℃,时间2h,待炉冷却得到锂离子电池用ZnO/NiO4材料。
电化学性能测试:本对比例的电化学性能测试与实施例1相同,测试结果如图5所示,CuFe2O4材料在200mA/g电流密度下循环50周的可逆容量298.7mAh/g。

Claims (5)

1.一种用于锂离子电池的ZnO/NiO/C复合负极材料的制备方法,其特征在于,包括以下步骤:
(1)将硝酸锌、乙酰丙酮镍和对苯二甲酸溶于二甲基乙酰胺与乙醇的混合溶液中,强力磁力搅拌0.5-3h,将混合溶液放入高压反应釜中,在70~180℃下反应,并恒温10~36h;
(2)用二甲基乙酰胺与乙醇的混合溶液将步骤(1)中产物冲洗,然后离心分离,再在70~120℃下真空干燥6~24h,得到混合金属有机框架前驱体Zn/Ni-MOF-2;所述前驱体为多孔结构,比表面积为100~400m2/g;
(3)将前驱体Zn/Ni-MOF-2在氮气气氛下,600~900℃煅烧,即可得到用于锂离子电池的ZnO/NiO/C复合负极材料。
2.如权利要求1所述的制备方法,其特征在于:步骤(1)中硝酸锌、乙酰丙酮镍的质量比为1: (1~2.5),硝酸锌与对苯二甲酸的质量比为1:(0.4~2.4)。
3.如权利要求1所述的制备方法,其特征在于:步骤(1)和步骤(2)中二甲基乙酰胺和乙醇的体积比为(4~6):3。
4.如权利要求1所述的制备方法,其特征在于:步骤(3)中煅烧条件为:升温速率3~10℃/min,煅烧时间为1~5h。
5.如权利要求1所述的制备方法,其特征在于:所述ZnO/NiO/C复合负极材料中碳含量为2~15wt.%,比表面积为100~400m2/g。
CN201810264086.7A 2018-03-28 2018-03-28 一种用于锂离子电池的ZnO/NiO/C复合负极材料的制备方法 Active CN108428878B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810264086.7A CN108428878B (zh) 2018-03-28 2018-03-28 一种用于锂离子电池的ZnO/NiO/C复合负极材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810264086.7A CN108428878B (zh) 2018-03-28 2018-03-28 一种用于锂离子电池的ZnO/NiO/C复合负极材料的制备方法

Publications (2)

Publication Number Publication Date
CN108428878A CN108428878A (zh) 2018-08-21
CN108428878B true CN108428878B (zh) 2020-07-24

Family

ID=63159378

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810264086.7A Active CN108428878B (zh) 2018-03-28 2018-03-28 一种用于锂离子电池的ZnO/NiO/C复合负极材料的制备方法

Country Status (1)

Country Link
CN (1) CN108428878B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109301217A (zh) * 2018-09-30 2019-02-01 西北有色金属研究院 一种层叠状NiO微纳米材料的制备方法及其应用
CN109174105A (zh) * 2018-10-11 2019-01-11 天津工业大学 一种双MOFs衍生的磁性催化剂的制备方法
CN109888238A (zh) * 2019-03-08 2019-06-14 湖南大学 一种高比容量、高倍率性能的锂离子电池负极材料及其制备方法
CN110247041B (zh) * 2019-06-26 2021-07-23 浙江大学 一种ZnNiO/C复合纳米材料及其制备方法
WO2021087852A1 (zh) * 2019-11-07 2021-05-14 安徽锦华氧化锌有限公司 一种用作锂离子电池负极材料的纳米氧化锌复合材料
CN112635738B (zh) * 2020-12-22 2021-09-21 江西理工大学 用于锂离子电池的FeNiP/C@MXene复合负极材料的制备方法
CN113948687B (zh) * 2021-09-28 2023-11-03 江苏理工学院 一种MOF基ZnO/ZnCo2O4/C复合材料的制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106784658A (zh) * 2016-12-01 2017-05-31 中南大学 一种锂离子电池用金属氧化物/碳负极材料的形貌调控方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120049110A1 (en) * 2010-09-01 2012-03-01 Basf Se Process For Producing A Carbon-Comprising Composite
US20150044553A1 (en) * 2013-08-07 2015-02-12 Toyota Motor Engineering & Manufacturing North America, Inc. Cathode active material for non-aqueous rechargeable magnesium battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106784658A (zh) * 2016-12-01 2017-05-31 中南大学 一种锂离子电池用金属氧化物/碳负极材料的形貌调控方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
金属氧化物/碳纳米复合材料的储锂性能;王子佳;《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》;20111215;正文第12页第4段-第13页第3段 *

Also Published As

Publication number Publication date
CN108428878A (zh) 2018-08-21

Similar Documents

Publication Publication Date Title
CN108428878B (zh) 一种用于锂离子电池的ZnO/NiO/C复合负极材料的制备方法
CN107359334B (zh) 球形或类球形锂离子电池正极材料及锂离子电池
CN112018344B (zh) 碳包覆硫化镍电极材料及其制备方法和应用
CN109461906B (zh) 一种锂硫电池正极材料的制备方法
CN111092202B (zh) 一种高镍三元正极材料及其制备方法和应用
CN114804058A (zh) 一种高振实密度磷酸铁锂正极材料及其制备方法、应用
JP2004356048A (ja) リチウム二次電池用電極材料、前記電極材料を有する電極構造体及び前記電極構造体を有するリチウム二次電池
JP7135433B2 (ja) リチウムニッケル複合酸化物の製造方法
CN108400299B (zh) 一种用于钠离子电池的CuFe2O4/C复合负极材料的制备方法
CN114497475A (zh) 一种锂离子电池用含锌的氮掺杂多孔碳包覆锌基负极材料
CN116706050B (zh) 中低镍单晶三元正极材料及其制备方法和电池
CN103296266B (zh) 掺杂Cu的钛酸锌锂负极材料及其制备方法
CN108682828A (zh) 一种氮掺杂碳包覆正极材料的制备方法
CN111326730B (zh) 一种表层梯度掺杂富锂层状氧化物正极材料及其制备方法和应用
CN110683589B (zh) 一种四氧化三钴纳米材料的制备方法
CN116805684A (zh) 一种Al、Zn、Ti和Fe共掺杂双相层状氧化物钠离子电池高熵正极材料
US11569504B2 (en) Positive electrode active material for lithium ion secondary batteries and method for producing same
CN111129469A (zh) 一种FexOy-FeS2-z复合材料及其制备方法和应用
CN109461897B (zh) 一种纺锤形碳包覆钒基正极材料的制备方法
CN108598443B (zh) 大孔球状硫化锌/硫化亚铁/碳负极材料及其制备方法
CN111129454A (zh) 一种锂离子电池负极材料及其制备方法和应用
CN108054367B (zh) 一种用于钠离子电池的碳包覆MgFe2O4负极材料的制备方法
CN114242982B (zh) 石墨烯包覆二维金属化合物电极材料及其制备方法和应用
CN110790315A (zh) 一种锂离子电池正极Li4Mn5O12纳米颗粒的制备方法
CN109671925B (zh) 一种GaV2O5/Ga2O3复合物锂离子电池负极材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant