WO2021087852A1 - 一种用作锂离子电池负极材料的纳米氧化锌复合材料 - Google Patents

一种用作锂离子电池负极材料的纳米氧化锌复合材料 Download PDF

Info

Publication number
WO2021087852A1
WO2021087852A1 PCT/CN2019/116203 CN2019116203W WO2021087852A1 WO 2021087852 A1 WO2021087852 A1 WO 2021087852A1 CN 2019116203 W CN2019116203 W CN 2019116203W WO 2021087852 A1 WO2021087852 A1 WO 2021087852A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
zinc oxide
parts
nano
oxide composite
Prior art date
Application number
PCT/CN2019/116203
Other languages
English (en)
French (fr)
Inventor
刘艺
Original Assignee
安徽锦华氧化锌有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽锦华氧化锌有限公司 filed Critical 安徽锦华氧化锌有限公司
Priority to PCT/CN2019/116203 priority Critical patent/WO2021087852A1/zh
Publication of WO2021087852A1 publication Critical patent/WO2021087852A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of battery negative electrode materials, and specifically relates to a nano-zinc oxide composite material used as a lithium ion battery negative electrode material.
  • Nano-zinc oxide is a new type of multifunctional inorganic material, and its particle size is about 1-100 nanometers. Due to the miniaturization of crystal grains, the surface electronic structure and crystal structure have changed, resulting in surface effects, volume effects, quantum size effects, macro tunnel effects, high transparency and high dispersion that are not available in macroscopic objects. In recent years, it has been discovered that it exhibits many special functions in catalysis, optics, magnetism, mechanics, etc., making it of important application value in many fields such as ceramics, chemical industry, electronics, optics, biology, medicine, etc. The particularity and use of comparison.
  • Lithium battery is a high-performance battery that can be recharged at a high speed. Its unit energy density is more than three times the unit energy density of conventional lead storage batteries, nickel-cadmium batteries, nickel-hydrogen batteries, nickel-zinc batteries, etc., so lithium The application range of batteries is becoming wider and wider.
  • the negative electrode active material is a lithium ion battery as the acceptor of lithium ions, which realizes the insertion and extraction of lithium ions during the charging and discharging process. At present, graphite and modification are widely used in commercial lithium ion battery negative electrodes Graphite is a carbon-based material, but its capacity is low (372mAh/g), which cannot meet actual needs.
  • zinc oxide Due to its high theoretical capacity (998mAh/g), zinc oxide has become a matching anode material for high-power lithium batteries for vehicles It is a better choice, but in specific use, due to the low conductivity of zinc oxide itself, the limited diffusion of lithium ions, and the large volume change at the same time, the zinc oxide in the battery is usually improved by combining zinc oxide with other conductive materials. The charging and discharging performance of the material and the electrochemical performance of the final material have been improved to a certain extent.
  • Activated carbon has a wide range of precursors, which are usually used for ordinary adsorption.
  • the specific surface area of the product is 500-1500m 2 /g and the pore volume is less than 1cm 3 /g.
  • the pitch-based spherical activated carbon has good sphericity, excellent adsorption performance, and high mechanical strength.
  • the advantage of rich sources of raw materials, due to the nature of the raw materials determines that it is mainly a microporous structure, which limits its application to a certain extent; in the present invention, the activated carbon is processed rationally and the composite material is prepared with nano-zinc oxide to improve the use of nano-zinc oxide. Electrochemical performance of lithium ion battery negative electrode.
  • the present invention provides a nano-zinc oxide composite material used as a negative electrode material for lithium-ion batteries.
  • the composite material can further increase the BET specific surface area of the composite material, and the pore volume of micropores and mesopores can be reduced to a certain extent.
  • the anode material of lithium ion battery is prepared with nano-zinc oxide to reduce the influence of volume expansion. Pitch-based spherical activated carbon /Alumina composite material helps to improve the surface lithium storage performance, while improving the conductivity of zinc oxide.
  • a nano-zinc oxide composite material used as a negative electrode material of a lithium ion battery includes the following steps:
  • the pitch-based spherical activated carbon has a BET specific surface area of 1001m 2 /g, a microporous specific surface area of 611m 2 /g, a microporous pore volume of 0.29cm 3 /g, a mesoporous specific surface area of 190m 2 /g, and a mesoporous specific surface area of 190m 2 /g.
  • the pore volume is 0.367 cm 3 /g.
  • the pitch-based spherical activated carbon/alumina composite material has a BET specific surface area of 1547-1562 m 2 /g, a micropore specific surface area of 514-519 m 2 /g, and a micropore volume of 0.21-0.24 cm 3 /g;
  • the mesopore specific surface area is 138-143m 2 /g, and the mesopore pore volume is 0.176-0.192 cm 3 /g.
  • the specific surface area is determined by the BET method, and the centrally controlled pore size distribution of each activated carbon is obtained by the BJH method.
  • Micropore pore diameter
  • Middle hole Hole diameter
  • the preparation method of the nano zinc oxide precursor is: by weight, 10 parts of urea is ultrasonically dispersed in 300 parts of deionized water, then 4-6 parts of zinc sulfate heptahydrate is added, mixed and stirred, and then heated to 85°C Heat preservation treatment for 6-7 hours, centrifugal separation after completion, to obtain nano-zinc oxide precursor;
  • the frequency of the ultrasonic waves is 40-50 kHz, and the ultrasonic dispersion time is 5-10 minutes.
  • the grinding and mixing time in the step (2) is 30-40 minutes; the particle size of the nano-zinc oxide composite material is 30-60 nm, and the obtained particle size distribution is uniform.
  • the present invention has the following advantages:
  • the pitch-based spherical activated carbon/alumina composite material can provide a pore structure.
  • the use of alumina improves the thermal stability of the composite material, reduces the influence of volume expansion on the electrical properties of the composite material, and at the same time can improve the graphitization degree of the zinc oxide surface It is beneficial to the transportation of electrons in nano-zinc oxide composite materials. It is used as anode material for lithium-ion batteries. It has good electrochemical performance. At a current density of 100mA/g, it can still maintain 832-925mAh/g after 100 cycles. Its reversible capacity, stable performance and good electrical performance, are suitable for industrial applications.
  • a nano-zinc oxide composite material used as a negative electrode material of a lithium ion battery, and its preparation method includes the following steps:
  • the preparation method of the nano zinc oxide precursor is: by weight, 10 parts of urea is ultrasonically dispersed in 300 parts of deionized water, and then 5 parts of zinc sulfate heptahydrate is added, mixed and stirred, and then heated to 85°C for heat preservation treatment After 6.5 hours, centrifugal separation was completed to obtain the nano-zinc oxide precursor; during the ultrasonic dispersion treatment, the ultrasonic frequency was 45 kHz, and the ultrasonic dispersion time was 8 minutes.
  • the pitch-based spherical activated carbon has a BET specific surface area of 1001m 2 /g, a microporous specific surface area of 611m 2 /g, a microporous pore volume of 0.29cm 3 /g, a mesoporous specific surface area of 190m 2 /g, and a mesoporous specific surface area of 190m 2 /g.
  • the pore volume is 0.367 cm 3 /g.
  • the pitch-based spherical activated carbon/alumina composite material has a BET specific surface area of 1554 m 2 /g, a micropore specific surface area of 517 m 2 /g, a micropore pore volume of 0.22 cm 3 /g, and a mesopore specific surface area of 141 m 2 /g, the mesopore pore volume is 0.184cm 3 /g.
  • the nano-zinc oxide composite material prepared in this embodiment is used as a composite material for a lithium ion battery. After testing, it can maintain a reversible capacity of 925 mAh/g after 100 cycles at a current density of 100 mA/g.
  • a nano-zinc oxide composite material used as a negative electrode material of a lithium ion battery, and its preparation method includes the following steps:
  • the preparation method of the nano-zinc oxide precursor is: by weight, 10 parts of urea is ultrasonically dispersed in 300 parts of deionized water, then 4 parts of zinc sulfate heptahydrate is added, mixed and stirred, and then heated to 85°C for heat preservation treatment After 7 hours, centrifugal separation was completed to obtain the nano zinc oxide precursor; during the ultrasonic dispersion treatment, the frequency of the ultrasonic wave was 50 kHz, and the ultrasonic dispersion time was 10 minutes.
  • the pitch-based spherical activated carbon has a BET specific surface area of 1001m 2 /g, a microporous specific surface area of 611m 2 /g, a microporous pore volume of 0.29cm 3 /g, a mesoporous specific surface area of 190m 2 /g, and a mesoporous specific surface area of 190m 2 /g.
  • the pore volume is 0.367 cm 3 /g.
  • the pitch-based spherical activated carbon/alumina composite material has a BET specific surface area of 1562 m 2 /g, a micropore specific surface area of 514 m 2 /g, a micropore pore volume of 0.24 cm 3 /g, and a mesopore specific surface area of 138 m 2 /g, the mesopore pore volume is 0.176cm 3 /g.
  • the nano-zinc oxide composite material prepared in this example was used as a lithium-ion battery composite material, and it was tested that at a current density of 100 mA/g, it can still maintain a reversible capacity of 872 mAh/g after 100 cycles.
  • a nano-zinc oxide composite material used as a negative electrode material of a lithium ion battery, and its preparation method includes the following steps:
  • the preparation method of the nano zinc oxide precursor is: by weight, 10 parts of urea is ultrasonically dispersed in 300 parts of deionized water, then 6 parts of zinc sulfate heptahydrate is added, mixed and stirred, and then heated to 85°C for heat preservation treatment After 6 hours, centrifugal separation was completed to obtain the nano-zinc oxide precursor; during the ultrasonic dispersion treatment, the frequency of the ultrasonic wave was 40 kHz, and the ultrasonic dispersion time was 5 minutes.
  • the pitch-based spherical activated carbon has a BET specific surface area of 1001m 2 /g, a microporous specific surface area of 611m 2 /g, a microporous pore volume of 0.29cm 3 /g, a mesoporous specific surface area of 190m 2 /g, and a mesoporous specific surface area of 190m 2 /g.
  • the pore volume is 0.367 cm 3 /g.
  • the BET specific surface area of the pitch-based spherical activated carbon/alumina composite material is 1547m 2 /g
  • the micropore specific surface area is 519m 2 /g
  • the micropore pore volume is 0.21cm 3 /g
  • the mesopore specific surface area is 143m 2 /g
  • the mesopore pore volume is 0.172cm 3 /g.
  • the nano-zinc oxide composite material prepared in this example was used as a lithium-ion battery composite material, and it was tested that at a current density of 100 mA/g, the reversible capacity of 846 mAh/g can still be maintained after 100 cycles.
  • step (2) the pitch-based spherical activated carbon/alumina composite material is replaced with the same amount of pitch-based spherical activated carbon, and the rest of the content remains unchanged;
  • the nano-zinc oxide composite prepared in this control group was used as a composite material for lithium-ion batteries. After testing, it can maintain a reversible capacity of 632mAh/g after 100 cycles at a current density of 100mA/g.
  • the nano-zinc oxide composite material prepared in this control group was used as a lithium-ion battery composite material. After testing, it can maintain a reversible capacity of 715 mAh/g after 100 cycles at a current density of 100 mA/g.
  • the nano-zinc oxide composite material prepared in this control group was used as a composite material for lithium-ion batteries, and it was tested that at a current density of 100 mA/g, it can still maintain a reversible capacity of 765 mAh/g after 100 cycles.
  • step (1) on the basis of Example 1.
  • step (2) replace the pitch-based spherical activated carbon/alumina composite material with the same amount of alumina, and the rest of the content remains unchanged;
  • the nano-zinc oxide composite prepared in this control group was used as a composite material for lithium-ion batteries. After testing, it can maintain a reversible capacity of 537mAh/g after 100 cycles at a current density of 100mA/g.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种用作锂离子电池负极材料的纳米氧化锌复合材料,其制备方法包括沥青基球状活性炭/氧化铝复合材料的制备以及纳米氧化锌复合材料的制备。沥青基球状活性炭/氧化铝复合材料能够提供孔结构,氧化铝的使用提高复合材料的热稳定性,降低体积膨胀对复合材料电性能的影响,同时能够提高氧化锌表面的石墨化程度,有利于纳米氧化锌复合材料中电子的运输,用于锂离子电池负极材料,具备较好的电化学性能,在100mA/g的电流密度下,100个循环后仍能保持832-925mAh/g的可逆容量,其性能稳定,电性能较好,适于工业化应用。

Description

一种用作锂离子电池负极材料的纳米氧化锌复合材料 技术领域
本发明属于电池负极材料技术领域,具体涉及一种用作锂离子电池负极材料的纳米氧化锌复合材料。
背景技术
纳米氧化锌是一种多功能性的新型无机材料,其颗粒大小约在1~100纳米。由于晶粒的细微化,其表面电子结构和晶体结构发生变化,产生了宏观物体所不具有的表面效应、体积效应、量子尺寸效应和宏观隧道效应以及高透明度、高分散性等特点。近年来发现它在催化、光学、磁学、力学等方面展现出许多特殊功能,使其在陶瓷、化工、电子、光学、生物、医药等许多领域有重要的应用价值,具有普通氧化锌所无法比较的特殊性和用途。
锂电池在高倍速下可再充电的高性能电池,其单位能量密度为常规的铅蓄电池、镍-镉电池、镍-氢电池、镍-锌电池等的单位能量密度的三倍以上,因此锂电池的应用范围也越来越广,负极活性材料是锂离子电池作为锂离子的受体,在充放电过程中实现锂离子的嵌入及脱出,目前商用锂离子电池负极材料广泛使用石墨及改性石墨的碳类材料,但其容量较低(372mAh/g),无法满足实际使用需求,氧化锌由于具有较高的理论容量(998mAh/g),成为车用大功率动力锂电池匹配的负极材料的较好选择,但在具体使用时,由于氧化锌自身导电性低、锂离子扩散受限,同时存在较大的体积变化,目前通常通过将氧化锌与其他导电性物质来提高氧化锌在电池中的充放电性能,最终得到的材料电化学性能均有一定程度的提高。
活性炭的前驱体来源广泛,通常用于普通吸附,产品比表面积为500-1500m 2/g、孔容低于1cm 3/g;其中沥青基球状活性炭具有球形度好、吸附性能优异、机械强度高、原料来源丰富的优点,由于其原料性质决定其主要为微孔结构,在一定程度上限制了其应用;本发明中通过对活性炭合理加工,与纳米氧化锌制备复合材料,提高纳米氧化锌作为锂离子电池负极的电化学性能。
发明内容
现有技术中选择氧化锌作为负极材料,其具有较低的氧化还原电势以及更高的锂离子扩散系数,但其受制于体积膨胀和导电性差两个缺点,通常从纳米化、碳包覆以及金属掺杂三个方面来克服体积膨胀和导电性差的问题,本发明提供了一种用作锂离子电池负极材料的纳米氧化锌复合材料,以沥青基球状活性炭为基材,将氧化铝与其制成复合材料,使所得复合材料的BET比表面积进一步提高,微孔和中孔孔容在到一定程度上降低,配合纳米氧化锌 制备锂离子电池负极材料,降低体积膨胀的影响,沥青基球状活性炭/氧化铝复合材料有助于提高表面储锂性能,同时提高氧化锌的导电性。
本发明是通过以下技术方案实现的:一种用作锂离子电池负极材料的纳米氧化锌复合材料,其制备方法包括以下步骤:
(1)按重量份计,将沥青基球状活性炭75-85份与去离子水300份混合,然后加入质量浓度为1.5g/mL的碳酸氢钠溶液200份高速搅拌15-20分钟,再加入质量浓度为0.2-0.3%的硫酸铝溶液400份,在温度为70℃的条件下搅拌反应30分钟,得到复合沉淀物,过滤后用去离子水洗涤,烘干,研磨过300目筛后,以氮气为载体,在含氧量为1.2-1.8%的条件下,在温度为400℃的条件下处理4-5小时,得到沥青基球状活性炭/氧化铝复合材料;
(2)将纳米氧化锌前驱物55-65份、沥青基球状活性炭/氧化铝复合材料4-6份、苯基丙酮酸钠单水合物1-2份、三乙醇胺硼酸酯0.2-0.6份研磨混合,在含氧量不低于40%的条件下加热至300℃,搅拌处理2-3小时,完成后置于惰性气体保护的管式炉中在温度为600-700℃的条件下保温处理3-4小时,得到纳米氧化锌复合材料。
其中,所述沥青基球状活性炭BET比表面积为1001m 2/g,微孔比表面积为611m 2/g,微孔孔容为0.29cm 3/g,中孔比表面积为190m 2/g,中孔孔容为0.367cm 3/g。
其中,所述沥青基球状活性炭/氧化铝复合材料的BET比表面积为1547-1562m 2/g,微孔比表面积为514-519m 2/g,微孔孔容为0.21-0.24cm 3/g;中孔比表面积为138-143m 2/g,中孔孔容为0.176-0.192cm 3/g。
其中由BET法测定比表面积,由BJH法求得各活性炭的中控孔径分布,其中微孔:孔直径
Figure PCTCN2019116203-appb-000001
中孔:
Figure PCTCN2019116203-appb-000002
孔直径
Figure PCTCN2019116203-appb-000003
所述纳米氧化锌前驱物的制备方法为:按重量份计,将10份尿素在300份去离子水中超声分散处理,然后加入七水硫酸锌4-6份,混合搅拌均匀后加热至85℃保温处理6-7小时,完成后离心分离,得到纳米氧化锌前驱物;
其中,所述超声分散处理时,超声波的频率为40-50kHz,超声波分散时间为5-10分钟。
其中,所述步骤(2)中研磨混合的时间为30-40分钟;所述纳米氧化锌复合材料的颗粒粒径为30-60nm,所得粒径分布均匀。
本发明相比现有技术具有以下优点:
本发明中沥青基球状活性炭/氧化铝复合材料能够提供孔结构,氧化铝的使用提高复合材料的热稳定性,降低体积膨胀对复合材料电性能的影响,同时能够提高氧化锌表面的石墨化程度,有利于纳米氧化锌复合材料中电子的运输,用于锂离子电池负极材料,具备较好的电化学性 能,在100mA/g的电流密度下,100个循环后仍能保持832-925mAh/g的可逆容量,其性能稳定,电性能较好,适于工业化应用。
具体实施方式
下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
一种用作锂离子电池负极材料的纳米氧化锌复合材料,其制备方法包括以下步骤:
(1)按重量份计,将沥青基球状活性炭80份与去离子水300份混合,然后加入质量浓度为1.5g/mL的碳酸氢钠溶液200份高速搅拌18分钟,再加入质量浓度为0.25%的硫酸铝溶液400份,在温度为70℃的条件下搅拌反应30分钟,得到复合沉淀物,过滤后用去离子水洗涤,烘干,研磨过300目筛后,以氮气为载体,在含氧量为1.5%的条件下,在温度为400℃的条件下处理4.5小时,得到沥青基球状活性炭/氧化铝复合材料;
(2)将纳米氧化锌前驱物60份、沥青基球状活性炭/氧化铝复合材料5份、苯基丙酮酸钠单水合物1.5份、三乙醇胺硼酸酯0.4份研磨混合35分钟,在含氧量不低于40%的条件下加热至300℃,搅拌处理2.5小时,完成后置于惰性气体保护的管式炉中在温度为650℃的条件下保温处理3.5小时,得到颗粒粒径为30-60nm的纳米氧化锌复合材料;
所述纳米氧化锌前驱物的制备方法为:按重量份计,将10份尿素在300份去离子水中超声分散处理,然后加入七水硫酸锌5份,混合搅拌均匀后加热至85℃保温处理6.5小时,完成后离心分离,得到纳米氧化锌前驱物;超声分散处理时,超声波的频率为45kHz,超声波分散时间为8分钟。
其中,所述沥青基球状活性炭BET比表面积为1001m 2/g,微孔比表面积为611m 2/g,微孔孔容为0.29cm 3/g,中孔比表面积为190m 2/g,中孔孔容为0.367cm 3/g。
其中,所述沥青基球状活性炭/氧化铝复合材料的BET比表面积为1554m 2/g,微孔比表面积为517m 2/g,微孔孔容为0.22cm 3/g;中孔比表面积为141m 2/g,中孔孔容为0.184cm 3/g。
将本实施例中所制备的纳米氧化锌复合材料用作锂离子电池复合材料,经检测,在100mA/g的电流密度下,100个循环后仍能保持925mAh/g的可逆容量。
实施例2
一种用作锂离子电池负极材料的纳米氧化锌复合材料,其制备方法包括以下步骤:
(1)按重量份计,将沥青基球状活性炭75份与去离子水300份混合,然后加入质量浓度为1.5g/mL的碳酸氢钠溶液200份高速搅拌20分钟,再加入质量浓度为0.3%的硫酸铝溶液400份,在温度为70℃的条件下搅拌反应30分钟,得到复合沉淀物,过滤后用去离子水洗涤,烘干,研磨过300目筛后,以氮气为载体,在含氧量为1.2%的条件下,在温度为400℃的条件下处理4小时,得到沥青基球状活性炭/氧化铝复合材料;
(2)将纳米氧化锌前驱物65份、沥青基球状活性炭/氧化铝复合材料4份、苯基丙酮酸钠单水合物2份、三乙醇胺硼酸酯0.6份研磨混合40分钟,在含氧量不低于40%的条件下加热至300℃,搅拌处理3小时,完成后置于惰性气体保护的管式炉中在温度为700℃的条件下保温处理4小时,得到颗粒粒径为30-60nm的纳米氧化锌复合材料;
所述纳米氧化锌前驱物的制备方法为:按重量份计,将10份尿素在300份去离子水中超声分散处理,然后加入七水硫酸锌4份,混合搅拌均匀后加热至85℃保温处理7小时,完成后离心分离,得到纳米氧化锌前驱物;超声分散处理时,超声波的频率为50kHz,超声波分散时间为10分钟。
其中,所述沥青基球状活性炭BET比表面积为1001m 2/g,微孔比表面积为611m 2/g,微孔孔容为0.29cm 3/g,中孔比表面积为190m 2/g,中孔孔容为0.367cm 3/g。
其中,所述沥青基球状活性炭/氧化铝复合材料的BET比表面积为1562m 2/g,微孔比表面积为514m 2/g,微孔孔容为0.24cm 3/g;中孔比表面积为138m 2/g,中孔孔容为0.176cm 3/g。
将本实施例中所制备的纳米氧化锌复合材料用作锂离子电池复合材料,经检测,在100mA/g的电流密度下,100个循环后仍能保持872mAh/g的可逆容量。
实施例3
一种用作锂离子电池负极材料的纳米氧化锌复合材料,其制备方法包括以下步骤:
(1)按重量份计,将沥青基球状活性炭85份与去离子水300份混合,然后加入质量浓度为1.5g/mL的碳酸氢钠溶液200份高速搅拌15分钟,再加入质量浓度为0.2%的硫酸铝溶液400份,在温度为70℃的条件下搅拌反应30分钟,得到复合沉淀物,过滤后用去离子水洗涤,烘干,研磨过300目筛后,以氮气为载体,在含氧量为1.8%的条件下,在温度为400℃的条件下处理5小时,得到沥青基球状活性炭/氧化铝复合材料;
(2)将纳米氧化锌前驱物55份、沥青基球状活性炭/氧化铝复合材料6份、苯基丙酮酸钠单水合物1份、三乙醇胺硼酸酯0.2份研磨混合30分钟,在含氧量不低于40%的条件下加热至 300℃,搅拌处理2小时,完成后置于惰性气体保护的管式炉中在温度为600℃的条件下保温处理3小时,得到颗粒粒径为30-60nm的纳米氧化锌复合材料;
所述纳米氧化锌前驱物的制备方法为:按重量份计,将10份尿素在300份去离子水中超声分散处理,然后加入七水硫酸锌6份,混合搅拌均匀后加热至85℃保温处理6小时,完成后离心分离,得到纳米氧化锌前驱物;超声分散处理时,超声波的频率为40kHz,超声波分散时间为5分钟。
其中,所述沥青基球状活性炭BET比表面积为1001m 2/g,微孔比表面积为611m 2/g,微孔孔容为0.29cm 3/g,中孔比表面积为190m 2/g,中孔孔容为0.367cm 3/g。
其中,所述沥青基球状活性炭/氧化铝复合材料的BET比表面积为1547m 2/g,微孔比表面积为519m 2/g,微孔孔容为0.21cm 3/g;中孔比表面积为143m 2/g,中孔孔容为0.172cm 3/g。
将本实施例中所制备的纳米氧化锌复合材料用作锂离子电池复合材料,经检测,在100mA/g的电流密度下,100个循环后仍能保持846mAh/g的可逆容量。
设置对照组1,在实施例1的基础上把步骤(1)去掉,步骤(2)中沥青基球状活性炭/氧化铝复合材料替换为等量的沥青基球状活性炭,其余内容不变;
将本对照组中所制备的纳米氧化锌复合材料用作锂离子电池复合材料,经检测,在100mA/g的电流密度下,100个循环后仍能保持632mAh/g的可逆容量。
设置对照组2,在实施例1的基础上把步骤(1)中“以氮气为载体,在含氧量为1.2%的条件下”替换为“在空气氛围中”,其余内容不变;
将本对照组中所制备的纳米氧化锌复合材料用作锂离子电池复合材料,经检测,在100mA/g的电流密度下,100个循环后仍能保持715mAh/g的可逆容量。
设置对照组3,在实施例1的基础上把步骤(1)中“在含氧量不低于40%的条件下加热至300℃”替换为“在空气氛围中加热至300℃”,其余内容不变;
将本对照组中所制备的纳米氧化锌复合材料用作锂离子电池复合材料,经检测,在100mA/g的电流密度下,100个循环后仍能保持765mAh/g的可逆容量。
设置对照组4,在实施例1的基础上把步骤(1)去掉,步骤(2)中沥青基球状活性炭/氧化铝复合材料替换为等量的氧化铝,其余内容不变;
将本对照组中所制备的纳米氧化锌复合材料用作锂离子电池复合材料,经检测,在100mA/g的电流密度下,100个循环后能保持537mAh/g的可逆容量。
通过以上对照组的设置可以看出,本申请中纳米氧化锌复合材料的电化学性能较好, 制备条件的合理设置使其实现相应的技术效果,改变制备条件会在不同程度上影响其性能。

Claims (7)

  1. 一种用作锂离子电池负极材料的纳米氧化锌复合材料,其特征在于,其制备方法包括以下步骤:
    (1)按重量份计,将沥青基球状活性炭75-85份与去离子水300份混合,然后加入质量浓度为1.5g/mL的碳酸氢钠溶液200份高速搅拌15-20分钟,再加入质量浓度为0.2-0.3%的硫酸铝溶液400份,在温度为70℃的条件下搅拌反应30分钟,得到复合沉淀物,过滤后用去离子水洗涤,烘干,研磨过300目筛后,以氮气为载体,在含氧量为1.2-1.8%的条件下,在温度为400℃的条件下处理4-5小时,得到沥青基球状活性炭/氧化铝复合材料;
    (2)将纳米氧化锌前驱物55-65份、沥青基球状活性炭/氧化铝复合材料4-6份、苯基丙酮酸钠单水合物1-2份、三乙醇胺硼酸酯0.2-0.6份研磨混合,在含氧量不低于40%的条件下加热至300℃,搅拌处理2-3小时,完成后置于惰性气体保护的管式炉中在温度为600-700℃的条件下保温处理3-4小时,得到纳米氧化锌复合材料。
  2. 如权利要求1所述一种用作锂离子电池负极材料的纳米氧化锌复合材料,其特征在于,所述沥青基球状活性炭BET比表面积为1001m 2/g,微孔比表面积为611m 2/g,微孔孔容为0.29cm 3/g,中孔比表面积为190m 2/g,中孔孔容为0.367cm 3/g。
  3. 如权利要求1所述一种用作锂离子电池负极材料的纳米氧化锌复合材料,其特征在于,所述沥青基球状活性炭/氧化铝复合材料的BET比表面积为1547-1562m 2/g,微孔比表面积为514-519m 2/g,微孔孔容为0.21-0.24cm 3/g;中孔比表面积为138-143m 2/g,中孔孔容为0.176-0.192cm 3/g。
  4. 如权利要求1所述一种用作锂离子电池负极材料的纳米氧化锌复合材料,其特征在于,所述纳米氧化锌前驱物的制备方法为:按重量份计,将10份尿素在300份去离子水中超声分散处理,然后加入七水硫酸锌4-6份,混合搅拌均匀后加热至85℃保温处理6-7小时,完成后离心分离,得到纳米氧化锌前驱物。
  5. 如权利要求4所述一种用作锂离子电池负极材料的纳米氧化锌复合材料,其特征在于,所述超声分散处理时,超声波的频率为40-50kHz,超声波分散时间为5-10分钟。
  6. 如权利要求1所述一种用作锂离子电池负极材料的纳米氧化锌复合材料,其特征在于,所述步骤(2)中研磨混合的时间为30-40分钟。
  7. 如权利要求1所述一种用作锂离子电池负极材料的纳米氧化锌复合材料,其特征在于,所述纳米氧化锌复合材料的颗粒粒径为30-60nm。
PCT/CN2019/116203 2019-11-07 2019-11-07 一种用作锂离子电池负极材料的纳米氧化锌复合材料 WO2021087852A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/116203 WO2021087852A1 (zh) 2019-11-07 2019-11-07 一种用作锂离子电池负极材料的纳米氧化锌复合材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/116203 WO2021087852A1 (zh) 2019-11-07 2019-11-07 一种用作锂离子电池负极材料的纳米氧化锌复合材料

Publications (1)

Publication Number Publication Date
WO2021087852A1 true WO2021087852A1 (zh) 2021-05-14

Family

ID=75849476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/116203 WO2021087852A1 (zh) 2019-11-07 2019-11-07 一种用作锂离子电池负极材料的纳米氧化锌复合材料

Country Status (1)

Country Link
WO (1) WO2021087852A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114713814A (zh) * 2022-05-27 2022-07-08 苏州工业园区安泽汶环保技术有限公司 一种核壳结构炭包覆银锌纳米微球抗菌材料的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150063265A (ko) * 2013-11-29 2015-06-09 한국과학기술연구원 ZnO-MnO-C 복합체, 산화아연 및 산화망간을 포함하는 복합체의 제조방법 및 이를 포함하는 리튬 이차 전지용 음극 활물질
CN105826526A (zh) * 2016-03-22 2016-08-03 陈波 一种MgO-ZnO-石墨烯复合材料的制备方法及其在电池中的应用
CN108054353A (zh) * 2017-11-28 2018-05-18 山西长征动力科技有限公司 一种ZnO/MnO多孔复合纳米球及其制备方法
CN108428878A (zh) * 2018-03-28 2018-08-21 江西理工大学 一种用于锂离子电池的ZnO/NiO/C复合负极材料的制备方法
CN108539170A (zh) * 2018-04-16 2018-09-14 江西师范大学 锂离子电池纳米片负极材料的形成方法
CN109301214A (zh) * 2018-09-30 2019-02-01 厦门大学 锂/钠离子电池负极材料ZnO/TiO2/C核壳结构及制备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150063265A (ko) * 2013-11-29 2015-06-09 한국과학기술연구원 ZnO-MnO-C 복합체, 산화아연 및 산화망간을 포함하는 복합체의 제조방법 및 이를 포함하는 리튬 이차 전지용 음극 활물질
CN105826526A (zh) * 2016-03-22 2016-08-03 陈波 一种MgO-ZnO-石墨烯复合材料的制备方法及其在电池中的应用
CN108054353A (zh) * 2017-11-28 2018-05-18 山西长征动力科技有限公司 一种ZnO/MnO多孔复合纳米球及其制备方法
CN108428878A (zh) * 2018-03-28 2018-08-21 江西理工大学 一种用于锂离子电池的ZnO/NiO/C复合负极材料的制备方法
CN108539170A (zh) * 2018-04-16 2018-09-14 江西师范大学 锂离子电池纳米片负极材料的形成方法
CN109301214A (zh) * 2018-09-30 2019-02-01 厦门大学 锂/钠离子电池负极材料ZnO/TiO2/C核壳结构及制备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114713814A (zh) * 2022-05-27 2022-07-08 苏州工业园区安泽汶环保技术有限公司 一种核壳结构炭包覆银锌纳米微球抗菌材料的制备方法
CN114713814B (zh) * 2022-05-27 2023-12-26 苏州工业园区安泽汶环保技术有限公司 一种核壳结构炭包覆银锌纳米微球抗菌材料的制备方法

Similar Documents

Publication Publication Date Title
JP6172818B2 (ja) グラフェン基LiFePO4/C複合材料の製造方法
EP2876710B1 (en) Negative active material of lithium-ion secondary battery and preparation method therefor, negative plate of lithium-ion secondary battery, and lithium-ion secondary battery
Bi et al. Recent advances in LiFePO 4 nanoparticles with different morphology for high-performance lithium-ion batteries
CN111362269A (zh) 一种锂离子电池负极sei膜的制备方法和锂离子电池负极材料及其应用
CN103931027B (zh) 多孔复合材料及其制造方法
WO2017024720A1 (zh) 一种高容量锂离子电池负极材料的制备方法
CN110085847B (zh) 锂离子电池锗/碳复合负极材料及其制备方法和应用
CN108682833B (zh) 一种磷酸铁锂基改性正极材料制备方法
CN110518213A (zh) 一种多孔硅-碳纳米管复合材料及其制备方法和应用
Duan et al. Superior electrochemical performance of a novel LiFePO 4/C/CNTs composite for aqueous rechargeable lithium-ion batteries
CN104347858B (zh) 锂离子二次电池负极活性材料及其制备方法、锂离子二次电池负极极片和锂离子二次电池
Zhang et al. Biocarbon-coated LiFePO 4 nucleus nanoparticles enhancing electrochemical performances
CN112357956B (zh) 碳/二氧化钛包覆氧化锡纳米颗粒/碳组装介孔球材料及其制备和应用
CN108899496B (zh) 石墨烯掺杂ws2制备方法及在锂/钠离子电池中的应用
CN112786865A (zh) 一种MoS2准量子点/氮硫共掺杂生物质碳复合纳米材料的制备方法和应用
CN110048114A (zh) 一种双壳硅碳材料及其制备方法
TWI515949B (zh) 鋰離子電池負極材料的製備方法
CN105826524A (zh) 一种石墨烯原位形核磷酸铁锂的合成方法
CN112968173A (zh) 多孔碳包覆硫空位复合电极材料、其制备方法及采用该材料的圆形电极
CN111463414A (zh) 一种夹层材料及其制备方法和应用
CN108400294A (zh) 一种多级结构的锂离子电池用硅负极的制备方法
Xu et al. Deficient TiO 2− x coated porous SiO anodes for high-rate lithium-ion batteries
WO2021087852A1 (zh) 一种用作锂离子电池负极材料的纳米氧化锌复合材料
CN111710862B (zh) 一种用于高性能钾离子电池的3D多孔Sb/Ti3C2 MXene复合材料的制备方法
CN108987746B (zh) 一种超小颗粒固定三维多孔纳米网状结构MoS2复合粉体及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951418

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19951418

Country of ref document: EP

Kind code of ref document: A1