CN108410907A - 一种基于CRISPR/Cas9技术实现HMGCR基因敲除的方法 - Google Patents
一种基于CRISPR/Cas9技术实现HMGCR基因敲除的方法 Download PDFInfo
- Publication number
- CN108410907A CN108410907A CN201810192797.8A CN201810192797A CN108410907A CN 108410907 A CN108410907 A CN 108410907A CN 201810192797 A CN201810192797 A CN 201810192797A CN 108410907 A CN108410907 A CN 108410907A
- Authority
- CN
- China
- Prior art keywords
- hmgcr
- seq
- crispr
- cell
- dna
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0006—Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/8509—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
- C12N15/90—Stable introduction of foreign DNA into chromosome
- C12N15/902—Stable introduction of foreign DNA into chromosome using homologous recombination
- C12N15/907—Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y101/00—Oxidoreductases acting on the CH-OH group of donors (1.1)
- C12Y101/01—Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
- C12Y101/01034—Hydroxymethylglutaryl-CoA reductase (NADPH) (1.1.1.34)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2800/00—Nucleic acids vectors
- C12N2800/80—Vectors containing sites for inducing double-stranded breaks, e.g. meganuclease restriction sites
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2810/00—Vectors comprising a targeting moiety
- C12N2810/10—Vectors comprising a non-peptidic targeting moiety
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Cell Biology (AREA)
- Mycology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
一种基于CRISPR/Cas9技术实现HMGCR基因敲除的方法,是设计两个针对HMGCR基因的CRISPR/Cas9靶标序列,体外合成gRNA单链,经过退火处理获得两个gRNA双链DNA目的插入片段,并分别插入PX459(pSpCas9(BB)‑2A‑Puro)V2.0载体中,获得靶向HMGCR基因两个不同位点的质粒;分别转染该两质粒至PK15细胞中,以嘌呤霉素处理细胞,提取处理后的细胞基因组DNA进行PCR扩增,PCR产物变性、退火后再利用T7E1进行HMGCR基因敲除鉴定。本方法能用于分析HMGCR基因敲除后的序列和mRNA表达情况,能利用PCR结合T7E1酶处理方法验证有无脱靶现象,从而确定基于靶标序列HMGCR‑gRNA的特异性。本方法不仅可应用于细胞、动物模型中实现HMGCR基因的定点敲除,而且对于实现其它基因的敲除具有参考价值,并具有效果好、简便、经济、时间短等优点。
Description
技术领域
本发明属于基因工程领域,具体涉及一种基于CRISPR/Cas9技术实现HMGCR基因敲除的方法。
背景技术
CRISPR/Cas系统(clustered,regularly interspaced,short palindromicrepeats-associated protein systems)是细菌及古细菌进化出来用以抵御病毒和质粒入侵的获得性免疫机制。由于该系统具有诸多优势已被广泛应用于基因编辑技术,其强大、高效的基因组编辑功能已被成功应用于多种生物遗传基因改造,包括细菌、植物、秀丽隐杆线虫、斑马鱼、小鼠、大鼠、猪、甚至高等非人灵长类动物。大部分研究都显示,与锌指核酸酶(ZFNs)和转录激活样效应核酸酶(Transcription activator-like effector nucleases,TALEN)第一、二代基因编辑技术相比较,CRISPR/Cas系统能更好地识别靶基因,并且CRISPR/Cas9系统结构组成简单,相应地其构建仅需设计、合成一对引物。因此该基因编辑技术具有更高的编辑效率、更简单的操作、更低的成本、更宽广的编辑范围等优势。
CRISPR/Cas9技术是生命科学领域研究技术手段的一个革命性突破,从细菌、植物到哺乳动物诸多物种中都成功实现了应用。在功能基因筛选、转录调控研究、构建遗传基因修饰、抗病毒研究、癌症研究、遗传性疾病研究、单分子标记研究和基因治疗等研究和开发领域中具有广泛的应用。
3-羟基-3-甲基戊二酸单酰辅酶A还原酶(3-hydroxy-3-methylglutarylcoenzyme A reductase,HMGCR),又称羟甲基戊二酸单酰辅酶A还原酶,是肝脏通过甲醛戊酸途径合成内源性胆固醇过程中的关键酶或限速酶,在心脑血管/代谢性疾病的发生发展中具有重要功能,也是目前临床常用的他汀类调脂药的主要作用靶点。而近年研究显示,该基因/蛋白还在多种病毒的感染过程中发挥重要作用。
然而迄今为止,尚未见有关利用CRISPR/Cas9系统特异性地将HMGCR基因实现敲除的报道。
发明内容
本发明目的在于提供一种基于CRISPR/Cas9技术实现HMGCR基因敲除的方法,该方法能高效、快速、方便地实现在细胞、动物体内敲除HMGCR基因,从而可应用于该基因功能与机制研究,以及相关通路的研究和药物开发。
为达上述目的,本发明所采用的技术方案是:一种基于CRISPR/Cas9技术实现HMGCR基因敲除的方法,该方法步骤如下:
1)针对SEQ ID NO:1所示的HMGCR基因片段设计如SEQ ID NO:2和SEQ ID NO:3所示的CRISPR/Cas9靶标序列,接着合成如SEQ ID NO:4、5和SEQ ID NO:6、7所示的带接头的靶标序列及其互补序列,再经退火处理获得两个gRNA双链DNA片段作为插入片段,将该两插入片段分别克隆至PX459(pSpCas9(BB)-2A-Puro)V2.0载体中,获得靶向HMGCR基因两个不同位点的质粒PX459-HMGCR-gRNA1和PX459-HMGCR-gRNA2;
2)将上述两质粒分别转染至PK15细胞中,以1.5μg/ml浓度的嘌呤霉素处理细胞3天进行药筛;提取嘌呤霉素药筛后的细胞基因组DNA,以该提取的DNA为模板,用SEQ ID NO:8和SEQ ID NO:9所示的HMGCR基因特异性引物进行PCR扩增,将PCR产物变性、退火后利用T7E1酶酶切进行HMGCR基因敲除鉴定。
鉴定结果表明,构建的质粒PX459-HMGCR-gRNA中含有一段互补的DNA序列,该DNA序列能被转录为特异识别序列如SEQ ID NO:2、SEQ ID NO:3所示HMGCR基因靶标序列的gRNA,该gRNA能与trRNA构成特异的识别结构,从而引导Cas9酶特异的剪切HMGCR基因对应序列。
上述质粒PX459-HMGCR-gRNA1和PX459-HMGCR-gRNA2是以PX459(pSpCas9(BB)-2A-Puro)V2.0质粒为起始载体,先用Bbs1酶切并回收骨架,再合成如SEQ ID NO:4、SEQ ID NO:5和SEQ ID NO:6、SEQ ID NO:7所示的两对带有接头的核苷酸序列,合成后稀释并退火作为插入片段;然后用T4DNA连接酶在16℃连接过夜将骨架和插入片段连接,连接产物转化,挑克隆测序鉴定获得。
上述步骤2)中提及的PCR反应体系包括2x PCR Mix 12.5μl、SEQ ID NO:8和SEQID NO:9所示引物各1μl、模板DNA 2μl及ddH2O 8.5μl。
上述步骤2)中提及的PCR产物变性、退火条件为95℃5min;94℃2s,-0.1℃/cycle,200times;75℃1s,-0.1℃/cycle,600times;16℃2min。
根据本发明所述的HMGCR基因敲除方法,将PX459-HMGCR-gRNA1、和PX459-HMGCR-gRNA2转染至PK15细胞,以1.5μg/ml浓度的嘌呤霉素(Puromycin)处理细胞3天,然后收集剩余细胞,一部分细胞用于提取基因组DNA进行所设计gRNAs效率分析;另一部分细胞进行低密度重新铺板,以便获得单细胞克隆。提取单克隆敲除细胞株基因组DNA,PCR扩增HMGCR基因特异片段并将PCR产物变性,再用退火的方式形成异源杂交双链,利用T7E1酶切试验确定基于HMGCR-gRNAs的CRISPR/Cas9剪切效率及单细胞克隆中HMGCR基因敲除鉴定分析,利用TA克隆技术和荧光定量PCR方法分别分析HMGCR基因敲除后的序列和mRNA表达情况并验证敲除细胞株有无脱靶。其中,检测基因敲除后表达水平的HMGCR实时PCR引物如SEQ ID NO:10和SEQ ID NO:11所示,内参对照GAPDH引物如SEQ ID NO:12和SEQ ID NO:13所示;检测是否存在脱靶现象,是利用如SEQ ID NO:14和SEQ ID NO:15;SEQ ID NO:16和SEQ ID NO:17;SEQ ID NO:18和SEQ ID NO:19所示引物分别进行PCR扩增,再利用T7E1酶处理,接着电泳分析DNA条带,从而获知所利用的HMGCR-gRNA会否在基因组其它位点造成非特异性切割。
本发明同时提供所述的HMGCR基因敲除方法所获得的HMGCR基因敲除PK15细胞株。
本发明的基于CRISPR/Cas9技术的HMGCR基因敲除方法具有以下特点和优点:利用CRISPR/Cas9系统,设计了一段gRNA来特异识别HMGCR基因,最终导致其功能失活。本方法可用于HMGCR基因的定向敲除,具有高效、快速、简单经济等特点,对于HMGCR基因敲除动物模型及相关通路的研究具有重要意义。
附图说明
图1是gRNA与Cas9酶结合特异识别并剪切HMGCR基因示意图。
图2是PX459‐HMGCR‐gRNAs质粒构建示意图。
图3是利用PCR结合T7E1酶切分析两个PX459‐HMGCR‐gRNAs剪切效率。
其中,1:PK15,2:PX459‐puro‐HMGCR‐gRNA1,3、4:PX459‐puro‐HMGCR‐gRNA2分别表示基因组DNA来源于未转染或转染相应gRNA质粒的细胞。
图4是利用PCR结合T7E1酶切鉴定所示单克隆细胞HMGCR基因敲除情况。
其中,N:空白对照;WT:野生型PK15(阴性对照);UC:假阳性单克隆;1‐25:阳性单细胞克隆。
图5是通过TA克隆再测序获知的HMGCR基因突变后的序列。
图6是利用qPCR分析所示单克隆细胞HMGCR基因敲除后mRNA表达水平。
其中,1‐25:与图4编号顺序对应的阳性单细胞克隆。
图7是利用PCR结合T7E1酶切分析所示单克隆细胞是否存在脱靶现象。
其中,WT:野生型PK15(阴性对照);3、6、12、14、16:与图4编号相对应的阳性单细胞克隆。
具体实施方式
下面结合具体实施例进一步阐述此发明。应理解的是,在此描述的特定实施方式通过举例的方式来表示,并不作为对本发明的限制。在不偏离本发明范围的情况下,本发明的主要特征可以用于各种实施方式。
实施例1:载体构建
(1)HMGCR靶标优化设计
针对HMGCR基因(基因名HMGCR,基因ID号:100144446,基因详细信息见https://www.ncbi.nlm.nih.gov/gene/?term=DQ432054.1),在Genebank网站检索并下载获得HMGCR部分基因组序列(SEQ ID NO:1):TTCTGAAgCTACAATGTTGTCAAGACTCTTCCGAATGCATGGCCTCTTTGTGGCCTCCCATCCCTGGGAAGTCATAGTGGGGACAGTGACACTGACCATCTGTATGATGTCCATGAACATGTTTACTGGTAACGATAAGATCTGTGGTTG。
利用在线软件Feng Zhang lab's Target Finder(http://crispr.mit.edu/)设计gRNA,输入上述HMGCR基因组序列150bp,设置并检索获得若干gRNA序列,通过分析gRNA在基因序列上的位置以及该gRNA的off-target(脱靶)信息,参见图1,从中分别选择最优的上游1个靶序列,如SEQ ID NO:3所示;下游1个靶序列,如SEQ ID NO:2所示,具体如下:
表1靶序列
序列号 | 靶序列 | 位置 |
SEQ ID NO:2 | GCCACAAAGAGGCCATGCAT | 34-54 |
SEQ ID NO:3 | GTTTACTGGTAACGATAAGATCTG | 120-144 |
(2)合成靶标片段
上述设计优化的靶标拟克隆至PX459(pSpCas9(BB)-2A-Puro)V2.0载体。将靶标序列加上载体Bbs1限制性内切酶的粘性末端,送南京金斯瑞公司合成单核苷酸链。
在SEQ ID NO:2序列加上接头,合成得到插入片段HMGCR-gRNA1:
gRNA1-F:5’-caccGCCACAAAGAGGCCATGCATT(SEQ ID NO:4)
gRNA1-R:5’-aaacAATGCATGGCCTCTTTGTGGC(SEQ ID NO:5);
在SEQ ID NO:3序列加上接头,得到插入片段HMGCR-gRNA2:
gRNA2-F:5’-caccGTTTACTGGTAACGATAAGATCTG(SEQ ID NO:6)
gRNA2-R:5’-aaacCAGATCTTATCGTTACCAGTAAAC(SEQ ID NO:7);
将每组gRNA-F和gRNA-R分别等体积混合后,95℃水浴5min,自然冷却至室温,即获得双链gRNA,此时可与载体连接,或-20℃保存。
(3)载体酶切
在无菌的200μl EP反应管,取PX459(pSpCas9(BB)-2A-Puro)V2.0载体1μg,用Bsb1酶切,酶切体系如下:pSpCas9BB-2A-Puro V2.0 1μg、Bsb1 1μl、10x缓冲液2μl及dd H2O 12μl,合计20μl。混匀后,37℃反应30min以上。Bsb1购买于Thermo公司,此酶说明书的酶切时间为5min,但我们延长酶切时间让其反应更充分。
(4)酶切产物回收
胶回收试剂盒购于omega:OMEGA-#D2500-Gel Extraction Kit。
1)酶切产物经1%凝胶电泳后,在紫外灯下,用手术刀切取载体的凝胶条带至干净的1.5ml EP管中,加入等体积的Binding Buffer。
2)56℃水浴锅中孵育7min,间隔2min颠倒混匀离心管一次,直至胶块溶解完;
3)将溶解完的溶液加入到离心吸附柱中,10000×g/min室温下离心1min;
4)倒掉收集管中的液体,将吸附柱放入回收集管中,加入300μl Binding buffer,10000×g/min室温下离心1min;
5)倒掉收集管中的液体,将吸附柱放入回收集管中,加入700μl SPW WashBuffer,10000×g/min室温下离心1min;
6)倒掉收集管中的液体,将吸附柱放入回收集管中,重复上步步骤一次;
7)倒掉收集管中的液体,将吸附柱放入回收集管中,空柱子13000×g/min室温下离心2min;
8)将吸附柱转入一个新的1.5ml离心管中,向吸附膜的中间部位悬空滴加20μl(重复洗脱两次,共20μl)Elution buffer,室温放置1min后,13000×g/min室温离心1min;
9)所得纯化样品进行浓度测定。
(5)HMGCR-gRNA片段与PX459(pSpCas9(BB)-2A-Puro)V2.0载体连接
在无菌的200ul EP反应管加入以下试剂:HMGCR-sgRNA 12μl、pSpCas9BB-2A-Puro3μl、10x连接酶缓冲液2μl、T4DNA连接酶1μl及dd H2O 2μl,合计20μl,混匀后,16℃连接过夜,参见图2。
(6)连接产物转化
1)从-80℃超低温冰箱中取出100μl感受态细胞,置于冰上,完全解冻后轻轻将细胞均匀悬浮;
2)加入10μl连接产物,轻轻混匀,冰上放置30min;
3)42℃水浴热激60s,冰上放置2min;
4)加入500μl SOC培养基(含有MgCl2),37℃,225rpm培养1h复苏;
5)用枪头混匀菌液,取100ul(最多200μl),将细菌涂布在氨苄青霉素平板上;
6)平板在37℃下正向放置10min以吸收过多的液体,之后倒置培养过夜(约12h)。
(7)质粒提取
1)从氨苄青霉素培养板上挑取单个菌落,打入含5ml氨苄抗生素的LB培养管中,37℃,220rpm,摇床培育12h。
2)取3ml的菌液,室温下10000×g/min离心1min收集细菌;
3)倒弃培养基。加入250μl Solution I/RNaseA混和液,漩涡振荡使细胞完全悬浮;
4)往重悬混和液中加入250μl Solution II,轻轻颠倒混匀4-6次,孵育2min左右;
5)加入350μl Solution III,温和颠倒数次至形成白色絮状沉淀;
6)室温下,13 000×g/min离心10min;
7)转移上清液至套有2ml收集管的HiBind DNA结合柱中,室温下10000×g/min离心1min;
8)倒去收集管中的滤液,把柱子重新装回收集管,加入500μl HB Buffer,室温下10000×g/min离心1min;
9)倒去收集管中的滤液,把柱子重新装回收集管,加入700μl DNA Wash Buffer,室温下10000×g/min离心1min;
10)倒去收集管中的滤液,把柱子重新装回收集管,重复上步步骤一次;
11)倒去收集管中的滤液,把柱子重新装回收集管,13000×g/min离心空柱2min;
12)把柱子装在干净的1.5ml离心管上,向吸附膜的中间部位悬空滴加20μl(加两次,共40μl)Elution buffer,室温放置2min后,13000×g/min室温离心1min;
13)所提取到的质粒进行浓度测定。
这些质粒分别命名为PX459-HMGCR-gRNA1,PX459-HMGCR-gRNA2。
(8)测序鉴定及结果
将得到的两质粒送南京金斯瑞生物科技有限公司进行测序。测序结果分析表明,片段HMGCR-gRNAs已成功克隆到载体PX459(pSpCas9(BB)-2A-Puro)V2.0中,原始序列与已知序列Blast完全一致,可以用于后续实验。
实施例2:测试敲除效率并构建HMGCR敲除PK15细胞系
(1)质粒扩增
1)从-80℃超低温冰箱中取出100ul感受态细胞,置于冰上,完全解冻后轻轻将细胞均匀悬浮;
2)加入1μl质粒(PX459-HMGCR-gRNA1,PX459-HMGCR-gRNA2)轻轻混匀,冰上放置30min;
3)42℃水浴热激60s,冰上放置2min;
4)加入500μl SOC培养基(含有MgCL2),37℃,225rpm培养1h复苏;
5)用枪头混匀菌液,取100μl(最多200μl),将细菌涂布在氨苄青霉素平板上;
6)平板在37℃下正向放置10min以吸收过多的液体,之后倒置培养过夜(约12h)。
7)从氨苄青霉素培养板上挑取单个菌落,打入5ml含氨苄抗生素的LB培养管中,37℃,220rpm,摇床培育12h。
8)取5ml菌液转移至120ml含氨苄抗生素的LB培养瓶中,37℃,220rpm,摇床培育12h。
(2)大提质粒(AxyPrep质粒大量提取试剂盒)
1)取120ml在LB培养基中培养过夜的菌液(若使用丰富培养基,菌液体积应减半或更少),12000×g/min离心1min,弃尽上清。
2)加250μl Buffer S1悬浮细菌沉淀,悬浮需均匀,不应留有小的菌块。
3)加250μl Buffer S2,温和并充分地上下翻转4-6次混合均匀使菌体充分裂解,直至形成透亮的溶液。此步骤不宜超过5min。
4)加350μl Buffer S3,温和并充分地上下翻转混合6-8次,12000×g/min离心10min。
5)将质粒DNA制备管插到负压装置的接口上。吸取步骤4中的离心上清并转移到制备管中,开启并调节负压至0.02-0.04MPa,缓慢吸走管中溶液;
6)加500μl Buffer W1,吸尽管中溶液。
7)加700μl Buffer W2,吸尽管中溶液;以同样的方法再用700μl Buffer W2洗涤一次。
8)将制备管置于2ml离心管(试剂盒内提供)中,12000×g/min离心1min。
9)将制备管移入新的1.5ml离心管(试剂盒内提供)中,在制备管膜中央加60-80μlEluent或去离子水,室温静置1min。12000×g/min离心1min。
(3)PX459-HMGCR-gRNAs转染PK15细胞
1)按0.3x106/孔细胞数,取PK15细胞悬液(含1.8x106个细胞),加入12ml培养基(含10%胎牛血清,1%双抗),悬匀铺入6孔板,确保各孔细胞生长状态良好,密度相仿,待细胞为单层并处于对数细胞中期,细胞汇合度达到80%左右进行转染。
2)进行转染前1小时,用0.5ml OptiMen润洗细胞,去除后,加入1.7ml培养基(含10%胎牛血清,不含双抗,避免抗生素对脂质体转染的影响),在37℃,5%CO2培养。
3)制备转染复合物:取两支无菌EP管,两管先分别加入150μl opti-men培养基,再加入2ug PX459-HMGCR-gRNA至管1;加6μl lipofectamine2000至管2,温柔混合,室温孵育10分钟。再将管1与管2中液体温柔混合形成复合物,室温孵育20分钟。
4)将上述复合物加入到6孔板中,来回轻柔摇晃细胞培养板,将细胞放回37℃,5%CO2培养箱继续培养。
5)8小时后去除转染液,用PBS清洗一遍,加入新鲜的培养基(含10%胎牛血清,1%双抗)。
(4)嘌呤霉素筛选
1)转染24小时后,倒弃培养液,弃去培养基,PBS清洗两遍。
2)配制嘌呤霉素浓度为1.5ug/ml的培养基(含10%胎牛血清,1%双抗),每孔加入2ml,进行药筛(嘌呤霉素储存浓度100mg/ml);
3)药筛24小时后,观察细胞状态,判断是否需要换液。
4)药筛72小时,直至细胞死亡至40%-50%,弃去培养基,PBS清洗两遍,将细胞消化,一部分细胞低俗离心后收集至1.5ml离心管备用;一部分重新铺至10cm培养皿(吹散细胞至单个状态),撤掉嘌呤霉素,换正常培养基(含10%胎牛血清,1%双抗)培养。
(5)细胞DNA提取及低密度铺板
DNA提取试剂盒为宁波有成动物细胞DNA快速提取试剂盒。
1)嘌呤霉素筛选72小时后,倒弃培养液,向细胞培养皿中加入1ml预冷的PBS,轻柔洗涤,倒去PBS。用移液枪小心吸除多余的PBS。
2)用胰酶消化细胞,一部分细胞低俗离心后收集至1.5ml离心管备用;一部分细胞小心吹散成单个后铺入10cm培养皿。
3)向含一部分细胞的离心管中加入600μl裂解液LB,混匀放置3-5min,用移液枪反复吹吸直至裂解液中无明显沉淀。
4)室温静置3-5min以充分裂解细胞。
5)将DNA吸附柱置于2ml收集管中,将上述裂解液全部转移到DNA吸附柱中,室温离心(12000rpm/min,1min),弃滤液。
6)向DNA吸附柱中加入500μl用无水乙醇配制的洗涤液WB1,室温离心(12000rpm/min,1min),弃滤液。
7)将DNA吸附柱重新放回2mL收集管中,加入700μl洗涤液WB2,室温离(12000rpm/min,1min),弃滤液。
8)重复步骤5两次。
9)将DNA吸附柱重新放回2ml收集管中,于室温12000rpm/min空柱离心1min后,置于新的1.5ml无核酸酶污染离心管中。开盖于室温静置或超净工作台风干3-5min,以彻底挥发残余的乙醇。
10)向吸附柱柱膜中央上方小心加入35-100μl无核酸酶污染纯水,室温静置3-5min,12000rpm/min离心1min。洗脱液即为DNA溶液。
(6)PCR扩增
以嘌呤霉素药筛后的细胞基因组DNA为模板,用下列引物进行扩增:
iHMGCR-F引物:5’-AGCAGGGTTTACAATGCACTTTTA(SEQ ID NO:8)
iHMGCR-R引物:5’-GCAACCGACAAGGGCTTAATC(SEQ ID NO:9),
PCR反应体系(25μl体系):2x PCR Mix 12.5μl、引物F/R 1/1μl、模板DNA 2μl及ddH2O 8.5μl。
(7)CRISPR/Cas9敲除效率验证
将上述突变型DNA和野生型DNA扩增产物按如下体系混合于EP管:PCR扩增产物5μl、10x T7E1buffer 1μl及ddH2O 3μl,合计9μl。
加热变性、退火复性处理:使用PCR仪进行退火处理,设置程序如下:
上述反应体系分别加入0.5μl T7E1酶,37℃反应30min后,立刻加2μl DNALoading Buffer,混匀后65℃煮10min。
经2%的琼脂糖凝胶电泳检测分析酶切结果,见图3。由结果可见,PX459-HMGCR-gRNA2实验组具有高效的基因剪切敲除效率,可以用于PK15细胞的HMGCR基因敲除实验。而另一个实验组的质粒PX459-HMGCR-gRNA1实验结果为阴性。
(8)构建HMGCR基因敲除细胞系:药物筛选及单细胞克隆挑取
1)将转染PX459-HMGCR-gRNA2质粒的实验组细胞,用嘌呤霉素药筛72小时,直至细胞死亡至40%-50%,弃去培养基,PBS清洗两遍,将细胞消化,一部分细胞低俗离心后收集至1.5mL离心管备用;一部分重新铺至10cm培养皿(吹散细胞至单个状态),换正常培养基(含10%胎牛血清,1%双抗)培养,两小时后,标记单个细胞。
2)正常培养3-4天后,在显微镜下找到标记好的单个细胞,确定其生长状态为成单个细胞团成长。弃去培养基,PBS清洗两遍,加入1ml PBS使板子保持相对不干燥状态。
3)挑取时在无菌台里面用镊子夹取克隆环,在环的底部均匀的抹上凡士林,套在刚才标好的克隆上。在克隆环内滴入适量的胰酶,然后消化,细胞消化下来后用枪头吸出,放到新的培养板(48孔)中培养即可。
(9)单细胞克隆DNA提取
按前述提及的方法用T7E1检测单细胞克隆HMGCR基因是否被敲除。结果见图4。
(10)TA克隆技术分析HMGCR基因敲除情况
用上述SEQ ID NO:8和SEQ ID NO:9所示的PCR引物,以单细胞克隆DNA为模板进行扩增,将扩增后的片段用T4连接酶连入pUCm-T载体,测序结果见图5。
(11)细胞RNA提取
1)样品处理:培养小节(8)的步骤1)中备用的细胞:收获细胞1-5×107,移入1.5ml离心管中,加入500μl Trizol,混匀,室温静置5min。
2)加入0.1mL氯仿,震荡15s,静置2min。
3)4℃离心,12000g×15min,取上清。
4)加入250μl异丙醇,将管中液体轻轻混匀,室温静置10min。
5)4℃离心,12000g×10min,弃上清。
6)分两次加入1mL75%乙醇,轻轻洗涤沉淀。4℃,7500g×5min,弃上清。
7)空管离心一次。
8)晾干,加入适量的DEPC H2O溶解(65℃促溶10-15min),冰上放置。
(12)qPCR分析HMGCR基因敲除细胞系mRNA表达水平
用下列引物进行qPCR检测HMGCR在基因敲除细胞系中的mRNA表达水平:
HMGCR特异引物:
pHMGCR-F:TTCTGAAGCTACAATGTTGTCAAG(SEQ ID NO:10)
pHMGCR-R:AAAAATGTAATTTGCTTTAGTCAG(SEQ ID NO:11)
内参引物:
pGAPDH-F:ACCACAGTCCATGCCATCAC(SEQ ID NO:12)
pGAPDH-R:TCCACCACCCTGTTGCTGTA(SEQ ID NO:13)
qPCR反应体系(20μl体系):AceQ qPCR SYBR Green Master Mix 10μl、引物F/R(10μM)0.4/0.4μl、模板cDNA 2μl、ROX Reference Dye 1 0.4μl及ddH2O 8.5μl。结果见图6。
(12)脱靶情况分析
1)利用在线软件Feng Zhang lab's Target Finder(http://crispr.mit.edu/)分析gRNA2的off-target(脱靶)信息,选取脱靶分数最高的位点,分析序列。具体信息如下:
脱靶序列 | 评分 | 位点 |
AGTGGCAAAGATAAGATCTGAAG | 1 | chr1:-42907811(位点1) |
ATTTATAAAGATAAGATCTGAGG | 0.8 | chr13:+4138304(位点1) |
TATGGTAAAAATAAGATCTGAAG | 0.8 | chr4:+20545602(位点1) |
*评分越高,脱靶几率越大,1分为最高分。
(13)在上述三个脱靶评分最高的区域设计下列与脱靶位点1-3顺序对应的PCR引物,以单细胞克隆基因组DNA为模板,进行PCR扩增,利用T7E1酶切试验检测有无脱靶。
引物1(检测脱靶位点1):
iHMGCR-offtarget-F1:CTTTACAACA TATCTGGC(SEQ ID NO:14)
iHMGCR-offtarget-R1:CCAAAGTCTTTGGCCATG(SEQ ID NO:15)引物2(检测脱靶位点2):
iHMGCR-offtarget-F2:GGGAATATGA ATTTGTAC(SEQ ID NO:16)
iHMGCR-offtarget-R2:GTGTTCCATATTTTATA(SEQ ID NO:17)引物3(检测脱靶位点3):
iHMGCR-offtarget-F3:CAAGGCAAAT GTTTGACA(SEQ ID NO:18)
iHMGCR-offtarget-R3:CCTCATCTATAAAAGGAG(SEQ ID NO:19),
经检测,无脱靶情况出现。结果见图7。
依据上述实验结果,本发明确定PX459-HMGCR-gRNA2质粒可以有效用于在猪细胞系中实现HMGCR基因敲除,为未来建立相应细胞、动物模型,生物医药的机理和应用研究奠定了基础。
序列表
<110> 湖南农业大学
<120> 一种基于CRISPR/Cas9技术实现HMGCR基因敲除的方法
<130> 004
<160> 19
<170> SIPOSequenceListing 1.0
<210> 1
<211> 150
<212> DNA
<213> 人工合成()
<400> 1
ttctgaagct acaatgttgt caagactctt ccgaatgcat ggcctctttg tggcctccca 60
tccctgggaa gtcatagtgg ggacagtgac actgaccatc tgtatgatgt ccatgaacat 120
gtttactggt aacgataaga tctgtggttg 150
<210> 2
<211> 20
<212> DNA
<213> 人工合成()
<400> 2
gccacaaaga ggccatgcat 20
<210> 3
<211> 24
<212> DNA
<213> 人工合成()
<400> 3
gtttactggt aacgataaga tctg 24
<210> 4
<211> 25
<212> DNA
<213> 人工合成()
<400> 4
caccgccaca aagaggccat gcatt 25
<210> 5
<211> 25
<212> DNA
<213> 人工合成()
<400> 5
aaacaatgca tggcctcttt gtggc 25
<210> 6
<211> 28
<212> DNA
<213> 人工合成()
<400> 6
caccgtttac tggtaacgat aagatctg 28
<210> 7
<211> 28
<212> DNA
<213> 人工合成()
<400> 7
aaaccagatc ttatcgttac cagtaaac 28
<210> 8
<211> 24
<212> DNA
<213> 人工合成()
<400> 8
agcagggttt acaatgcact ttta 24
<210> 9
<211> 21
<212> DNA
<213> 人工合成()
<400> 9
gcaaccgaca agggcttaat c 21
<210> 10
<211> 24
<212> DNA
<213> 人工合成()
<400> 10
ttctgaagct acaatgttgt caag 24
<210> 11
<211> 24
<212> DNA
<213> 人工合成()
<400> 11
aaaaatgtaa tttgctttag tcag 24
<210> 12
<211> 20
<212> DNA
<213> 人工合成()
<400> 12
accacagtcc atgccatcac 20
<210> 13
<211> 20
<212> DNA
<213> 人工合成()
<400> 13
tccaccaccc tgttgctgta 20
<210> 14
<211> 18
<212> DNA
<213> 人工合成()
<400> 14
ctttacaaca tatctggc 18
<210> 15
<211> 18
<212> DNA
<213> 人工合成()
<400> 15
ccaaagtctt tggccatg 18
<210> 16
<211> 18
<212> DNA
<213> 人工合成()
<400> 16
gggaatatga atttgtac 18
<210> 17
<211> 17
<212> DNA
<213> 人工合成()
<400> 17
gtgttccata ttttata 17
<210> 18
<211> 18
<212> DNA
<213> 人工合成()
<400> 18
caaggcaaat gtttgaca 18
<210> 19
<211> 18
<212> DNA
<213> 人工合成()
<400> 19
cctcatctat aaaaggag 18
Claims (9)
1.一种基于CRISPR/Cas9技术实现HMGCR基因敲除的方法,其特征在于,该方法步骤如下:
1)针对SEQ ID NO:1所示的HMGCR基因片段设计如SEQ ID NO:2和SEQ ID NO:3所示的CRISPR/Cas9靶标序列,接着合成如SEQ ID NO:4、5和SEQ ID NO:6、7所示的带接头的靶标序列及其互补序列,再经退火处理获得两个gRNA双链DNA片段作为插入片段,将该两插入片段分别克隆至PX459(pSpCas9(BB)-2A-Puro)V2.0载体中,获得靶向HMGCR基因两个不同位点的质粒PX459-HMGCR-gRNA1和PX459-HMGCR-gRNA2;
2)将上述两质粒分别转染至PK15细胞中,以1.5μg/ml浓度的嘌呤霉素处理细胞3天进行药筛;提取嘌呤霉素药筛后的细胞基因组DNA,以该提取的DNA为模板,用如SEQ ID NO:8和SEQ ID NO:9所示的HMGCR基因特异性引物进行PCR扩增,将PCR产物变性、退火后利用T7E1酶进行酶切鉴定。
2.如权利要求1所述的一种基于CRISPR/Cas9技术实现HMGCR基因敲除的方法,其特征在于,所述质粒PX459-HMGCR-gRNA1和PX459-HMGCR-gRNA2是以PX459(pSpCas9(BB)-2A-Puro)V2.0质粒为起始载体,先用Bbs1酶切并回收骨架,再合成如SEQ ID NO:4、5和SEQ IDNO:6、7所示的两对带有接头的核苷酸序列,合成后稀释并退火作为插入片段;然后用T4DNA连接酶在16℃连接过夜将骨架和插入片段连接,连接产物转化,挑克隆测序鉴定获得。
3.如权利要求1所述的一种基于CRISPR/Cas9技术实现HMGCR基因敲除的方法,其特征在于,所述PCR反应体系包括2x PCR Mix 12.5μl、SEQ ID NO:8和SEQ ID NO:9所示引物各1μl、模板DNA 2μl及ddH2O 8.5μl。
4.如权利要求1所述的一种基于CRISPR/Cas9技术实现HMGCR基因敲除的方法,其特征在于,所述PCR产物变性、退火条件为95℃5min;94℃2s,-0.1℃/cycle,200times;75℃1s,-0.1℃/cycle,600times;16℃2min。
5.权利要求1所述方法在检测基于HMGCR-gRNAs的CRISPR/Cas9工作效率及单细胞克隆中HMGCR基因敲除鉴定中的应用。
6.权利要求1所述方法在HMGCR基因敲除后的序列分析中的应用。
7.权利要求1所述方法在检测HMGCR基因敲除后mRNA表达水平中的应用。
8.权利要求1所述方法在检测HMGCR基因敲除细胞系是否存在脱靶现象中的应用。
9.权利要求1所述方法获得的HMGCR基因敲除的PK15细胞系。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810192797.8A CN108410907B (zh) | 2018-03-08 | 2018-03-08 | 一种基于CRISPR/Cas9技术实现HMGCR基因敲除的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810192797.8A CN108410907B (zh) | 2018-03-08 | 2018-03-08 | 一种基于CRISPR/Cas9技术实现HMGCR基因敲除的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108410907A true CN108410907A (zh) | 2018-08-17 |
CN108410907B CN108410907B (zh) | 2021-08-27 |
Family
ID=63130657
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810192797.8A Active CN108410907B (zh) | 2018-03-08 | 2018-03-08 | 一种基于CRISPR/Cas9技术实现HMGCR基因敲除的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108410907B (zh) |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109295104A (zh) * | 2018-09-13 | 2019-02-01 | 华东师范大学 | 一种Slco1b2基因敲除大鼠的构建方法及应用 |
CN109456995A (zh) * | 2018-11-08 | 2019-03-12 | 杜以军 | 基因敲除质粒、细胞系及制备方法和应用 |
CN110295146A (zh) * | 2019-05-16 | 2019-10-01 | 内蒙古自治区人民医院 | 细胞系hmga2-/-mkn-45及其制备方法和应用 |
US10465176B2 (en) | 2013-12-12 | 2019-11-05 | President And Fellows Of Harvard College | Cas variants for gene editing |
US10508298B2 (en) | 2013-08-09 | 2019-12-17 | President And Fellows Of Harvard College | Methods for identifying a target site of a CAS9 nuclease |
US10597679B2 (en) | 2013-09-06 | 2020-03-24 | President And Fellows Of Harvard College | Switchable Cas9 nucleases and uses thereof |
US10682410B2 (en) | 2013-09-06 | 2020-06-16 | President And Fellows Of Harvard College | Delivery system for functional nucleases |
US10704062B2 (en) | 2014-07-30 | 2020-07-07 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US10745677B2 (en) | 2016-12-23 | 2020-08-18 | President And Fellows Of Harvard College | Editing of CCR5 receptor gene to protect against HIV infection |
US10858639B2 (en) | 2013-09-06 | 2020-12-08 | President And Fellows Of Harvard College | CAS9 variants and uses thereof |
CN112175995A (zh) * | 2020-09-11 | 2021-01-05 | 中山大学中山眼科中心 | 一种vsx2绿色荧光报告基因载体系统及其构建方法 |
US10947530B2 (en) | 2016-08-03 | 2021-03-16 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US11046948B2 (en) | 2013-08-22 | 2021-06-29 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
US11214780B2 (en) | 2015-10-23 | 2022-01-04 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
US11268082B2 (en) | 2017-03-23 | 2022-03-08 | President And Fellows Of Harvard College | Nucleobase editors comprising nucleic acid programmable DNA binding proteins |
US11306324B2 (en) | 2016-10-14 | 2022-04-19 | President And Fellows Of Harvard College | AAV delivery of nucleobase editors |
US11319532B2 (en) | 2017-08-30 | 2022-05-03 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
CN114807230A (zh) * | 2022-06-06 | 2022-07-29 | 朱文敏 | 一种利用CRISPR-Cas9系统敲除人骨髓间充质干细胞TET2基因的方法 |
US11447770B1 (en) | 2019-03-19 | 2022-09-20 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11542496B2 (en) | 2017-03-10 | 2023-01-03 | President And Fellows Of Harvard College | Cytosine to guanine base editor |
US11542509B2 (en) | 2016-08-24 | 2023-01-03 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
US11560566B2 (en) | 2017-05-12 | 2023-01-24 | President And Fellows Of Harvard College | Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation |
US11661590B2 (en) | 2016-08-09 | 2023-05-30 | President And Fellows Of Harvard College | Programmable CAS9-recombinase fusion proteins and uses thereof |
US11732274B2 (en) | 2017-07-28 | 2023-08-22 | President And Fellows Of Harvard College | Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE) |
US11795443B2 (en) | 2017-10-16 | 2023-10-24 | The Broad Institute, Inc. | Uses of adenosine base editors |
US11898179B2 (en) | 2017-03-09 | 2024-02-13 | President And Fellows Of Harvard College | Suppression of pain by gene editing |
US11912985B2 (en) | 2020-05-08 | 2024-02-27 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
US12006520B2 (en) | 2011-07-22 | 2024-06-11 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105112445A (zh) * | 2015-06-02 | 2015-12-02 | 广州辉园苑医药科技有限公司 | 一种基于CRISPR-Cas9基因敲除技术的miR-205基因敲除试剂盒 |
CN106566838A (zh) * | 2016-11-14 | 2017-04-19 | 上海伯豪生物技术有限公司 | 一种基于CRISPR‑Cas9技术的miR‑126全长基因敲除试剂盒及其应用 |
-
2018
- 2018-03-08 CN CN201810192797.8A patent/CN108410907B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105112445A (zh) * | 2015-06-02 | 2015-12-02 | 广州辉园苑医药科技有限公司 | 一种基于CRISPR-Cas9基因敲除技术的miR-205基因敲除试剂盒 |
CN106566838A (zh) * | 2016-11-14 | 2017-04-19 | 上海伯豪生物技术有限公司 | 一种基于CRISPR‑Cas9技术的miR‑126全长基因敲除试剂盒及其应用 |
Non-Patent Citations (4)
Title |
---|
XIN YANG 等: "HMG-CoA reductase is negatively associated with PCV2 infection and PCV2-induced apoptotic cell death", 《JOURNAL OF GENERAL VIROLOGY》 * |
侯广杰 等: "抑制HMGCR表达对人食管鳞癌细胞体外增殖及体内致瘤能力的影响", 《山东医药》 * |
吴芸: "CRISPR/Cas9高效等位基因编辑系统的构建及其在猪基因组编辑中的应用研", 《中国博士学位论文全文数据库 基础科学辑》 * |
张冬杰 等: "利用CRISPR-Cas9系统定点突变猪MSTN基因的研究", 《畜牧兽医学报》 * |
Cited By (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12006520B2 (en) | 2011-07-22 | 2024-06-11 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
US10954548B2 (en) | 2013-08-09 | 2021-03-23 | President And Fellows Of Harvard College | Nuclease profiling system |
US11920181B2 (en) | 2013-08-09 | 2024-03-05 | President And Fellows Of Harvard College | Nuclease profiling system |
US10508298B2 (en) | 2013-08-09 | 2019-12-17 | President And Fellows Of Harvard College | Methods for identifying a target site of a CAS9 nuclease |
US11046948B2 (en) | 2013-08-22 | 2021-06-29 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
US10858639B2 (en) | 2013-09-06 | 2020-12-08 | President And Fellows Of Harvard College | CAS9 variants and uses thereof |
US10682410B2 (en) | 2013-09-06 | 2020-06-16 | President And Fellows Of Harvard College | Delivery system for functional nucleases |
US11299755B2 (en) | 2013-09-06 | 2022-04-12 | President And Fellows Of Harvard College | Switchable CAS9 nucleases and uses thereof |
US10597679B2 (en) | 2013-09-06 | 2020-03-24 | President And Fellows Of Harvard College | Switchable Cas9 nucleases and uses thereof |
US10912833B2 (en) | 2013-09-06 | 2021-02-09 | President And Fellows Of Harvard College | Delivery of negatively charged proteins using cationic lipids |
US11124782B2 (en) | 2013-12-12 | 2021-09-21 | President And Fellows Of Harvard College | Cas variants for gene editing |
US11053481B2 (en) | 2013-12-12 | 2021-07-06 | President And Fellows Of Harvard College | Fusions of Cas9 domains and nucleic acid-editing domains |
US10465176B2 (en) | 2013-12-12 | 2019-11-05 | President And Fellows Of Harvard College | Cas variants for gene editing |
US11578343B2 (en) | 2014-07-30 | 2023-02-14 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US10704062B2 (en) | 2014-07-30 | 2020-07-07 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US11214780B2 (en) | 2015-10-23 | 2022-01-04 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
US12043852B2 (en) | 2015-10-23 | 2024-07-23 | President And Fellows Of Harvard College | Evolved Cas9 proteins for gene editing |
US11999947B2 (en) | 2016-08-03 | 2024-06-04 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US11702651B2 (en) | 2016-08-03 | 2023-07-18 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US10947530B2 (en) | 2016-08-03 | 2021-03-16 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US11661590B2 (en) | 2016-08-09 | 2023-05-30 | President And Fellows Of Harvard College | Programmable CAS9-recombinase fusion proteins and uses thereof |
US12084663B2 (en) | 2016-08-24 | 2024-09-10 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
US11542509B2 (en) | 2016-08-24 | 2023-01-03 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
US11306324B2 (en) | 2016-10-14 | 2022-04-19 | President And Fellows Of Harvard College | AAV delivery of nucleobase editors |
US11820969B2 (en) | 2016-12-23 | 2023-11-21 | President And Fellows Of Harvard College | Editing of CCR2 receptor gene to protect against HIV infection |
US10745677B2 (en) | 2016-12-23 | 2020-08-18 | President And Fellows Of Harvard College | Editing of CCR5 receptor gene to protect against HIV infection |
US11898179B2 (en) | 2017-03-09 | 2024-02-13 | President And Fellows Of Harvard College | Suppression of pain by gene editing |
US11542496B2 (en) | 2017-03-10 | 2023-01-03 | President And Fellows Of Harvard College | Cytosine to guanine base editor |
US11268082B2 (en) | 2017-03-23 | 2022-03-08 | President And Fellows Of Harvard College | Nucleobase editors comprising nucleic acid programmable DNA binding proteins |
US11560566B2 (en) | 2017-05-12 | 2023-01-24 | President And Fellows Of Harvard College | Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation |
US11732274B2 (en) | 2017-07-28 | 2023-08-22 | President And Fellows Of Harvard College | Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE) |
US11932884B2 (en) | 2017-08-30 | 2024-03-19 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
US11319532B2 (en) | 2017-08-30 | 2022-05-03 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
US11795443B2 (en) | 2017-10-16 | 2023-10-24 | The Broad Institute, Inc. | Uses of adenosine base editors |
CN109295104A (zh) * | 2018-09-13 | 2019-02-01 | 华东师范大学 | 一种Slco1b2基因敲除大鼠的构建方法及应用 |
CN109456995A (zh) * | 2018-11-08 | 2019-03-12 | 杜以军 | 基因敲除质粒、细胞系及制备方法和应用 |
US11795452B2 (en) | 2019-03-19 | 2023-10-24 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11643652B2 (en) | 2019-03-19 | 2023-05-09 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11447770B1 (en) | 2019-03-19 | 2022-09-20 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
CN110295146A (zh) * | 2019-05-16 | 2019-10-01 | 内蒙古自治区人民医院 | 细胞系hmga2-/-mkn-45及其制备方法和应用 |
US11912985B2 (en) | 2020-05-08 | 2024-02-27 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
US12031126B2 (en) | 2020-05-08 | 2024-07-09 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
CN112175995B (zh) * | 2020-09-11 | 2023-04-14 | 中山大学中山眼科中心 | 一种vsx2绿色荧光报告基因载体系统及其构建方法 |
CN112175995A (zh) * | 2020-09-11 | 2021-01-05 | 中山大学中山眼科中心 | 一种vsx2绿色荧光报告基因载体系统及其构建方法 |
CN114807230A (zh) * | 2022-06-06 | 2022-07-29 | 朱文敏 | 一种利用CRISPR-Cas9系统敲除人骨髓间充质干细胞TET2基因的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN108410907B (zh) | 2021-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108410907A (zh) | 一种基于CRISPR/Cas9技术实现HMGCR基因敲除的方法 | |
CN106318934B (zh) | 胡萝卜β(1,2)木糖转移酶的基因全序列及用于转染双子叶植物的CRISPR/CAS9的质粒构建 | |
CN108642055B (zh) | 能有效编辑猪miR-17-92基因簇的sgRNA | |
CN106222177B (zh) | 一种靶向人STAT6的CRISPR-Cas9系统及其用于治疗过敏性疾病的应用 | |
CN105594664B (zh) | 一种基因敲除选育stat1a基因缺失型斑马鱼的方法 | |
Watanabe et al. | Infection of tobacco protoplasts with in vitro transcribed tobacco mosaic virus RNA using an improved electroporation method | |
CN108018316A (zh) | 一种基因敲除选育rmnd5b基因缺失型斑马鱼的方法 | |
CN105821116A (zh) | 一种绵羊mstn基因定向敲除及其影响成肌分化的检测方法 | |
CN106701830A (zh) | 一种敲除猪胚胎p66shc基因的方法 | |
CN106906242A (zh) | 一种提高CRIPSR/Cas9靶向敲除基因产生非同源性末端接合效率的方法 | |
CN109750035B (zh) | 靶向并引导Cas9蛋白高效切割TCR及B2M基因座的sgRNA | |
WO2023142594A1 (zh) | 一种精确无pam限制的腺嘌呤碱基编辑器及其应用 | |
CN113215193B (zh) | 小分子化合物提高基因敲除和碱基编辑系统活性的方法及其应用方法 | |
US20230279470A1 (en) | Efficient screening library preparation | |
CN106967716A (zh) | 双gRNA、双gRNA文库、双gRNA载体文库及其制备方法和应用 | |
JP2021528975A (ja) | Crispr/cas及びトランスポザーゼを利用した増幅用の組成物、システム、及び方法 | |
WO2017215517A1 (zh) | 测序文库构建中5'和3'接头连接副产物的去除方法 | |
CN109280666A (zh) | 一种基因敲除选育bai2基因缺失型斑马鱼的方法 | |
CN105950656A (zh) | 一种快速获得基因敲除细胞株的方法 | |
CN109628493B (zh) | 一种用于制备可异体移植t细胞的基因编辑系统 | |
CN113667714B (zh) | 一种目标区域捕获方法、试剂盒及测序方法 | |
CN111088253A (zh) | 针对hbb-28地中海贫血基因的crispr单碱基供体修复体系 | |
CN113403342A (zh) | 一种单碱基突变方法及采用的系统 | |
CN118291545B (zh) | 一种单链dna修复模板及其联合m3814小分子抑制剂提高基因编辑效率的方法 | |
CN105671050B (zh) | 一种高效快速适配体筛选方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |