CN1084040C - 制造电子发射器件、电子源和图象形成装置的方法 - Google Patents

制造电子发射器件、电子源和图象形成装置的方法 Download PDF

Info

Publication number
CN1084040C
CN1084040C CN95121796A CN95121796A CN1084040C CN 1084040 C CN1084040 C CN 1084040C CN 95121796 A CN95121796 A CN 95121796A CN 95121796 A CN95121796 A CN 95121796A CN 1084040 C CN1084040 C CN 1084040C
Authority
CN
China
Prior art keywords
electron emission
conductive film
zone
emission device
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN95121796A
Other languages
English (en)
Other versions
CN1131756A (zh
Inventor
西村三千代
野村一郎
坂野嘉和
冢本健夫
宫田浩克
高田一广
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Publication of CN1131756A publication Critical patent/CN1131756A/zh
Application granted granted Critical
Publication of CN1084040C publication Critical patent/CN1084040C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/027Manufacture of electrodes or electrode systems of cold cathodes of thin film cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/316Cold cathodes having an electric field parallel to the surface thereof, e.g. thin film cathodes
    • H01J2201/3165Surface conduction emission type cathodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cold Cathode And The Manufacture (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)

Abstract

一种制造由一对电极和包括设置在电极之间的电子发射区的导电薄膜构成的电子发射器件的方法,其特征在于用如下步骤制造电子发射区:改变导电薄膜区域的组分和使电流流过所说的导电薄膜。

Description

制造电子发射器件、电子源和图象形成装置的方法
本发明涉及制造电子发射器件的方法以及用此电子发射器件制造电子源和图象形成装置的方法。
公知有两种类型的电子发射器件、即热电子发射型和冷阴极电子发射型。其中冷阴极发射型涉及包括场致发射型(下文称为FE型)器件、金属/绝缘层/金属型(下文称为MIM型)电子发射器件和表面传导电子发射器件等器件。FE型器件的例子包括W.P.Dyke和W.W.Dolan在Advance in Electron Physics 8,89(1956)发表的″Fild emission″中所提出的器件和C.A.Spindt在J.Appl.Phys.,47,5286(1976)发表的″PHYSICAL Properties ofthin-film field emission cathodes with molybdenum cones″中所提出的器件。
MIM器件的实例披露在包括C.A.Mead在J.Appl.Phys.32.646(1961)发表的″The tunnel-emission amplifier″等文献中。
表面传导电子发射器件的实例包括M.I.Elinson在RadioEng.Electron Phys.,10(1965)所推荐的器件。
表面传导电子发射器件利用这种现象来实现,即当电流被强制与膜表面平行流通时,电子发射到在基底上形成的窄的薄膜之外。Elinson建议这种类型器件使用SnO2薄膜,在〔G.Dittmer:″Thin Solid Films″,9,317(1972)〕中推荐用全薄膜,而在〔M.Hartwell and C.G.Fonstad:″IEEE Trans.ED Conf.″,519(1975)〕和〔H.Araki等人:″Vacuum,″Vol.26,No.1,P.22(1983)〕分别讨论了使用In2O3/SnO2薄膜和碳薄膜。
附图中的图23示意性示出M.Hartwell所推荐的典型的表面传导电子发射器件。在图23中,参考标号1代表基底。参考标号3代表导电薄膜,它通常是通过溅散产生一H形薄的金属氧化物膜来制备,当它承受下文所述的称之为″激励成形″的电激励处理时其一部分最终制成电子发射区2。在图23中,分离一对器件电极金属氧化物膜的薄的水平区,其长度L/为0.5~1mm,宽度W′/为0.1mm。
通常,通过对器件的导电薄膜3/进行称之谓″激励成形″的电激励予备工艺,在表面传导电子发射器件中产生电子发射区2。在此激励成形工艺中,将恒定的DC电压或通常以IV/min的速率缓慢升高的DC电压加到给定的导电薄膜3的相对两端,使该膜局部损坏、变形或转换,产生具有高电阻的电子发射区2。因此,电子发射区2是其中包括一个或多个缝隙的导电薄膜3的一部分,使之从该缝隙可发射电子。当将电压加到已进行过激励成形工艺的表面传导电子发射器件的导电薄膜3时,电子发射区2发射电子。
换言之,用上述公知的激励成形工艺,难以精确地控制在导电薄膜中形成的电子发射区的位置和构型,因而难以产生电子发射均匀的电子发射器件。通过设置许多这样的电子发射器件而获得的电子源和由这样的电子源构成的成象装置的电子发射特性以及其图象显示屏的亮度会呈现显著的不均匀性。
鉴于所发现的上述问题,本发明的目的是提供一种改进了的,包括对导电薄膜进行激励成形工艺以便在导电薄膜中产生电子发射区的步骤的制造电子发射器件的方法,所说的步骤能控制电子发射区的位置和构形。并且,本发明还提供一种通过在基底设置许多这样的电子发射器件来制造高质量的电子源和包括这样的电子源和成象部件的成象装置的方法。
按照本发明,通过提供一种制造由一对电极和包括设置在该对电极之间的电子发射区的导电薄膜构成电子发射器件的方法达到上述目的,其特征在于通过改变导电薄膜区域的组分并使电流流过所说的导电薄膜的步骤形成电子发射区。
所说的改变导电薄膜区域的组分的步骤最好是在导电薄膜中形成金属区和另一金属氧化物区的步骤。
在实现本发明的优选方式中,所说的改变导电薄膜区域组分的步骤包括氧化导电薄膜中一部分金属区域的步骤。
在实现本发明的另一优选的方式中,所说的改变导电薄膜区域的组分的步骤包括还原导电薄膜中的一部分金属氧化物区的步骤。
在实现本发明的又一优选方式中,所说的改变导电薄膜区域组分的步骤包括在由有机金属络合物构成的膜中形成金属区和另一金属氧化物区的步骤。
在实现本发明的另一种优选方式中,所说的改变导电薄膜区域组分的步骤包括形成金属与半导体混合区和另一金属氧化物与半导体混合区的步骤。
在实现本发明的另一种优选方式中,所说的改变导电薄膜区域组分的步骤包括氧化导电薄膜中一部分金属与半导体混合区的步骤。
在实现本发明的另一种优选方法中,所说的改变电薄膜区域组分的步骤包括还原导电薄膜中一部分金属氧化物与半导体混合区的步骤。
在实现本发明的另一种优选方式中,所说的改变导电膜区域组分的步骤包括形成金属域和另一金属氮化物区的步骤。
在实现本发明的再一种优选方式中,所说的改变导电薄膜组分的步骤包括将导电薄膜中的一部分金属区渗氮的步骤。
图1A和图1B是用本发明的方法制备的表面传导电子发射的示意图,示出其基本结构。
图2A~2C是表面传导电子发射器件示意剖视图,示出了不同的制造步骤。
图3A和图3B图示出用作本发明的激励成形电压的波形图。
图4是测量系统的示意性电路图,它能用以确定按本发明的方法制备的表面传导电子发射器件的电子发射特性。
图5是表示按本发明的方法制备的表面传导电子发射器件的器件电压Vf与器件电流If以及器件电压Vf与发射电流Ie之间的典型关系的曲线图。
图6是按本发明的方法制备的单一的矩阵型电子源的平面示意图。
图7是按本发明的方法制备的单一矩阵型电子源的显示板的局部剖切的示意性透视图。
图8A和8B是表示荧光膜两种可能结构的示意图,此荧光膜可用作按本发明方法制备的图象形成装置的显示板。
图9是用以按照NTSC系统电视信号显示图象的成象装置的驱动电路的方框图。
图10是按照本发明的方法制备的阶梯型电子源的示意性平面图。
图11是带有按本发明的方法制备的阶梯型电子源的显示板的局部剖切的示意性透视图。
图12A~12F是表面传导电子发射器件例1在不同的制造步骤中的示意图。
图13是用以制备例1的表面传导电子发射器件的光辐照装置的示意性剖视图。
图14是例5的表面传导电子发射器件示意性平面图。
图15是例6的表面传导电子发射器件示意性剖示图。
图16是例8的表面传导电子发射器件示意性剖示图。
图17AA~17AD是在不同的制造步骤中例13的电子源的示意图。
图18B~18E仍然是在不同的制造步骤中例13的电子源的示意图。
图19F~19H仍然是在不同的制造步骤中例13的电子源的示意图。
图20I~20K仍然是在不同的制造步骤中例13的电子源的示意图。
图21是例13的电子源的示意图、它说明激励成形工艺中如何用导线连接。
图22是例15的成象装置的示意性方框图。
图23是M.Hartwell提出的公知的表面传导电子发射器件的示意性平面图。
下面对优选实施例进行详细说明。在电激发电子发射器件的导电薄膜以便在导电薄膜中建立电子发射区的所谓激励形成工艺中,当在导电薄膜中发生性质改变和/或物理变形的位置作为许多不同因素的函数时,得知因产生焦耳热使温度急剧上升的位置是重要的。
如果导电薄膜均匀形成,而且器件电极非常对称地排列,认为在整膜上均匀产生焦耳热而且不存在这样的位置。如果考虑到向周围区域的热传导,假定这样的位置设置在两电极的中间是可靠的。然而,如果它们是通过印刷产生的,与用光刻法制备的情况相比,因为导电薄膜因许多原因通常不能均匀形成,尤其因为各电极不能令人满意地对称地形成,这种假定也不总是可信的。此外,作为产生电子发射区的膜中高电阻区域的形成工作,包括导电薄膜的物理变形和性质改变部分的复杂工艺过程,以使其有高电阻,它能顺次改变流过它的电流分布。结果,如果在周围存在任何干扰成分,电子发射区开始呈现一极大弯曲的构形。控制带有这样的变形电子发射区的电子发射器件的性能是困难的,因此,通过配置多个其电子发射性能几乎不能控制的电子发射器件制成的电子源和与这样的电子源结合的成象装置在电子发射性能和图象显示屏的亮度方面会呈现显著地不均匀。
鉴于这些问题,本发明提供一种制造包括一对电极和一导电薄膜的电子发射器件的方法,所说的导电薄膜包括设置在电极之间的电子发射区,其特征在于电子发射区通过如图2A~2C所示的下述步骤形成:
1)一个步骤是通过下述方式来改变设置在位于基底1上的电极4,5之间的导电薄膜7(用以形成电子发射区)的区域的结构(图2A和2B),即产生电子发射区的区域的结构和导电薄膜7的剩余区域的结构互不相同,以便在前一区域中形成一电子发射区的潜象6,当电压加到器件电极4,5时,此电子发射区产生比剩余区更强的电场,或者在该区中电场比在剩余区中更集中;和
2)另一个步骤是通过例如向用以形成电子发射区的薄膜7施加电压使电流流过所说的导电薄膜(图2C),以便局部加热电子发射区的潜象6,从而产生电子发射区2。
由上述可见,为使产生电子发射区的区域的电场比剩余区中的电场变得更集中,就必须使该区域的每单位长度的电阻比剩余区的足够大。该区域每单位长度的电阻由该结构的电阻率与该区域的厚度的比率决定。如果该区域的膜厚度与剩余区的膜厚度无明显的差别,则该区域的结构的电阻率就必须做得足够大。
例如,当完成步骤(1)时,如果电子发射区7的除潜象外的区域由金属构成,且潜象区由金属氧化物或氮化物组成,就能实现电阻率的差别。例如通过局部氧化或氮化形成潜象的区域的金属膜,或者通过还原金属氧化物膜以便在除形成潜象区之外的区域产生金属膜,能实现步骤(1)。换言之,能这样来实现此步骤,即还原有机金属化合物膜以便形成潜象区的状况与剩余区的状况不同,以便当剩余区成为金属时,潜象区成为金属氧化物。
为本发明的目的而采用的局部氧化或氮化的技术是为形成电子发射区而局部加热薄膜,并使它在周围空气中或在包括氧气或氨气的适当气氛中进行化学反应。更具体地说,形成电子发射区的薄膜能这样进行局部加热,即通过用激光束扫描所需要的区域,或者通过将一较低电压加到用以形成电子发射区的薄膜上使将要形成潜象的区域特别热来加热它。另一方面,用以形成电子发射区的薄膜中的化学反应可以借助UV射线被局部加速。
化学反应除将形成潜象区域之外的区域的材料还原的技术,在除了形成潜象区域之外的区域加热金属氧化物膜。对这种有效的技术来说,热会在通过加热能还原金属化合物的气氛中传导。此所选择的气氛能随导电薄膜所用的金属化合物的不同而变化。换言之,此金属氧化物能通过在真空中用电子束处理而被还原。
换句话说,当完成步骤(1)时,如果后一区域由金属与半导体构成,前一区域由金属氧化物和半导体构成,电子发射区的形成潜象区与剩余区之间电阻率的差别就能够完成。
对本发明来说,″半导体″不仅包括在诸如Si和GaAs等半导体器件中所用的半导体,而且还包括有适当电阻率的诸如SnO2和In2O3等半导体。当它们本身是金属氧化物时,它们比和它们一起使用的金属氧化物会更稳定。例如,如果加热,Ag2O很容易被还原而产生金属Ag,而SnO2和In2O3却不发生化学变化。
更早所讨论的关于氧化和还原技术也能用于上述混合物。
当在形成潜象后进行步骤(2)时,在电场比剩余区更集中的潜象区产生更大的焦耳热,从而在潜象区中形成一定的电子发射区。因此,只是当潜象区的位置和构形被控制时,才能不管它离开器件电极的距离及其形状都能控制电子发射区的位置和构形。
这里应注意,步骤(1)中所用的上述某些技术能用在空气中,在这些情况下,也能在空气中进行下一步骤(3),许多其它技术能在压强为1atm的不同气体(惰性气体、还原性气体、氮化的气体等等)的气氛中使用。换言之,这种方法有在制造电子发射器件时不要求使用真空装置的优点。
除了上述两个步骤外,可以在形成电子发射区后插入还原全部导电薄膜的步骤,以便减少导电薄膜的任何剩余的高电阻率区的电阻率。在这样的步骤中,可在含有H2的气氛中加热整个器件。然后,用以建立电子发射区的潜象最终从器件中消失。
现在将说明按照本发明制造表面传导电子发射器件的方法。
图1A和1B是按照本发明的电子源的表面传导电子发射器件的示意图,其中图1A是平面图,图1B是横剖视图。
参看图1A和1B,其中示出基底1,一对器件电极4和5,导电薄膜3和电子发射区2。
基底1所用的材料包括石英玻璃、含诸如Na等杂质以降低会聚水平的玻璃、钠钙玻璃、通过溅散在钠钙玻璃上形成一SiO2层而制成玻璃基底、诸如氧化铝和硅等陶瓷体。
相对配置的器件电极4和5可由高电导率材料制成,优选的材料包括诸如Ni、Cr、Au、Mo、W、Pt、Ti、Al、Cu和Pd等金属及其合金、由从Pd、Ag、Pd-Ag、RuO2和玻璃中选择的金属或金属氧化物构成的可印刷的导电材料、诸如In2O3-SnO2等透明导电材料、和诸如多晶硅等半导体材料。
两器件电极的距离L、器件电极的长度W1、导电薄膜的宽度W2和设计本发明的表面传导电子发射器件的其它因素可由器件的应用来决定。器件电极4和5间隔的距离L可在几百毫微米和几百微米之间,最好在几微米和几十微米之间。
器件电极的长度W1最好在几微米和几百微米之间,它取决于器件的电极电阻和电子发射特性。器件电极4和5的薄膜厚度d在几十毫微米和几微米之间。
本发明的表面传导电子发射器件可以有除在图1A和1B中所示的构造之外的构造,换言之,它可以通过在基板1上设置导电薄膜3和一对相对配置的器件电极4和5来制备。
导电薄膜3最好是一细颗粒膜,以便提供良好的电子发射特性。导电薄膜3的厚度作为在器件电极4和5上导电薄膜分级的涂覆、器件电极4和5之间的电阻、其后将要讨论的形成工艺的参数和其它因素的函数而被确定,并且优选在1/10毫微米和几百毫微米之间,最好在1毫微米和50毫微米之间。通常导电薄膜3的电阻Rs在102~107Ω/□之间。注意,Rs是由R=Rs(L/w)定义的电阻,其中t、w和L分别是膜的厚度、宽度和长度。R是沿长度L的方向测量的膜的电阻。
其中所用的术语″细颗粒膜″涉及由可以被大致分散开的紧密排列或者交互和随机重叠的大量细颗粒构成的薄膜(在一定条件下形成岛状结构)。本发明所用的细颗粒的直径在1/10毫微米和几百毫微米之间,最好在1毫微米和20毫微米之间。
由于本申请中频繁使用术语″细颗粒″,下面将对其进行更深入地说明。
小颗粒称之为″细颗粒″,比细颗粒更小的颗粒称之为″超细颗粒″。比″超细颗粒″更小的由几百个原子构成的颗粒称之为″原子团″。
然而这些定义是不严格的,每种术语的范围随所涉及的粒子的特定情况而变化。″超细颗粒″像在本申请的情况下可以简称为″细颗粒″。
将在下面讨论″实验物理趋势(The Experimental PhysicsCourse)No.14:表面/细颗粒″(由Koreo Kinoshita编辑,Kyoritu出版,September 1,1986)
其中所用的细颗粒指的是直径约在2~3μm和10nm之间的粒子,其中所用的超细颗粒指的是直径约在10nm和2~3nm之间的颗粒。然而这些定义的含意不是很严格的,超细颗粒也可简称为细颗粒。因此,这些定义在任何意义上都是凭经验而定的。二个到几百个原子构成的颗粒叫做″原子团″。(Ibid.,P.195,11.22~26)
此外,在新技术发展公司的″Hayashi′s UltrafineParticle Project″中所定义的″超细颗粒″如下所述,对颗粒大小应用一更小更低的限制尺寸。
″在the Creative Science and Technology Promoting Schome中的The Ultrafine Particle Project(1981~1986)定义超细颗粒为直径约在1和100nm之间的颗粒。这意味着超细颗粒是约100~108个原子的原子团。按照原子的观点,超细颗粒是巨大的或超大的粒子。″(Ultrafine Particle-Creative Science andTechnology:ed.,Chikara Hayashi,Ryoji Ueda,Akira Tazaki;Mita Publication,1988,P.2,11.1~4)比由几个到几百个原子构成的超细颗粒更小的颗粒通常称为原子团。″(Ibid:Page 2,PP.12~13)
考虑到上述通常的定义,其中所用的术语″细颗粒″指的是大量的直径下限在0.1nm和1nm之间和上限为几微米的原子和/或分子的簇团。
在电子发射区实际完成前用以形成包括电子发射区的导电薄膜的导电薄膜在下文中将称为″形成电子发射区的薄膜7″,以免混淆。当完成上述步骤(1)时,用以形成电子发射区的薄膜包括典型的有低电阻的金属区和有高电阻的金属氧化物或氮化物区(用以建立电子发射区的潜象)。金属应是其氧化物或氮化物呈现高电阻并能很容易起化学变化的金属。具体的例子包括:Pd,Ru,Ag,Au,Ti,In,Cu,Cr,Fe,Zn,Sn,Ta,W和Pb。这些金属的任何一种也可以用其氧化物/氮化物与半导体的混合物来使用。优选的实例包括氧化物半导体如In2O3与SnO2和半导体如Si与Ge。
电子发射区2是导电薄膜3的一部分并包括高电阻的裂隙,不过其参数取决于导电薄膜3的厚度和材料以及将在下面说明的激励形成工艺。电子发射区2其中包含有直径在十分之几毫微米和几十毫微米之间的导电细颗粒。这样的导电细颗粒材料可从能用以制备带电子发射区的薄膜3的全部或部分材料中选择。电子发射区2和环绕此电子发射区2的一部分导电薄膜3可包含碳和碳的化合物。
现在将参照图2A~图2C说明制造具有本发明的图1A和1B所示结构的表面传导电子发射器件的方法。要注意下文的步骤a)~步骤c)分别与图2A~图2c相对应。
步骤a:在制造本发明的表面传导电子发射器件的第一步骤中,用以制造电子发射区的薄膜7借助诸如真空淀积或溅散等真空镀膜成形技术、诸如CVD等汽相生长技术或涂复技术在位于绝缘基底1上的一对相对设置的器件电极4,5之间由金属制成。
步骤b:在制造本发明的表面传导电子发射器件的第二步骤中,用以建立其电阻高于剩余区的电子发射区的区域6,通过局部用光照射用以形成电子发射区的薄膜7中所需要的区域(在大多数情况下是在器件电极之间的中央的和直线界定的区域)并改变该区域的化学成分而生成。如果需要可加热器件并控制环境气氛。为了局部用光照射,可将某些型式的红外灯、紫外灯或激光器用作光源,所发射的光借助适当的光学系统8会聚,从而使所需要的区域被已聚焦的光扫描。所说的化学成分的变化可以是薄膜金属的氧化、氮化或某些其它相变。
步骤c:在制造本发明的表面传导电子发射器件的第三步骤中,器件电极4和5之间的器件导电膜3经受称之为″成形″的电激发工艺。特别是,由于在器件电极4和5之间的导电膜3用电源(未绘出)电激励,所以实质上其位置和构形被很好控制的不偏离的电子发射区2在用以建立电子发射区的区域6中产生,所说的电子发射区在用以形成电子发射区的薄膜7中有高电阻。换言之,用以建立电子发射区的该区域6,作为激励成形工艺的结果,其局部和在结构上被破坏、变形或转换,从而产生电子发射区2。图3A和3B示出激励成形用的两种不同的脉冲电压。
激励成形所用的电压最好有脉冲波形。可以连续施加有恒定波高或恒定峰值电压的脉冲电压(图3A),或者也可以代之以施加有增加的波高或增加的峰值电压的脉冲电压(图3B)。
当使用有恒定波高的脉冲电压时,参看图3A,此脉冲电压的脉冲宽度T1和脉冲间距T2典型地分别在1μs与10ms之间和10μs与100ms之间。三角波的高度(激励成形工作的峰值电压)可以按照表面传导电子发射器件的构型适当地选择。一般是在适当的真空度下将此电压施加几分钟到几十分钟。然而请注意,脉冲波形不限于三角形,也可以用矩形或某些其它波形取代。
当使用脉冲高度随时间增加的脉冲电压时,参看图3B,此脉冲电压有实质上与图3A相似的脉宽T1和脉冲间距T2。像在图3A的情况那样在适当的真空度下施加此脉冲电压,以例如每步0.1V的变化率增加三角形波的高度(激励成形工作的峰值电压)。
将通过在激励成形的脉冲电压间隔T2期间施加足够低的而且不能使区域6局部破坏或变形的脉冲电压以测量流过器件电极间的导电膜的电流并检测器件电阻来结束激励成形工作,所说的区域6用以在器件电极之间建立电子发射区。一般当将约0.1V的电压加到器件电极,通过器件电流监测到电阻大于1MΩ时结束激励成形工作。
在激励成形工作之后,对器件进行激活工艺。激活工艺是通过此工艺能使器件电流If和放射电流Ie显著变化的工艺。
在激活工艺中,像在激励成形工艺中那样,在有机物质的气体的气氛中,脉冲电压可以反复地施加给器件。气氛可以通过在用油扩散泵和旋转泵抽空该室之后或者通过用离子泵充分地抽空真空室之后,向真空中注入有机物质的气体,利用在真空室中存留的有机气体而产生。有机物质的气体压力可以作为所加工的电子发射器的形状、真空室的形状、有机物质的类型和其它因素的函数来确定。能适于激活工艺用的有机物质包括诸如烷烃、烯烃和炔的脂肪烃、芳香烃、乙醇、乙醛、甲酮、胺、诸如苯酚、碳酸和磺酸等有机酸。具体的实例包括用普通分子式CnH2n+2表示的饱和烃,例如甲烷、乙烷和丙烷,用普通分子式CnH2n表示的不饱和烃,例如乙烯与丙烯、苯、甲苯、甲醇、乙醇、甲醛、乙醛、丙酮、丁酮、甲胺、乙胺、酚、甲酸、乙酸和丙酸。作为激活工艺的结果,来自存在在气氛中的有机物质的碳和碳的化合物淀积在器件上,以便显著地改变器件电流If和发射电流Ie。
通过监测器件电流If和发射电流Ie来确定激活工艺的完成。应适当地选择脉宽、脉冲间隔和脉冲波高。
对本发明来说,碳和碳的化合物指的是石墨(包括通常所说的HOPG、PG和GC,其中HOPG实质上有全整晶体结构,PG有稍微畸变的结晶结构,此结构含有大小约20nm的晶状颗粒,GC有畸变更多的结晶结构,此结构含有大小约2nm的晶状颗粒)和碳(非晶碳、非晶碳和细石墨结晶的混合物),这样的碳或碳的化合物的淀积厚度要小于50nm,最好小于30nm。
典型的激活工艺以下述方式进行。
在上述步骤之后所获得的电子发射器件最好再进行老炼工艺。这是用以清除在真空室中剩余的任何有机物质的工艺。此工艺所用的抽真空和排气的设备最好不包括用油的设备,这在工艺过程中就不会产生对所处理的器件的参数有不利影响的油蒸汽。因此最好使用吸附泵和离子泵。
如果此激活工艺使用油扩散泵和旋转泵,并且油所产生的有机气体也被利用,则必须使有机气体的分压强减至最小值。如果没有碳和碳化合物的额外淀积,在真空室中此有机气体的分压强应低于1.3×10-6Pa,最好低于1.3×10-8Pa。最好在加热整个室后再对真空室抽真空,以便将被真空室内壁和室中电子发射器件吸附的有机分子能容易地清除。真空室加热到80~250℃,最好在150℃以上,为使周期尽可能地长,可以按照真空室的大小和构形、室中电子发射器件的结构和其它条件来交替地选择其它加热条件。真空室中的压强必须尽可能地低,应低于1×10-5Pa,最好低于1.3×10-6Pa。
在老炼工艺之后,用以驱动电子发射器件或电子源的气氛最好与完成老炼工艺时的气氛相同,不过如果室中的有机物质被充分清除也可以在不破坏电子发射器件或电子源工作稳定性的前提下改而使用更低的压强。
通过使用这样的气氛,能有效地抑制碳或碳化合物的任何额外淀积的形成,能清除被真空室和基片吸附的H2O、O2和其它物质,从而稳定器件电流If和发射电流Ie。
下面将参照图4和5说明用上述工艺制备的适用于本发明的电子发射器件性能。
图4是包括上述工艺所用的真空室的设备的示意性方框图。它也能用作确定所考虑的这种类型的电子发射器件参数的监测系统。在图4中,与图1A和1B相同的部分用同样的参数标号表示。参看图4,此监测系统包括真空室55和真空泵56。电子发射器件放置在真空室55中。此器件包括:基底1、一对器件电极4和5、导电薄膜3和电子发射区2。此外,该监测系统还有:用以向器件施加器件电压Vf的电源51、用以计量流过器件电极4和5之间的薄膜3的器件电流If的电流表50、用以收集由器件的电子发射区发射的电子构成的发射电流Ie的阳极54、用以向监测系统的阳极施加电压的高压源53、和用以计量由器件的电子发射区2发射的电子构成的发射电流Ie的另一电流表52。为了确定电子发射器件的性能,可向阳极施加其值在1~10KV之间的电压,此阳极距电子发射区的距离H在2~8mm之间。
包括真空计和监测系统所必须的其它装备的仪表设置在真空室55中,以便可以适当地测试室中电子发射器件或电子源的性能。真空泵56可以是由涡轮泵或旋转泵构成的常规高真空系统,或者由诸如磁浮涡轮泵或干式泵构成的无油高真空系统,以及由离子泵构成的超高真空系统。含电子源的真空室可用加热器(未绘出)加热到250℃。
图5示意性示出由图4的监测系统监测到的器件电压Vf与发射电流Ie和器件电流If之间的关系图。应注意,因为Ie的值远小于Ir,所以图5中的Ie和If可以任意选择不同的单位。还应注意曲线图的垂直和水平轴用线性刻度表示。
由图5可见,本发明的电子发射器件,就发射电流Ie来看有如下三个特征:
i)首先,当加到其上的电压超过一定值(此值在下文中称为阈电压,在图5中用Vth表示)时,本发明的电子发射器件其发射电流Ie呈急剧和陡峭地增加,反之,当所加的电压低于阈电压Vth时,实际上未出现发射电流Ie。与以往不同,本发明的电子发射器件是一种对发射电流Ie有一清晰的阈电压的非线性器件。
ii)其次,由于发射电流Ie完全取决于器件电压Vth,所以后者能有效地控制前者。
iii)第三,所发射的被阳极54收集的电荷是所用的器件电压Vf的持续时间的函数。换句话说,被阳极54收集的电荷量能有效地用施加器件电压Vf的时间来控制。
鉴于上述显著的特征,可理解为,由多个本发明的电子发射器件构成的电子源的电子发射性能和包括这样的电子源的成象装置的性能能很容易地用输入信号控制。因此,这样的电子源和成象装置可有许多用途。
另一方面,器件电流If相对器件电压Vf单调增加(如在图5中的实线所示,下文称作″MI特性″),或者由电压控制负阻特性(下文称作″VCNR″特性)引起的呈像虚线所示那样的曲线变化。器件电流的这些特性取决于包括制造方法、监测条件和器件工作环境等许多因素。
因为用本发明方法制造的表面传导电子发射器件的这些不寻常的性能特征,所以设置在电子源中的许多这样的电子发射器件或者包括这样电子源的成象装置可控制其电子发射,因此,这样的电子源和成象装置也可找到许多用途。
现在将说明通过设置许多本发明的表面传导电子发射器而制成的电子源。
例如,可以沿一方向并排排列许多电子发射器件,使其呈梯形排列。另一方式,许多电子发射器件可以沿X方向成行和沿Y方向成列地排列以形成矩阵,X方向和Y方向互相垂直,电子发射器件借助每个器件的电极连接到各有关的X方向和Y方向的线上,所说的Y方向线设置在所说的X方向线上,其间插有层间绝缘层。此后一种排列叫做单一矩阵排列。现在将详细说明此单一矩阵排列。
鉴于表面传导电子发射器件的上述三种基本性能特征,通过控制加到器件的相对电极的脉冲电压或器件电压Vf的波高和波宽以及上述阈电压电平Vth能控制电子发射。换言之,低于阈电压电平Vth,器件实际上不发射任何电子。因此,与设置在装置中的电子发射器件的数目无关,都能通过向每个所选择的器件施加脉冲电压,来选择和控制所需要的表面传导电子发射器件按输入信号的电子发射。
图6是为了利用上述性能特征将许多电子发射器件按矩阵排列构成的电子源的示意平面图。将进一步说明图6的电子源。
在图6中,电子源包括如更早所披露的由玻璃板制成的基底1和设置在此基底1上的许多表面传导电子发射器件104。可以适当地选择表面传导电子发射器件104的数量和结构。
配置用Dx1,Dx2……Dxm表示的通常由通过真空淀积、印刷或溅散在基底1上产生的导电金属构成的总数为m的x方向导线102。这些导线按照材料、厚度和宽度来设计,以使同样的电压可以加到表面传导电子发射器件104。
配置用Dy1,Dy2……Dyn表示的其材料、厚度和宽度与X方向导线类似的总量为n的y方向导线103。
在m条X方向导线102和n条y方向导线103之间设置层间绝缘层(未绘出),以使它们相互间电绝缘。m和n两者都是整数。
通过真空淀积,印刷或溅散将通常由SiO2构成的层间绝缘层(未示出)形成在绝缘基底1的整个表面或部分表面上以呈显所要求的构形。层间绝缘层的厚度材料和制造方法要如此选择,以使其能承受在其交叉处可检测到的任何X方向导线102和任何y方向导线103之间的电位差。
每个表面传导电子发射器件104的相对配置的电极(未示出),通过由真空淀积、印刷或溅散形成的导电金属构成的各个连接导线105,连接到m条X方向导线102中有关的一条和几条y方向导线103中有关的一条。
m条x方向导线102、几条y方向导线103、连接导线105和器件电极可以部分或全部由公用材料或不同材料构成。这些材料可由以上所列的器件电极材料中适当选择。如果器件电极与连接导线由相同材料构成,它们可以统称为器件电极而不必区分连接线。此表面传导电子发射器件104可以形成在基底1上或者形成在层间绝缘层(未示出)上。
如将在下面更详细说明那样,x方向导线102电连接到用以将扫描信号加到沿x方向设置的表面传导电子发射器件的所选择的行上的扫描信号馈给装置(未示出)。
另一方面,y方向导线103电连接到用以将调制信号加到沿y方向设置的表面传导电子发射器件104的所选择的列上并按输入信号调制所选择的列的调制信号发生装置(未示出)。要注意,加到每个表面传导电子发射器件104的驱动信号用加到器件上的扫描信号和调制信号的电压差表示。
现在将参照图7~9说明由有上述那样单阵列排列的电子源构成的成象装置。图7是表示成象装置的显示板的基本结构的局部剖切的示意性透视图,图8A和8B是说明图7的成象装置所用的荧光膜114的两种可能结构的示意图,而图9是图7的成象装置的驱动电路的方框图,它按照NTSC电视信号显示电视图象而工作。
首先参照图7说明成象装置的显示板的基本结构,它包括上述类型的其上载有许多电子发射器件电子源基底1、牢固地装有电子源基底1的后板111、通过在玻璃基底113的内表面上敷设荧光膜114和金属敷层115制备成的面板116、和支承框架112,用熔结玻璃将该支承框架,后板111和面板116粘接,并在大气或氮的气氛中于400℃至500℃的温度下焙烤10分钟以上,以便牢固和气密地形成封接的外壳118。
在图7中,参考标号102和103分别代表连接到每个电子发射器件104的各器件电极4,5的X方向导线和y方向导线,并设置各个外部接线端Dx1~Dxm和Dy1~Dyn。
在上述实施例中外壳118由面板116、支承框架112和后板111形成,因为后板111主要是为强化基底1而设置,如果基底1自身强度足够,则后板111可以省去。如果是这样情况,可以不需要单独的后板111,基底1可以直接粘接到支承框架112上,因而外壳118由面板116、支承框架112和基底1构成。外壳118的总强度可以通过在面板116和后板111之间设置许多称作隔板的支承部件而增加。
如果显示板用以显示黑白图象,荧光膜114仅由单色荧光体122构成时,为了显示彩色图象需要包括黑色导电部分121和荧光体122,其中前者叫作黑色带(图8A)或黑色矩阵部分(图8B),它们取决于荧光体122的排列。为彩色显示板而设置黑色带或黑色矩陈部分,从而制成不同的三基色荧光体122,通过黑化周围区域可减轻被荧光膜114反射的外部光的反射图象所造成的对比度下降所产生的不可分辨的有害影响。虽然通常将石墨用作黑色导电部分121的主要成分时,但也可以选用有低的透光度和反射率的其它黑色导电材料。
不管黑白或者彩色显示,淀析和印刷技术都适于用在将荧光体122涂变到玻璃基底113上。
如在图7中所示,金属敷层115通常设置在荧光膜114的内表面上。为了借助由荧光体122(图8A和8B)发射并射到作为向面板116反射的镜面的外壳内壁的光线来提高显示板的亮度,提供了金属敷层115。用它作一个电极用以将加速电压从高压端Hv加给电子束,并防止当外壳118内产生的负离子同荧光体碰撞时损坏荧光体。它是如此制备的,即将荧光膜114的内表面精加工平滑(此工作通常叫作″镀膜″),并在形成荧光膜114后通过真空淀积再在其上形成一层铝膜。
在面板116上可以形成透明电极(未示出)并使其对着荧光膜114的外表面,以提高荧光膜114的传导率。
在外壳的上列部件被粘接到一起之前,如果包括彩色显示,应注意精确地校准每个彩色荧光体122和电子发射器件104。
在将内部经排气管(未示出)抽空到10-4~10-5Pa真空度之后,气密封接外壳118。
在用包括旋转泵或涡轮泵的适当的真空系统经排气管(未示出)将外壳118内部抽空到约10-4Pa的真空度并为了激活工艺经外部引线端Dx1~Dxm和Dy1~Dym将电压加到器件电极4,5之后,可用包括不用油的离子泵或吸附泵的超高真空系统取代该真空系统,外壳可在80~150℃下烘焙3~15小时。在外壳气密封接之前或之后及时进行消气剂处理,以保持外壳118内部已达到的真空度。在消气剂处理中,设置在外壳118中予定位置上的消气剂(未示出)用电阻加热器或高频加热器加热以便通过蒸发淀积形成消气剂膜。典型的消气剂以Ba为主要成分,能通过蒸发淀积膜的吸附作用使真空度维持在10-3~10-5Pa。
现在将参照图9说明用以驱动上述显示板201的驱动电路。在图9中,参考标号201表示显示板。此外,该电路包括扫描电路202、控制电路203、移位寄存器204、线性存储器205、同步信号分离电路206和调制信号发生器207。图9中Vx和Va代表DC电压源。
如图9所示,显示板201经接线端Dx1~Dxm,Dy1~Dym和高压端Hv连接到外部电路,其中接线端Dx1~Dxm要设计得能接收用以顺序地逐个驱动装置中电子源的各行(n个器件)扫描信号,所说的装置包括许多具有M行和N列的矩阵形式排列的表面传导型电子发射器件。
另一方面,引线端Dy1~Dyn要设计得能接收用以控制由扫描信号所选择的行的每个表面传导型电子发射器件的输出电子束的调制信号。高压端Hv由电压电平约10KV的DC电压Va源供电,此电压足够高以激励所选择的表面传导型电子发射器件的荧光体。
扫描电路202以如下方式工作。电路包括M个开关装置(其在图9中仅示意性地具体指出装置S1和Sm),每个开关装置或者接到DC电压源Vx的输出电压,或者接到OV(地电位电平),并与显示板201的接线端Dx1~Dxm中的一个连接。开关装置S1~Sm中的每一个都按照由控制电路203馈送的控制信号Tscan而工作,并能配备组合晶体管例如FET。
此电路的DC电压源Vx要设计得能输出恒定电压,由于表面传导电子发射器件的特性(或电子发射的阈电压),以致任何加到未被扫描的器件上的驱动电压都降低到小于阈电压。
控制电路203调整有关部件的工作,以便按照外部馈给的视频信号适当地显示图象。它响应由同步信号分离电路206供给的同步信号Tsync,产生控制信号Tscan、Tsft和Tmry,这将在下面说明。
同步信号分离电路206根据外部馈送的NTSC电视信号分离同步信号分量和亮度信号分量,并能容易地利用公知的频率分离(滤波器)电路。虽然如所周知用同步信号分离电路206从电视信号中提取的同步信号由垂直同步信号和水平同步信号构成,但为方便起见这里只简单地称之为Tsync信号而不考虑其分量信号。另一方面由电视信号中取出的馈送到移位寄存器204的亮度信号为方便起见称为DATA信号。
移位寄存器204按照由控制电路203馈给的控制信号Tsft为每条线对按时间顺序串联馈给的DATA信号进行串联/并联转换。换言之,控制信号Tsft作为移位寄存器204的移位时钟脉冲而工作。已经过串联/并联变换的线的一组数据(并相当于电子发射器件的一组驱动数据)被移位寄存器204发出作为几个并联信号Id1~Idn
线性存储器205是用以按照来自控制电路203的控制信号Tmry存储的一组所要求时间周期的线性数据,它是信号Id1~Idn。然后,发出已存储的数据I′d1~I′dn并传送到调制信号发生器207。
所说的调制信号发生器207实际上是一信号线,它按照每个图象数据I′d1~I′dn适当地驱动和调制每个表面传导型电子发射器件的工作,此装置的输出信号经接线端Dy1~Dyn传输到显示板201中的表面传导型电子发射器件。
如前所述,存在一表面传导电子发射器件的清除阈电压,并且只有施加一高于该阈电压的电压时,该器件发射电子。发射电流的大小作为所加的超过阈电平的电压变化的函数而变化。当阈电压的值和所加电压与发射电流之间关系可随电子发射器件的材料、结构和制造方法而改变时,下面的说明总是正确的。
当脉冲状电压加到本发明的电子发射器件时,在所加电压小于阈电平实际上不产生发射电流,一旦所加电压超过阈电平就发射电子束。这里应注意,首先,输出电子束的密度能通过改变脉冲状电压的峰值电平来控制。其次,电子束的电荷总量能通过改变脉冲宽度来控制。
因此,电压调制方法或者脉冲宽度调制可用来按照输入信号调制电子发射器件。对于电压调制,电压调制型电路用于调制信号发生器207,使脉冲成形电压的峰值电平按照输入信号来调整,而脉宽保持不变。另一方面对于脉宽的调制,脉宽调制型电路用于调制信号发生器207,使所加电压的脉宽可以按照输入数据来调整,而所加电压的电平保持常数。
虽然以上未特别说明,但移位寄存器204和线性存储器205,只要能以给定的速率进行串/并行转换和视频信号的存储,它既可是数字型的也可以是模拟型的。
如果使用数字信号型的,则同步信号分离电路206的输出信号DATA也需要数字化。然而,这样的变换能通过在同步信号分离电路206的输出端设置A/D变换器很容易实现。
不用说,按照线性存储器205的输出信号是数据信号还是模拟信号,调制信号发生器207可采用不同的电路。
如果使用数字信号,调制信号发生器207可以使用公知的D/A变换器电路,如果需要可以另外使用放大器电路。就脉宽调制而言,通过使用将高速振荡器、用以计算所说的振荡器产生的波数的计算器和用以比较计算器的输出和存储器的输出的比较器组合起来的电路能完成调制信号发生器207。如果需要,可以附加上述放大器以放大比较器的输出信号电压,所说的比较器有已调制的脉宽并达到本发明的表面传导型电子发射器件的驱动电压的电平。
另一方面,如果使用模拟信号进行电压调制,调制信号发生器207可以使用包括公知的运算放大器的放大器电路,如果需要还可附加电平移位电路。对脉宽调制来说,如果需要,可以使用公知的电压控制型的振荡电路(VCO)作为用于电压放大的辅助放大器,直至其达到表面传导型电子发射器件的驱动电压。
由于本发明的包括显示板201和驱动电路的成象装置有上述结构,当通过外部接线端Dx1~Dxm和Dy1~Dym施加电压时,电子发射器件104发射电子。然后,通过向金属敷层115或透明电极(未示出)经高压端Hv施加高压来加速所产生的电子束。此已加速的电子最终撞击荧光膜114,使其交替发光以便按照NTSC信号产生电视图象。
成象装置的上述结构仅是本发明所用的一个实例,它可以进行各种变更。用于这样装置的TV信号系统不限于一种特例,诸如NTSC、PAL或SECAM等任何系统都能使用。因为它能用于包括大量象素的大的显示板,所以包括高清晰度TV系统的大量扫描线TV信号特别适用于它。
现在参照图10和11说明包括许多以梯形方式排形在基底上的表面传导电子发射器件的电子源和包括这样电子源的成象装置。
首先参看图10,参考标号1表示电子源基底,参考标号104表示设置在基底上的表面传导电子发射器件,而参考标号304表示用以连接表面传导电子发射器件104的分别有外部接线端D1~D10的10条公共线。
成排地设置电子发射器件104,在下文中将其叫作器件行,以形成包括许多器件行的电子源,每一行都有许多器件。
每一器件行的表面传导电子发射器件通过一对公用线304(例如外部接线端D1和D2的公用线304)相互并联电连接,以便通过向一对公用线施加适当的驱动电压能任意驱动它们。具体地说,向要驱动的器件行施加超过电子发射阈电平的电压以发射电子,而向剩余的器件行施加低于电子发射阈电平的电压。另一方面,设置在两相邻器件行之间的任何二个外部接线端都能共用单一的公用线。因此,外部接线端D2~D9中,D2与D3、D4与D5、D6与D7和D8与D9都能共用单一的公用线而不是二条线。
图11是包括由梯形排列的电子发射器件构成的电子源的显示盘301的示意性透视图。在图11中,显示板包括栅极302,其每个上都设置有用以使电子通过的眼孔303,一组外部接线端D1、D2……Dm及另一组外部接线端G1、G2……Gn,它们分别连接到栅极302和整体形成并设置在基底1上的公用线304。
图11中的与图7中的成象装置的类似部件分别用相同的标号表示,主要由于图11的装置有设置在基底1与面板116之间的栅极302而与图7中的有简单的矩陈排列的成象装置不同。
如上所述,在基底1和面板116之间设置栅极302。栅极302能调制由表面传导电子发射器件104发射的电子束,它相对于以梯形成排排列的器件垂直设置,并与各个表面传导电子发射器件1041对1对应的设置有园形通孔303,以使电子束通过。
然而应注意,带状栅极302如图11所示,但电极的外形和位置不限于此。例如可用网眼状开口的来代替它们并环绕或靠近表面传导电子发射器件104来设置。
外部接线端D1~Dm,和栅极的外部接线端G1~Gn与控制电路(未示出)电连接。具有上述结构的成象装置能通过向单条图象线的各行栅极302以与逐行的电子发射器件的驱动(扫描)工作同步地施加调制信号控制电子束扫描,用电子束扫描荧光膜114,从而能逐线地显示图象。
因而,本发明的有上述结构的显示装置因为它能用作电视广播的显示装置、视频电话的终端装置、静止和移动图象的编辑装置、计算机系统的终端装置、包括光敏磁鼓的光印刷机以及许多其它用途,所以能有各种各样的工业上和商业上的应用。
现有将通过实例对本发明进行说明。
〔例1〕
此例说明按照本发明制造有图1A和1B所示结构的表面传导电子发射器件的方法。
在此例中,通过使用每个器件的石英玻璃基底1制成许多有图1A和1B所示结构的表面传导电子发射器件。器件电极4,5由二层厚度分别为5nm和30nm的Ti和Pt膜构成。在每个器件中,器件电极4,5宽度W2为300μm,间隔距离L为20μm。
导电薄膜3包括每个器件的电子发射区2、由PdO构成的用以制造电子发射区的区域6,而其余区域由Pd构成。导电薄膜3的宽度W2为300μm。
下面将参照图12A~12F根据单个器件说明在此例中制造表面传导电子发射器所用的方法。应注意,下述的步骤a~f与图12A~12F对应,步骤g和h未在图中示出。
步骤a:在用中性洗涤剂、有机溶剂和水整个清洗石英玻璃基底1之后,通过用旋转涂复器涂变、常规的掩膜曝光和光化学显影形成电阻层以产生电阻图形21(图12A)。
步骤b:通过高频溅散形成厚度分别为5nm和30nm的Ti膜22和Pt膜23(图12B)。
步骤c:通过除去电阻图形而得到器件电极4,5(图12C)。
步骤d:在通过真空淀积形成Cr膜24之后,用常规的光刻法在用以形成电子发射区的导电薄膜的区域制备窗25。
步骤e:用旋转涂复器涂复有机钯络合溶液(商品名cccp-4230,可由Okuno Pharmaceuticals Co.,Ltd.得到),并在大气中在300℃下加热12分钟,以产生细颗粒的PdO薄膜。通过除去Cr膜24制成所需要的PdO膜图形,通过在N2-2%H2的混合气流中在200℃下加热10分钟还原PdO,以产生由细颗粒Pd构成的用以形成电子发射区的薄膜7(图12E)。
步骤f:用在图13中所例举的装置在用以形成电子发射区的薄膜7的所要求的区域中产生用以制造电子发射区的区域6(图12F)。下面将参照图13更详细地说明此步骤。
器件31的工件放在加热台32的适当位置处。加热台32的基底部分由铂板构成,以使其上表面的温度分布均匀。加热装置33包括加热器和温度传感器,它设置在加热台32中。参考标号34代表石英玻璃绝缘层,为了防止因照射导致的热损耗,所说的石英玻璃绝缘层上衬有通过蒸发淀积形成的薄金属膜。参考标号35代表水冷座,参考标号36与37分别代表X-Y台和X-Y台的驱动机构。用上述装置能两维扫描器件31。整个扫描机构放置在反应容器38中。反应容器38的内部气氛能通过流过适当的气体来控制。参考标号39和40分别代表气体注入部分和气体泄放部分。用以控制加热装置33、X-Y台驱动机构37和连接到水冷座35的水冷管的工作的导线经馈入装置41引出反应容器38。
现在将说明设置在装置中聚集紫外线的光学系统。它包括在本例中由波长为254nm的紫外灯构成的光源42、反射器43和包括透镜和狭缝的光学会聚系统44。紫外线经紫外线透射窗导入反应容器38。参考标号46代表可移动的镜子,参考标号47代表用于事先确定紫外线照射位置的光学校准系统。在紫外线照射操作之前,通过移动可移动的镜子使其移离紫外线传输通道。
在本例中,器件31放在上述装置中的适当位置,将O2气注入反应容器38。然后,将加热台32置于150℃温度下,在器件31的器件电极4,5间延伸并由Pd构成的用以形成电子发射区的薄膜7的中央区域用已聚焦成点的紫外线横向反复扫描,驱动X-Y台36 1小时。通过光学显微镜观察到已在Pd膜的中央区产生约5μm宽的变色区(用以制造电子发射区的区域6-图12F),此即上述工艺的结果。当将已完成上述步骤的试样经喇曼激光器光谱分析时,确认用以形成电子发射区的区域6是由PdO构成的。
步骤g:接着将器件移进图4中所例举的监测系统的真空室55,用真空泵56将室的内部抽空,使真空室55内达到1×10-3Pa真空度。随后由激励成形工艺用的电源51向器件电极4,5施加器件电压Vf。图3B的电压波形用于激励成形。对本例来说,图3B的T1和T2分别是1msec.和10msec.,三角形波的波高(或者激励成形的峰值电压)以0.1V逐步增高。
作为激励成形工艺的结果,在用以制造电子发射区的区域6的中央区产生电子发射区2。当通过扫描电子显微镜观察时,发现在此例中制备的大多数试样的偏差在2μm之内。
步骤h:通过在N2-2%H2的混合气流中保持1小时,用化学还原制造电子发射区的区域6中的PdO,随后,将器件送回图4的监测系统的真空度为1×10-3Pa的真空室,以便通过像激励成形情况那样施加脉冲电压进行激活工艺。脉冲电压的峰值电平14V,脉宽100μsec;脉冲间隔10nsec。在进行激活工艺时观察器件的发射电流Ie。
当发射电流Ie达到饱和电平时,予先测量装到阳极54上的荧光体的亮度。用以驱动器件以确定荧光体亮度的脉冲电压与激活工艺所用的脉冲电压相同。
〔比较例1〕
在此例中,通过例1的步骤a~步骤d,然后再按下述步骤制备用以比较的试样。
1)通过旋转涂复器涂复有机钯络合液(商品名cccp-4230,可由Okuno Pharmaceuticals co.,Ltd.获得),并在大气中在300℃下加热12分钟以产生PdO细颗粒膜。通过除去Cr膜24产生用以形成电子发射区的由细颗粒PdO构成的薄膜7′。(图12E)。
2)像在例1的步骤g那样进行激励成形工艺。作为激励成形的结果在位于器件电极之间的导电薄膜的中央区中产生电子发射区,而所呈现的偏差在7~10μm范围。
3)然后,通过使其在N2-2%H2混合气的气流中保持1小时,化学还原制造电子发射区的区域中的PdO,随后像在例1的情况中那样对器件进行激活。
当发射电流Ie达到饱和水平时,予先测量装在阳极54上的荧光体的亮度。用以驱动器件的确定荧光体亮度的脉冲电压与激活工艺所用的脉冲电压相同。
例1中制备的试样数量与比较例1的试样数量都为10,它们在发射电流Ie和荧光体亮度方面的偏差如表一所示。
               表1
Ie偏差(%)   亮度偏差(%)
例1     5     5
比较例1     8     8
〔例2〕
用如下步骤制备有图1A和1B所示结构的试样器件。
步骤a~步骤d:按照例1的步骤a~步骤d。
步骤e:用旋转涂复器涂复有机钯络合物溶液(商品名:cccp-4230,可由Okuno Pharmaceuticals Co.,Ltd.得到),以产生有机钯络合物膜。
步骤f:如例1的情况,用紫外线反复扫描位于器件的器件电极之间的导电薄膜的中央区40分钟,在200℃氧气流中对器件进行热处理。
此例的热处理温度要控制到200℃或更高,使之能通过热解有机钯络合物产生金属钯。然而如果温度太高,会阻碍金属钯产生的试图,产生氧化钯而不是金属钯。所以温度应保持在300℃以下。
步骤g:通过除去Cr膜24并清除Pd膜的不需要部分,制备用以形成电子发射区的带有区域6的薄膜7,所说的区域6用以制造由PdO构成的电子发射区和由Pd构成的剩余区(图12F)。
步骤h:然后像例1的步骤g和步骤h那样,使器件进行激励成形、化学反应和激活工艺。
当用在例1中所说的装置试验时,像例1的试样器件那样,此例的试样器件也有小的偏差并能有效地工作。
〔例3〕
通过下述步骤制备有像例1的器件同样结构的器件。
步骤a~步骤d:正好与例1的这些步骤相同。
步骤e:用旋转涂复器涂复有机钯络合液(商品名:cccp-4230,可由Okuno Pharmaceuticals Co.Ltd.获得),在大气中在300℃下热处理12分钟,然后除去Cr膜24,以产生用以形成电子发射区的由细颗粒PdO构成的薄膜7′。
步骤f:将器件放入真空中,用电子束照射用以形成电子发射区的薄膜7,但不包括位于器件电极之间的导电薄膜中央区中所要求的区域。用电子束照射区的PdO还原成Pd,而未用电子束照射区域(用以制造电子发射区的区域)中的PdO保持不变化。用扫描电子显微镜(SEM)进行这种处理。在上述区域上通过该SEM的电子束的扫描进行照射。
步骤g:然后像例1的步骤g和步骤h那样对器件进行激励成形、化学反应、和激活工艺。
当用例1所说装置试验时像例1的试样器件一样,此例的器件也有小的偏差并能有效地工作。
〔例4〕
通过下述步骤制备具有像例1的器件相同的结构的器件。
步骤a~步骤e:与例1的步骤a~步骤e正好相同。
步骤f:用图13中所示的装置,在用以形成电子发射区的由细PdO颗粒构成的薄膜7的所要求的区域中产生用以制造电子发射区的区域6(图12F)。下面将参照图13更详细地说明此步骤。
波长514.5nm的Ar离子激光器用作光源42,在加热台32中器件未被加热。在氧气流中用激光器点束扫描位于器件电极间的导电薄膜的中央区。此点束直径约1μm。激光器功率是4mw,扫描速度是10μm/sec。此步工艺的结果,在器件电极之间的中央区形成用以制造电子发射区的亮度约1μm的区域6(图12F)。并确认此区已变成PdO。
步骤g:然后像例1的步骤g和步骤h那样对器件进行激励成形、化学反应和激活工艺。
当通过扫描电子显微镜观察时,发现电子发射区2的偏差在1μm以内。当用例1中所说的装置试验时,它能像例1的器件那样有效地工作。
在此例的步骤f中,通过用加热的方法局部地氧化由Pd构成的用以形成电子发射区的薄膜中所要求的区域以制备由PdO构成的用以制造电子发射区的区域。光源42不限于上述的光源,可以用其它适当的光源代替,例如可见光、红外激光器或者红外灯。如果使用由例如石英构成的透明基底,则可以用从后面射入正好聚焦在基底前表面的光照射基底,以产生相同效果。
〔例5〕
也能用例4的技术产生具有非直线构形的电子发射区。
例如,通过用例4的步骤f中的激光束扫描位于器件电极之间的弧形区能产生用以制造电子发射区的如图14中所示的弧形区6。然后,进行激励成形,制成弧形电子发射区2,它呈现像用以制造电子发射区的区域6同样的构形。用包括有这样构形的电子发射区的表面传导电子发射器件,能通过适当地选择方向控制所发射电子的离散,电压沿该方向加到器件电极4,5。因此,如果这样的表面传导电子发射器件用作成象装置的电子源,能简化用以会聚电子束的光电系统的设计。
〔例6〕
如图15所示,吸光部分11在产生器件电极4,5和用以形成电子发射区的薄膜7之前予先设置在绝缘基底1上的用以制造电子发射区的区域6正下方位置处,并用绝缘层12复盖。用这种结构,因为存在吸光部分11,用激光器照射的区域被有效地加热,如在例4中所述被热氧化,从而能使用低功率激光器,以避免器件的除加热区之外的区域因热而损坏。
在此例中,通过以石墨为碳源形成真空淀积碳膜制备吸光部分11,通过溅散由SiO2形成绝缘层12。随后进行例4中的步骤来制备表面传导电子发射器件。在本例中所用的技术对于形成大量的非常紧密地排列的表面传导电子发射器件是很有效的。
〔例7〕
在此例中,像在例6的情况那样,光反射部分予先设置在用以制造电子发射区的区域的正下方。因此,热氧化的耗能率比例4的低,防止了加热区之外的器件区域任何因热造成的可能的损坏。
例如,如果用红外灯做光源,光反射部分可以相应地由能有效地反射所照射的红外线的Au构成。用红外线照射的区域吸收所传输的红外线将其充分地变成热,因而能用低功率灯当光源。
〔例8〕
在此例中,聚光部分13如在图16中所示,设置在绝缘基底1的后表面上的予定位置处,从而能以低的耗能率进行例4中所述的热氧化工艺,以避免除加热区之外的器件的其它区域因热而损坏。
此例的聚光部分13作为透镜工作。因此,当用具有低能量密度的大光点从透明绝缘基底1的后边照射时,在设置在绝缘基底1前面的用以形成电子发射区的薄膜7的予定区域上被具有高能量密度的已会聚的光通量照射,以产生用以制造电子发射区的区域6。换言之,除了用以制造电子发射区的区域6之外的所有区域都几乎不会因热而损坏。
〔例9〕
在此例中通过如下步骤制备许多具有图1A和1B所示结构的表面传导电子发射器件。在此例中所制备的用以制造每个器件的导电薄膜3的电子发射区的区域6b由WN构成,而器件的剩余区域由W构成。
步骤a~步骤c:与例1的步骤a~步骤e相同。
步骤d:抗蚀剂涂复到器件上、曝光、光化学显影,以产生电阻图形。
步骤e:通过气体淀积形成细颗粒W膜(粒径2nm~30nm)。
步骤f:通过使用去胶技术剥落抗蚀剂,产生用以形成电子发射区的由细颗粒W构成的薄膜。
步骤g:将器件放进图13的装置中,像在例4的情况,将NH3气体注入反应容器38之后,用来自由Ar离子激光器构成的光源42的点束激光扫描它。用这种工艺,使在用激光照射区域中的细颗粒W氮化,以产生用以制造电子发射区的区域。
步骤h:然后像例1中的步骤g和步骤h那样对器件进行激励成形和激活工艺。应注意,在激励成形工艺之后和激活工艺之前要在氢气流中使器件经受还原工艺。
像例1的试样器件一样,当用例1中所说的装置试验时,此例的试样器件也有小的偏差并能有效地工作。
〔例10〕
通过如下步骤制备具有图1A和1B中所示结构的表面传导电子发射器件。每个器件的器件电极间隔的距离做的大到1mm。
像在例4的情况,所制备的用以制造电子发射区的区域宽约1μm。发现电子发射区2的偏差在1μm内。
〔比较例2〕
除了每个器件的器件电极间隔的距离做成大小如1mm之外,像在比较例1的情况那样制备表面传导电子发射器件。结果,所产生的每个器件的电子发射区的偏差约100μm。
按上述例10并也按比较例2制备10个试样器件,并像在例1的情况测试其性能,结果如表2所示。
            表2
 Ie误差(%)   亮度误差(%)
例10     5     5
比较例2     25     25
〔例11〕
通过下述步骤制备具有图1A和1B中所示结构的表面传导电子发射器件。
步骤a~步骤d:与例1的这些步骤相同。
步骤e:将0.01g细粉末状的氧化银(Ag2O)加到氧化锡胶状液(SnO2:1g,丁酮/环己烷=1/3,溶剂1000c.c,丁醛:1g),形成混合物,进行旋转涂复操作,然后进行热处理以产生氧化锡和氧化银的细颗粒膜。此后,通过除去Cr膜24,由所说的细颗粒膜制成用以形成电子发射区的薄膜。
使用加压密封电炉在3atms的氧气氛中,在200℃进行热处理。增压密封的原因在于,Ag2O和O2的混合气体的平均氧压在190℃超过1atm,因此Ag2O在具有1atm的O2气氛中分解。
步骤f:特器件放置在图13的装置中的适当位置处,将N2气注入反应容器38之后,像在例4的情况用来自由Ar离子激光器构成光源42的激光束点扫描器件的除了位于器件电极之间的宽2μm的中心区之外的整个用以形成电子发射区的薄膜表面。激光器的功率是4mw,扫描速度是10μm/sec,或者像例4的扫描速度二倍那样快。用此工艺,在用激光照射过的薄膜的区域中的细颗粒Ag2O被热解以产生细颗粒Ag,并减少该区域的电阻。换言之,在此例中未用激光束照射的区域变成用以形成电子发射区的区域。能在大气中通过提高激光功率或者降低扫描速度进行这种步骤。
步骤g:像在例1的步骤g那样对器件进行激励成形工艺。
步骤h:将器件在N2中在200℃下加热10分钟,以还原用以形成电子发射区的薄膜中残存的Ag2O。如果加热到300℃,此工艺能在大气中进行。
步骤i:像在例1的步骤h那样对器件进行激活工艺。
像例1的试样器件一样,当用例1中所说的装置进行试验时,此例的试样器件呈现小偏差并能有效地工作。
当在此例中使用热解和还原Ag2O时,此例的步骤f能通过用弱光长时间地照射Ag2O交替地进行,因为如果暴露到光线下它在室温下逐渐还原。
〔例12〕
用下述步骤制备具有图1A和1B所示结构的表面传导电子发射器件。
步骤a~步骤d:与例1的这些步骤相同。
步骤e:细颗粒氧化铟(In2O3,颗粒尺寸:2~20nm)和细颗粒铁(Fe,颗粒尺寸:3~15nm)用以通过气体淀积形成细颗粒In2O3与细颗粒Fe构成的薄膜,而前者构成薄膜的主要组分。此后通过除去Cr膜24在所需要的位置处制备由上述混合物构成的用以形成电子发射区的薄膜。
步骤f:将器件放置在图13的装置中的适当位置处,在还原容器38中建立氧化气氛之后,仅扫描其位于器件电极之间的中央区。作为此步工艺的结果,混合膜的用激光照射区域中的细压Fe子氧化成a-Fe2O3(三氧化二铁锈层)并产生具有高电阻的用以制造电子发射区的区域。
步骤g:然后像例1的步骤g和步骤h那样对器件进行激励成形和激活工艺。
〔例13〕
用如下步骤制备具有图1A和1B所示结构的表面传导电子发射器件。
步骤a~e:与例1中的这样步骤相同。
步骤f:每个器件的器件电极连接到脉冲发生器和安培计,脉冲电压加到电极上。使用其有像图3B所示逐渐增加的波高的三角形脉冲波。脉冲间隔和脉宽分别是10msec和100μsec。波高为0.1V的矩形脉冲电压插入脉冲间隔中以检测电阻。
此工艺在大气中进行。电阻最初等于100Ω并大体维持在此水平。然而,当三角形波电压的波高上升到3.5V时发现电阻增加,因此,随后将电压在3.5V保持1分钟。当不加脉冲电压时,电阻继续非高直到150Ω。
然后,通过场发射型扫描电子显微镜(FE-SEM)观察一个器件的导电薄膜以找出在其中央部分的宽约2μm的线性起伏状的细颗粒区。当用Raman光谱分光镜检测时,检测表明在薄膜中央区已形成PdO的信号。检测工作是将波长514.5nm的Ar离子激光器用作光源,以直径1μm的点束激光扫描试样。
形成PdO的原因可以是导电薄膜由于脉冲电压加到其上所产生的焦耳热,所产生的热通过其底和器件电极散布以便最显著提高距器件电极最远的中央区的温度、将该处的钯氧化。
此后,对器件进行激励成形工艺,施加像在例1的步骤g中所用的相同的脉冲电压,随后像在例1的步骤h那样在N2-2%H2的气流中保持1小时,使PdO还原成Pd。然后对它们进行激活工艺,像图4中所示那样将它们放入监测系统中。当每个器件的Ie达到饱和的电平时,观测设置在阳极上的荧光体的亮度,获得与例1类似的结果。
在上述工作中,从步骤d到将PdO还原成Pd的步骤,器件都放置在可注入N2-2%H2的混合气体的简单容器中。由于混合气体的流速未严格控制,要通过调整装在气体容器上的调整器的值对其进行简单的调整。因为氢气浓度足够低无爆炸危险,所以无须特别的氢气清除器。
当通过FE-SEM观测时,发现电子发射区的偏差通常在1μm以内。
像例1的试样器件一样,当用例1中所说的装置试验时,此例的试样器件也呈现小的偏差并能有效地工作。
〔例14〕
在此例中,使用图6所示的电子源制备图7的成象装置,并通过排列许多图1A和1B的表面传导电子发射器件完成简单的矩阵布置。
首先,参照图17AA~图20K说明用以制备此例中的电子源的方法。
(1)充分清洗钠钙玻璃板1之后,接着用真空淀积法在其上形成厚度分别为5nm和600nm的Cr膜402和Au膜403,再用旋转涂复器在基底旋转时在它们上面涂复光刻胶(AZ1370:可由Hoechst获得)404,然后烘干。此后,曝光并光化学显影光掩膜图形以产生下引线102的抗蚀剂图形405(图17AA~17AD)。
(2)通过高频溅散淀积厚度0.1μm的氧化硅膜的层间绝缘层407(图18B)。
(3)随后在氧化硅膜上形成光刻胶图形以产生接触孔,使用抗蚀剂图形为掩膜用RIE(活性离子腐蚀)法精确地制备接触孔408(图18C)。CF4和H2用作腐蚀气体。
(4)此后,制备器件电极4,5的光刻胶(RD-2000N-41:可从Hitachi Chemical Co.,Ltd.得到)的图形,接着通过真空淀积来淀积厚度分别为5nm和100nm的Ti和Ni。然后,光刻胶图形溶进有机溶剂并清除Ni/Ti层以产生一对器件电极4,5(图18D)。器件电极之间的间隙是50μm。
(5)然后,为上引线制备光刻胶图形,通过真空淀积顺序地淀积厚度分别为5nm和100nm的Ti和Au。随后,用去胶技术去掉光刻胶的任何不需要的区域,以产生上引线103(图18E)。
(6)随后,通过真空淀积形成抗蚀剂膜以覆盖除接触孔408以外的区域,并通过真空淀积分别顺序形成厚度分别为5nm和500nm的Ti和Au,当膜的任何不需要的区域被除去时,掩盖接触孔408(图19F)。
(7)在器件的整个表面上通过溅散形成Cr膜412(图19G)。
(8)在将抗蚀剂413涂到器件的整个表面后,用以形成电子发射区的薄膜7的图形被曝光(图19A)。应注意,薄膜7最终制成器件的导电薄膜3。
(9)在化学显影此已曝过光的图形后,腐蚀掉Cr膜412的不需要的区域,并除去剩余的抗蚀剂以产生Cr膜412的图形(图20I)。
(10)此后,借助旋转涂复器将有机Pd络合物的溶液(CCP-4230:可从Okuno Pharmaceuticol Co.,Ltd获得)涂复到铬膜上并在300℃下烘干12分钟以产生PdO膜。重复此操作的获得所要求膜厚的PdO膜415(图20J)。
(11)通过去除Cr膜412来清除任何不需要的PdO以获得用以形成电子发射区的在器件电极4,5间延伸并有所需要的构图的薄膜7(图20K)。此用以形成电子发射区的薄膜7宽为300μm。
下面的步骤未在图中示出。
(12)将器件置于图13的装置中的适当位置处,向反应容器38中注入混合气体N2-2%H2,保持1小时,将用以形成电子发射区的薄膜7还原成细颗粒Pd的膜。
(13)用O2气置换反应容器38中的气氛,在与例4相同的条件下用Ar离子激光器的点状激光束扫描器件电极4,5之间的中央区以产生用以制造电子发射区的由PdO构成的区域6。
(14)许多其每个都包括一对器件电极4,5和用以形成电子发射区的薄膜的器件排列成简单的矩阵形成以建立电子源,使用如图21所示的连接相同行的器件的上引线(Y方向引线)103,沿X方向逐行地对其进行激励成形操作,以便在用以制造电子发射区的区域6中产生电子发射区2。在图21中,参考标号501代表公共电极,参考标号502代表脉冲发生器,而参考标号503和504分别代表示波器和分流电阻。与例1中所用的相同的脉冲波电压也用于此例。
使用上述电子源最后制成成象装置。下面将参照图7,8A和8B说明制造该装置的工艺。
将电子源的基底1固定到后板111之后,安装面板116(由用以产生图象的荧光膜114和设置在玻璃基底113的内表面上的金属敷层115构成),使其在带有设置在其间的支架112的基底1之上5mm。将第一玻璃涂复到面板116、支架112、后板111的联结处,并在大气中在410℃下保持10分钟,将它们精确地粘结到一起。后板111也用第一玻璃固定到基底1上。
用以产生图象的荧光膜114由彩色显示的条形荧光体构成(图8A)。它是这样制备的,即在第一区设置黑色条并在条间的间隙涂复三基色荧光材料,以产生由荧光体122形成的荧光膜114。此黑色条由含石墨的材料作为主要成分构成。
金属敷层115设置在荧光膜114的内表面上。通过精加工(在操作中称作″镀膜″)荧光膜114的内表面,并通过真空淀积在其上淀积Al来制备金属敷层115。
为了增加荧光膜114的电导率,可为面板116在荧光膜114的外表面的边上设置透明电极(未示出),因为金属敷层115有足够的电导率,所以在本例中未设置这样的电极。
在气密封接由上列各部分构成的成象装置的外壳118之前,三基色的荧光体122必须精确地与相应的表面传导电子发射器件104对准。
然后,将混合气体N2-2%H2注入外壳118,将用以形成电子发射区的薄膜7中的PdO还原成Pd的薄膜。
此后,用真空泵经排气管将外壳118内部抽真空到1×10-3Pa的真空度,并逐行地在激励成形的基础上进行激活工艺。应用高度14V、宽度100μm、脉冲间隔10msec的矩形脉冲波。
接着,将外壳118经排气管(未示出)进一步抽真空到约1×10-4Torr真空度,然后通过用燃烧器将排气管加热和烧熔使其封口,以气密密封外壳118。最后,为了保持内部为高真空度,通过高频加热对显示板上蒸散消气剂。此消气剂以Ba为主要成分。
为了驱动成像装置的显示板201(图7),通过外部接线端DX1~DXm和Dy1~Dyn从各个信号发生装置(未绘出)向发射电子的电子发射器件104施加扫描信号和调制信号,通过高压端Hv,将高于5KV的高压加到金属敷层115或透明电极(未示出),因高压使由冷阴极器件发射的电子加速并与荧光膜114相撞,导致荧光部件激发并发光,以产生无亮度不均匀问题的高清晰度电视的高品质的精细图象。
〔例15〕
图22是使用本发明的方法制成的显示装置和在例13(图7)中制备并设置成提供来自包括电视传输和其它图象源的各种信息源的可视信息的显示板的方框图。
在图22中示出显示板201、显示板驱动器1001、显示板控制器1002、多路调制器1003、译码器1004、输入/输出接口1005、CPU1006、图象发生器1007、图象输入存储器接口1008,1009和1010、图象输入接口1011、TV信号接收器1012和1013及输入单元1014。
如果显示装置用于接收由视频和音频信号构成的电视信号,为了与图中所示电路共同接收、分离、重放、处理和存储音频信号,需要电路,扬声器和其它装置。但是,这样的电路和装置在本发明中被省略。
现在将随图象信号的流程说明装置的各部分。
首先,TV信号接收器1013是用以接收经使用电磁波和/或空间光学电信网络的无线传输系统传输的TV图象信号的电路。
所用的TV信号系统不限于单独的一种,诸如NTSC、PAL或SECAM都可同它一起使用。因为它能用于包括大量象素的大的显示板201,所以特别适用于包括大量扫描线(典型的高清晰度的TV系统,例如MUSE系统)的TV信号。
由TV信号接收器接收的TV信号转送到译码器1004。
TV信号接收器1012是用以接收经使用同轴电缆和/或光导纤维的有线传输系统传输的TV图象信号的电路。像TV信号接收器1013一样,所用的TV信号系统不限于特定的系统,被该电路接收的TV信号转送到译码器1004。
图象输入接口1011是用以接收由图象输入装置例如TV摄象机或摄象析象机转发的图象信号的电路。它也向译码器1004转发所接收的图象信号。
图象输入存储器接口1010是用以检索存储在磁带录象机中的图象信号的电路(下文称之为VTR),检索出的图象信号也转发到译码器1004。
图象输入存储器接口1009是用以检索存储在视频磁盘中的图象信号的电路,检索出的图象信号也转发到译码器1004。
图象输入存储器接口1008是用以检索存储在用以存储静止图象数据的装置例如所谓静止磁盘中的图象信号的电路,检索出的图象信号也转发到译码器1004。
输入/输出接口1005是用以连接显示装置和外部输出信号源例如计算机、计算机网络或打印机的电路。如果适合,它进行图象数据和控制信号的特性与图示方向的数据以及在显示装置的CPU1006与外部输出信号源之间的数学数据的输入/输出操作。
图象发生器电路1007是用以产生被显示在显示屏上的图象数据的电路,所说的图象数据是以从外部输出信号源经输入/输出接口1005输入的图象数据和特性与构图方面的数据或者来自CPU1006的数据为基础。此电路包括用以存储图象数据和在特性与构图方面数据的可写存储器、用以存储与给定的特征代码相应的图象图形的只读存储器、用以处理图象数据的处理器和为产生屏图象所必须的其它电路。
由显示用的图象产生电路1007产生的图象数据传送到译码器1004,如果适合,它们也可经输入/输出接口1005传送到外部电路,例如计算机网络或印机相。
CPU1006控制显示装置并进行产生、选择和编辑被显示在显示屏上的图象的操作。
例如,CPU1006将控制信号传送到多路调制器1003并适当地选择或组合被显示在显示屏上的图象信号。它同时产生显示板控制器1002的控制信号,并根据图象显示频率、扫描方法(即隔行扫描和非隔行扫描)、每帧扫描线的数量等等来控制显示装置的工作。
CPU1006也直接将图象数据和特性与构图方面的数据送到图象发生电路1007,并经输入/输出接口1005访问外部计算机和存储器,以获得外部图象数据和特性与构图方面的数据。
此外,CPU1006可以如此设计使之能参与显示装置的其它工作,包括像个人计算机的CPU或文字处理机一样的产生和处理数据的工作。CPU1006也可以经输入/输出接口1005连接到外部计算机网络以进行计算和其它与此结合的工作。
输入单元1014用以将指令、程序和由操作者给它的数据转发到CPU1006。实际,可从诸如键盘、鼠标器、控制杆、条形码阅读器与语音识别装置及其组合的各种输入装置中选择。
译码器1004是用以将经所说的电路1007~1003输入的各种图象信号变换成三基色信号、亮度信号和I与Q信号的电路。译码器1004最好包括像在图22用虚线框出的图象存储器,以便处理电视信号,例如要求信号变换存储器的MUSE系统的信号。
此外,图象存储器装置容易显示静止图象也容易用译码器1004与图象发生电路1007和CPU1006协同进行像使帧随意地细化、内插、放大、减少和编辑这样的工作。
多路调制器1003用以按照由CPU1006给出的控制信号适当地选择显示在显示屏上的图象。换言之,多路调制器1003选择某些来自译码器1004的已变换的图象信号并将其传送到驱动电路1001。它也能在显示一帧信号的时间内通过从一组图象信号转换到不同组的图象信号,将显示屏分成多个帧以便同时显示不同的图象。
显示板控制器1002是用以按照来自CPU1006的控制信号控制驱动电路1001的工作的电路。
其中,它控制将信号传输到用以控制驱动显示板用的电源(未示出)的工作程序的驱动电路1001,以限定显示板190的基本操作。它也将信号传输到用以控制图象显示频率和扫描方式(即隔行扫描或非隔行扫描)的驱动电路1001,以限定驱动显示板190的方式。如果合适,它也将信号传输到用以根据亮度、对比度、色调和清晰度来控制在显示屏上显示的图象质量的驱动电路1001。
此驱动电路1001是用以产生加到显示板190上的驱动信号的电路。它按照来自所说的多路调制器1003的图象信号和来自显示板控制器1002的控制信号进行工作。
有上述结构的例示在图22中的本发明的显示装置能在显示板201上显示由各种图象数据源给出的各种各样图象。特别是在传送到驱动电路1001之前,图象信号,例如电视图象信号用译码器1004变回,然后用多路调制器1003选择。换言之,显示控制器1002产生用以按照用来将图象显示在显示屏201上的图象信号控制驱动电路1001的工作的控制信号。然后,驱动电路1001按照图象信号和控制信号将驱动信号加到显示板201。从而在显示板201上显示图象。用CPU1006以协调的方式控制上述所有工作。上述显示装置不仅能选择和显示加给它的大量图象中的特殊图象,而且也进行各种图象处理工作,包括放大、缩小、旋转、使边缘显著、细化、插入、改变图象颜色和调整图象缩图比,并且还进行编辑工作,包括合成、删除、连接、置换和插入图象,像在译码器1004、图象发生电路1007和CPU1006中所包含的图象存储器那样参与这样的工作。虽然未按照上述实施例来说明,但能给它提供只用于音频信号处理和编辑工作的附加电路。
因此,有上述结构的本发明的显示装置,因为它能作为电视广播的显示装置、视频电话的终端装置、静止和移动图象的编辑装置、计算机系统的终端装置、诸如文字处理机等OA装置、游戏机和以许多其它方式而工作,所以能有广泛的各种各样的工业和商业的应用。
图22仅示出包括设置有通过排列许多表面传导电子发射器件制成的电子源的显示板的显示装置的可能结构的一个实例,当然本发明不限于此。
例如,图22中的某些特殊应用不需要的电路部分可以省略。反之,按照实际应用也可以设置附加部分。例如如果本发明的显示装置用于可视电话,可使其适当地包括诸如电视摄像机、麦克风,照明装置和带有调制解调器的发送/接收电路等附加部分。因为包括表面传导电子发射器件的的电子源本身不需要大的深度,所以也能使本发明的成象装置很平。此外,可使显示板很大并有增强的亮度和宽视角,以使其能显示生动而清晰的图象。
如以上所详细说明,按照本发明,用以制造电子发射区的有高电阻的区域事先形成在电子发射器件的用以形成电子发射区的薄膜部分,从而通过对器件进行随后的激励成形操作,可使电子发射器件形成在所说的用以制造电子发射区的区域。用这样的结构、能严格控制电子发射区的位置和构型,从而产生均匀工作的器件。
因此,能提供一种包括大量电子发射均匀的电子发射器件的大电子源,与这样的电子源结合的成象装置因为器件的电子发射区不存在能导致电子束发散的弯曲构型的问题,所以能高质量地显示图象。
所以,按照本发明,能提供可精确界定彩色图象的大而平的显示装置。

Claims (28)

1.一种制造具有导电薄膜(3,6)的电子发射器件的方法,该电子发射器件包含一个电子发射区域(2)设置在基底(1)上的一对电极(4,5)之间,该方法包括:
提供所述基底(1),该基底具有连接在其上的所述对电极(4,5)之间的导电薄膜(7);以及
通过使电流经所述对电极(4,5)流过导电薄膜,而形成所述电子发射区域;
该方法的特征在于:
在所述形成步骤之前进行一个步骤,区分所述导电薄膜(7)的化学组分,使得所述导电薄膜(7)在所述电极对(4,5)之间既具有一个高电阻率化学组分区域(6)又具有一个低电阻率化学组分区域(3);并且
形成所述电子发射区域的步骤包括使所述电流流过既具有所述高电阻率化学组分区域(6)又具有所述低电阻率化学组分区域(3)的所述导电薄膜(7)。
2.根据权利要求1的方法,其中所述区分步骤的实现是通过改变导电薄膜(7)的一个低电阻率化学组分区域(6)的化学组分,以形成所述高电阻率化学组分区域(6)。
3.根据权利要求1的方法,其中所述区分步骤的实现是通过改变导电薄膜(7)的一个高电阻率化学组分区域(3)的化学组分,以形成所述低电阻率化学组分区域(3)。
4.根据权利要求1-3任何之一的制造电子发射器件的方法,其中所述导电薄膜最初是金属或金属氧化物,所述区分所述导电薄膜的化学组分的步骤是这样一个步骤,即处理所述导电薄膜以提供一个金属低电阻率化学组分区域和一个所述金属的氧化物高电阻率化学组分区域。
5.根据权利要求2的制造电子发射器件的方法,其中所述导电薄膜最初为金属,所述区分所述导电薄膜的化学组分的步骤是通过氧化所述导电薄膜的一个区域实现的。
6.根据权利要求5的制造电子发射器件的方法,其中所述氧化步骤是通过在氧化气氛中加热所述导电薄膜的一个区域实现的。
7.根据权利要求6的制造电子发射器件的方法,其中所述加热步骤是通过用光照射所述导电薄膜的所述区域实现的。
8.根据权利要求6的制造电子发射器件的方法,其中所述加热步骤是通过使电流流过所述导电薄膜实现的。
9.根据权利要求3的制造电子发射器件的方法,其中所述导电薄膜最初为金属氧化物,所述区分所述导电薄膜的化学组分的步骤是通过将所述导电薄膜的一个区域还原为金属实现的。
10.根据权利要求9的制造电子发射器件的方法,其中所述还原是通过用电子束照射所述导电薄膜的一个区域实现的。
11.根据权利要求9的制造电子发射器件的方法,其中所述还原是通过在惰性气体或还原气体气氛中用光照射所述导电薄膜的一个区域实现的。
12.根据权利要求1的制造电子发射器件的方法,其中所述导电薄膜最初是一种有机金属化合物薄膜,所述区分所述导电薄膜的化学组分的步骤提供一个金属低电阻率化学组分区域和一个所述金属的氧化物高电阻率化学组分区域。
13.根据权利要求12的制造电子发射器件的方法,其中区分所述导电薄膜的化学组分的步骤是,通过在高于将有机物金属化合物转变为金属的温度并低于将其转变为金属氧化物的温度的温度下,将所述有机物金属化合物薄膜保持在空气或氧气中来实现的,并且用紫外光照射有机金属化合物的所述区域。
14.根据权利要求1的制造电子发射器件的方法,其中所述导电薄膜最初是一种金属和半导体的混合物或金属氧化物和半导体的混合物,所述区分所述导电薄膜的化学组分的步骤提供一个金属和半导体的混合物低电阻率化学组分区域和一个所述金属的氧化物和半导体的混合物高电阻率化学组分区域。
15.根据权利要求14的制造电子发射器件的方法,其中所述导电薄膜最初为一种金属和半导体的混合物,所述区分所述导电薄膜的化学组分的步骤是通过氧化所述导电薄膜的一个区域中的金属实现的。
16.根据权利要求15的制造电子发射器件的方法,其中所述氧化是通过在氧化气氛中加热所述导电薄膜的一个区域实现的。
17.根据权利要求14的制造电子发射器件的方法,其中所述导电薄膜最初为一种金属氧化物和半导体的混合物,所述区分所述导电薄膜的化学组分的步骤是通过还原所述导电薄膜的一个区域中的金属氧化物实现的。
18.根据权利要求17的制造电子发射器件的方法,其中所述还原是在加热所述导电薄膜的所述区域时实现的。
19.根据权利要求1的制造电子发射器件的方法,其中所述导电薄膜最初是一种金属或金属氮化物,所述区分所述导电薄膜的化学组分的步骤提供一个金属低电阻率化学组分区域和一个所述金属的氮化物高电阻率化学组分区域。
20.根据权利要求19的制造电子发射器件的方法,其中所述导电薄膜最初为金属,所述区分所述导电薄膜的化学组分的步骤是通过氮化所述导电薄膜的一个区域实现的。
21.根据权利要求20的制造电子发射器件的方法,其中所述氮化是在加热加热所述导电薄膜的所述区域时实现的。
22.根据权利要求1的制造电子发射器件的方法,其中高电阻率化学组分区域包括一种技术氧化物,并且该方法进一步包括在形成电子发射区域之后还原所述导电薄膜的步骤。
23.根据权利要求1至22任何之一的制造电子发射器件的方法,其中所述电子发射器件是表面传导电子发射器件。
24.一种制造电子源的方法,该电子源包括多个设置在基底上的电子发射器件,每个电子发射器件具有一个在一对器件电极之间的电子发射区域,其中所述电子发射器件是由根据权利要求1-22任何之一的方法制造。
25.根据权利要求24的制造电子源的方法,其中所述电子发射器件是表面传导电子发射器件。
26.一种制造成象装置的方法,该成象装置包括一个电子源,该电子源包括多个设置在基底上的电子发射器件,每个电子发射器件具有一个在一对器件电极之间的电子发射区域,以及一个成象部件用于通过由所述电子源发射的电子束照射而产生图象,其中所述电子发射器件是由根据权利要求1-22任何之一的方法制造。
27.根据权利要求26的制造成象装置的方法,其中所述电子发射器件是表面传导电子发射器件。
28.根据权利要求26或27的制造成象装置的方法,其中所述成象部件是荧光体。
CN95121796A 1994-11-29 1995-11-29 制造电子发射器件、电子源和图象形成装置的方法 Expired - Fee Related CN1084040C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP317796/94 1994-11-29
JP31779694 1994-11-29
JP325279/95 1995-11-21
JP32527995A JP2916887B2 (ja) 1994-11-29 1995-11-21 電子放出素子、電子源、画像形成装置の製造方法

Publications (2)

Publication Number Publication Date
CN1131756A CN1131756A (zh) 1996-09-25
CN1084040C true CN1084040C (zh) 2002-05-01

Family

ID=26569144

Family Applications (1)

Application Number Title Priority Date Filing Date
CN95121796A Expired - Fee Related CN1084040C (zh) 1994-11-29 1995-11-29 制造电子发射器件、电子源和图象形成装置的方法

Country Status (6)

Country Link
US (1) US5853310A (zh)
EP (1) EP0715329B1 (zh)
JP (1) JP2916887B2 (zh)
KR (1) KR100270498B1 (zh)
CN (1) CN1084040C (zh)
DE (1) DE69518057T2 (zh)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6674562B1 (en) 1994-05-05 2004-01-06 Iridigm Display Corporation Interferometric modulation of radiation
KR100220133B1 (ko) * 1995-03-13 1999-09-01 미따라이 하지메 전자 방출 소자, 전자원 및 화상 형성 장치와 그 제조방법
US7907319B2 (en) 1995-11-06 2011-03-15 Qualcomm Mems Technologies, Inc. Method and device for modulating light with optical compensation
JP3302278B2 (ja) 1995-12-12 2002-07-15 キヤノン株式会社 電子放出素子の製造方法並びに該製造方法を用いた電子源及び画像形成装置の製造方法
US6231412B1 (en) * 1996-09-18 2001-05-15 Canon Kabushiki Kaisha Method of manufacturing and adjusting electron source array
JPH11213866A (ja) * 1998-01-22 1999-08-06 Sony Corp 電子放出装置及びその製造方法並びにこれを用いた表示装置
DE69919242T2 (de) 1998-02-12 2005-08-11 Canon K.K. Verfahren zur Herstellung eines elektronenemittierenden Elementes, Elektronenquelle und Bilderzeugungsgerätes
DE69909538T2 (de) 1998-02-16 2004-05-13 Canon K.K. Verfahren zur Herstellung einer elektronenemittierenden Vorrichtung, einer Elektronenquelle und eines Bilderzeugungsgeräts
US8928967B2 (en) 1998-04-08 2015-01-06 Qualcomm Mems Technologies, Inc. Method and device for modulating light
KR100703140B1 (ko) 1998-04-08 2007-04-05 이리다임 디스플레이 코포레이션 간섭 변조기 및 그 제조 방법
US6213834B1 (en) 1998-04-23 2001-04-10 Canon Kabushiki Kaisha Methods for making electron emission device and image forming apparatus and apparatus for making the same
CN1222975C (zh) * 1999-01-19 2005-10-12 佳能株式会社 制造图像形成装置的方法
JP3323847B2 (ja) 1999-02-22 2002-09-09 キヤノン株式会社 電子放出素子、電子源および画像形成装置の製造方法
US6419539B1 (en) * 1999-02-25 2002-07-16 Canon Kabushiki Kaisha Method of manufacturing electron-emitting device, electron source and image-forming apparatus, and apparatus of manufacturing electron source
WO2003007049A1 (en) 1999-10-05 2003-01-23 Iridigm Display Corporation Photonic mems and structures
JP3688970B2 (ja) * 2000-02-29 2005-08-31 株式会社日立製作所 薄膜型電子源を用いた表示装置及びその製造方法
US6417062B1 (en) * 2000-05-01 2002-07-09 General Electric Company Method of forming ruthenium oxide films
US6664728B2 (en) * 2000-09-22 2003-12-16 Nano-Proprietary, Inc. Carbon nanotubes with nitrogen content
US6730984B1 (en) * 2000-11-14 2004-05-04 International Business Machines Corporation Increasing an electrical resistance of a resistor by oxidation or nitridization
JP2003007792A (ja) * 2001-06-27 2003-01-10 Seiko Epson Corp 半導体解析装置、半導体解析方法及び半導体装置の製造方法
JP3535871B2 (ja) * 2002-06-13 2004-06-07 キヤノン株式会社 電子放出素子、電子源、画像表示装置及び電子放出素子の製造方法
TWI289708B (en) 2002-12-25 2007-11-11 Qualcomm Mems Technologies Inc Optical interference type color display
US7342705B2 (en) 2004-02-03 2008-03-11 Idc, Llc Spatial light modulator with integrated optical compensation structure
US7855824B2 (en) 2004-03-06 2010-12-21 Qualcomm Mems Technologies, Inc. Method and system for color optimization in a display
US7898521B2 (en) * 2004-09-27 2011-03-01 Qualcomm Mems Technologies, Inc. Device and method for wavelength filtering
US7710632B2 (en) 2004-09-27 2010-05-04 Qualcomm Mems Technologies, Inc. Display device having an array of spatial light modulators with integrated color filters
US8362987B2 (en) 2004-09-27 2013-01-29 Qualcomm Mems Technologies, Inc. Method and device for manipulating color in a display
US7928928B2 (en) 2004-09-27 2011-04-19 Qualcomm Mems Technologies, Inc. Apparatus and method for reducing perceived color shift
US8004504B2 (en) 2004-09-27 2011-08-23 Qualcomm Mems Technologies, Inc. Reduced capacitance display element
US7807488B2 (en) 2004-09-27 2010-10-05 Qualcomm Mems Technologies, Inc. Display element having filter material diffused in a substrate of the display element
US7525730B2 (en) 2004-09-27 2009-04-28 Idc, Llc Method and device for generating white in an interferometric modulator display
US8102407B2 (en) 2004-09-27 2012-01-24 Qualcomm Mems Technologies, Inc. Method and device for manipulating color in a display
US7911428B2 (en) 2004-09-27 2011-03-22 Qualcomm Mems Technologies, Inc. Method and device for manipulating color in a display
JP4539518B2 (ja) * 2005-03-31 2010-09-08 セイコーエプソン株式会社 電気光学装置及び電気光学装置の製造方法
US7916980B2 (en) 2006-01-13 2011-03-29 Qualcomm Mems Technologies, Inc. Interconnect structure for MEMS device
US8004743B2 (en) 2006-04-21 2011-08-23 Qualcomm Mems Technologies, Inc. Method and apparatus for providing brightness control in an interferometric modulator (IMOD) display
EP2366942A1 (en) 2006-10-06 2011-09-21 Qualcomm Mems Technologies, Inc. Optical loss layer integrated in an illumination apparatus of a display
WO2008045207A2 (en) 2006-10-06 2008-04-17 Qualcomm Mems Technologies, Inc. Light guide
US8072402B2 (en) 2007-08-29 2011-12-06 Qualcomm Mems Technologies, Inc. Interferometric optical modulator with broadband reflection characteristics
KR100927598B1 (ko) * 2007-10-05 2009-11-23 한국전자통신연구원 광 게이팅 스위치 시스템
US8068710B2 (en) 2007-12-07 2011-11-29 Qualcomm Mems Technologies, Inc. Decoupled holographic film and diffuser
WO2009079279A2 (en) 2007-12-17 2009-06-25 Qualcomm Mems Technologies, Inc. Photovoltaics with interferometric back side masks
US7928025B2 (en) * 2008-10-01 2011-04-19 Polymer Group, Inc. Nonwoven multilayered fibrous batts and multi-density molded articles made with same and processes of making thereof
JP2010244933A (ja) * 2009-04-08 2010-10-28 Canon Inc 画像表示装置
US8848294B2 (en) 2010-05-20 2014-09-30 Qualcomm Mems Technologies, Inc. Method and structure capable of changing color saturation
CN108031836B (zh) * 2018-01-22 2019-12-03 北京大学 一种金属-金属氧化物纳米复合材料的制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3663857A (en) * 1969-02-13 1972-05-16 Avco Corp Electron emitter comprising metal oxide-metal contact interface and method for making the same
US3611077A (en) * 1969-02-26 1971-10-05 Us Navy Thin film room-temperature electron emitter
US4663559A (en) * 1982-09-17 1987-05-05 Christensen Alton O Field emission device
CA1272504A (en) * 1986-11-18 1990-08-07 Franz Prein Surface for electric discharge
JP2622838B2 (ja) * 1987-05-29 1997-06-25 キヤノン株式会社 電子放出素子の製造方法
JPS6419656A (en) * 1987-07-15 1989-01-23 Canon Kk Manufacture of electron emitting element
EP0299461B1 (en) * 1987-07-15 1995-05-10 Canon Kabushiki Kaisha Electron-emitting device
JP3072795B2 (ja) * 1991-10-08 2000-08-07 キヤノン株式会社 電子放出素子と該素子を用いた電子線発生装置及び画像形成装置
JP2946153B2 (ja) * 1993-02-03 1999-09-06 キヤノン株式会社 電子放出膜及び電子放出素子の作製方法
EP0658924B1 (en) * 1993-12-17 2000-07-12 Canon Kabushiki Kaisha Method of manufacturing electron-emitting device, electron source and image-forming apparatus

Also Published As

Publication number Publication date
JP2916887B2 (ja) 1999-07-05
CN1131756A (zh) 1996-09-25
US5853310A (en) 1998-12-29
KR960019426A (ko) 1996-06-17
DE69518057T2 (de) 2001-03-22
EP0715329A1 (en) 1996-06-05
DE69518057D1 (de) 2000-08-24
EP0715329B1 (en) 2000-07-19
JPH08212916A (ja) 1996-08-20
KR100270498B1 (ko) 2000-11-01

Similar Documents

Publication Publication Date Title
CN1084040C (zh) 制造电子发射器件、电子源和图象形成装置的方法
CN1099690C (zh) 电子发射器件以及电子源和利用这种器件的成象装置
CN1115707C (zh) 电子发射器件、电子源和图像形成装置的制造方法
CN1086056C (zh) 电子发射器件和电子源及其成象装置
CN1052337C (zh) 电子发射器件的制作方法以及电子源和图象形成设备
CN1174460C (zh) 电子发射器件的制造方法
CN1099691C (zh) 电子发射器件、电子源和成像装置的制造方法
CN1245732C (zh) 具有电子发射器件的电子源及图象形成装置的制造方法
CN1115708C (zh) 电子发射器件、电子源和图像形成装置的制造方法
CN1066568C (zh) 电子源
CN1106657C (zh) 电子发射装置与图象形成装置
CN1110832C (zh) 用于形成导电薄膜的溶液以及制造导电薄膜的方法和用途
CN1108622C (zh) 电子束设备及驱动该设备的方法
CN1287409C (zh) 电子源和成像装置以及它们保持激活状态的方法
CN1151526C (zh) 电子发射器件、电子源及图象形成装置
CN1115706C (zh) 电子发射器件,电子源及成象设备和制造方法
CN1090379C (zh) 电子发射器件及制法,具有该器件的电子源及成象装置
CN1083145C (zh) 电子发射器件及其成象设备的制造方法
CN1882053A (zh) 电视机及图像显示装置
CN1728316A (zh) 电子发射器件,电子发射装置,电子源,图像显示器件及信息显示/再现装置

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20020501

Termination date: 20131129