CN108400157B - 钻石成膜用衬底基板、以及使用其的钻石基板的制造方法 - Google Patents

钻石成膜用衬底基板、以及使用其的钻石基板的制造方法 Download PDF

Info

Publication number
CN108400157B
CN108400157B CN201810104358.7A CN201810104358A CN108400157B CN 108400157 B CN108400157 B CN 108400157B CN 201810104358 A CN201810104358 A CN 201810104358A CN 108400157 B CN108400157 B CN 108400157B
Authority
CN
China
Prior art keywords
substrate
diamond
film
angle
deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810104358.7A
Other languages
English (en)
Other versions
CN108400157A (zh
Inventor
野口仁
牧野俊晴
小仓政彦
加藤宙光
川岛宏幸
山崎聪
德田规夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Kanazawa University NUC
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Shin Etsu Chemical Co Ltd
Kanazawa University NUC
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd, Kanazawa University NUC, National Institute of Advanced Industrial Science and Technology AIST filed Critical Shin Etsu Chemical Co Ltd
Publication of CN108400157A publication Critical patent/CN108400157A/zh
Application granted granted Critical
Publication of CN108400157B publication Critical patent/CN108400157B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/20Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02376Carbon, e.g. diamond-like carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • C23C16/0281Deposition of sub-layers, e.g. to promote the adhesion of the main coating of metallic sub-layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/272Diamond only using DC, AC or RF discharges
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/10Heating of the reaction chamber or the substrate
    • C30B25/105Heating of the reaction chamber or the substrate by irradiation or electric discharge
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/183Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • H01L21/0243Surface structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/02444Carbon, e.g. diamond-like carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02491Conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02499Monolayers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02516Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02527Carbon, e.g. diamond-like carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02634Homoepitaxy

Abstract

本发明的目的在于提供一种钻石基板的制造方法以及用于所述方法的衬底基板,其对于减低包含位错缺陷等的各种缺陷是有效的。上述衬底基板是用于利用化学气相沉积法来成膜钻石膜的衬底基板,其特征在于:前述衬底基板的表面,相对于规定的晶面方位附有偏离角。

Description

钻石成膜用衬底基板、以及使用其的钻石基板的制造方法
技术领域
本发明涉及一种钻石基板的制造方法,尤其涉及一种用于所述方法的衬底基板。
背景技术
钻石在室温具备5.47eV这样的宽的能带隙而作为宽能带隙(wide band-gap)半导体广为人知。
在半导体中,钻石的介质击穿(dielectric breakdown)电场强度非常高,达到10MV/cm,于是可实行高电压运作。
又,作为已知的物质,具有最高的热传导率,所以就散热性而言也优良。
进一步,载流子迁移率和饱和漂移速度极大,因此适合作成高速器件。
因此,就钻石而言,即便与碳化硅和氮化镓这样的半导体相比,用以表示作为高频和高功率器件的性能的强生性能指数(Johnson’s figure of merit,JFOM)也会显示最高的数值,可以说是终极的半导体。
因此,钻石作为半导体材料的实用化备受期待,而期望供给大面积且高质量的钻石基板。
然而,现在还无法获得品质充分的钻石基板。
目前,在用作为钻石基板的钻石当中,有通过高温高压合成(HPHT)法合成的Ib型钻石。
然而,此Ib型钻石包含大量的氮杂质,而且最大只能获得8mm左右的大小,因此实用性不高。
在非专利文献1中,使用通过HPHT法合成的钻石作为基板而制作了肖特基二极管(Schottky diode)。
然而,报告指出,在此处的钻石基板中,位错缺陷等较多,即便实际形成电极并尝试操作,但因为在电极附近和电流通路等处存在致命缺陷(killer defect),所以还是会产生运作不良。
在非专利文献2中,主要报告了利用在HPHT基板上同质外延生长钻石时附加3°以上的偏离角(off angle),则能够抑制异常成长核,然而,对于降低位错缺陷是否有效却不明。
现有技术文献
非专利文献
非专利文献1:H.Umezawa et al.,Diamond Relat.Mater.,18,1196(2009)
非专利文献2:S.Ohmagari,NEW DIAMOND118(2015)11.
发明内容
发明所要解决的问题
本发明的目的在于提供一种钻石基板的制造方法以及用于所述方法的衬底基板,其对于减低包含位错缺陷等的各种缺陷有效。
解决问题的技术方案
本发明的钻石成膜用衬底基板,是用于利用化学气相沉积法来成膜钻石膜的衬底基板,所述钻石成膜用衬底基板的特征在于:前述衬底基板的表面,相对于规定的晶面方位附有偏离角。
此处,前述衬底基板的表面,其相对于晶面方位{100},可在晶轴方向<110>附有偏离角。
又,前述衬底基板的表面,其相对于晶面方位{111},可在晶轴方向<-1-12>附有偏离角。
在本发明中,偏离角优选为在2~15°的范围内。
例如,在上述相对于晶面方位{100},在晶轴方向<110>附加偏离角的情况下,在所述晶轴方向<110>具有2~15°的偏离角。
又,在此情况下,偏离方向的偏差(绕着与晶面正交的轴的偏差)优选为在±15°以内。
用于本发明的衬底基板,其是用于通过化学气相沉积法来成膜钻石膜(钻石基板)的衬底基板,只要在衬底的表面附有偏离角,则前述衬底基板的表面是钻石、铱、铑、钯及铂中的任一种皆可。
此处,在衬底基板的钻石中,也包含通过HPHT法合成的钻石。
若衬底基板的表面是在钻石中附有偏离角,则会成为同质外延生长,若衬底基板的表面是钻石以外的材料,则会成为异质外延生长。
作为构成衬底表面的异种材料,优选为与钻石同样是立方晶,且与钻石的晶格失配小,进一步,不会与碳反应形成碳化物的材料。
作为满足这些条件的材料,主要能够举出铑(Rh)、钯(Pd)、铱(Ir)、铂(Pt)等铂族。
此处,钻石的晶格常数是与Rh(晶格常数/>)的晶格失配是4.2%,与Ir(晶格常数/>)的晶格失配是7.6%,与Pt(晶格常数/>)的晶格失配是9.8%。
钻石与构成衬底表面的异种材料之间的晶格失配,优选为10%以下。
又,其中,由熔点最高以及在钻石成长时的等离子体和高温环境下的稳定性的观点来看,优选为Ir。
在本发明中,前述衬底基板可以是将形成前述表面的表面膜加以积层而成的多层结构。
例如,前述多层结构可在MgO基板上形成有表面膜。
又,例如,前述多层结构可在硅基板上形成由单层或多层构成的中间膜,并在所述中间膜上形成有上述表面膜。
在此情况下,可在成膜为多层结构的过程中,在任一层附加偏离角,而使表面膜形成有偏离角。
例如,作为实例,能够举出一种衬底基板,其在硅(Si)基板上设置有由选自单晶氧化镁(MgO)、单晶钛酸锶(SrTiO3)、α-(Al2O3)、钇稳定氧化锆(YSZ)的材料所构成的中间层,进一步,在此中间层上,设置有由选自铱(Ir)、铑(Rh)、铂(Pt)的材料所构成的表层。
又,在硅(Si)基板与中间层之间,可隔着一层以上的由选自金(Au)、铂(Pt)、钛(Ti)、铬(Cr)、铱(Ir)、铑(Rh)、硅(Si)、氧化硅(SiO2)的材料所构成的层。
在衬底基板的表面上异质外延生长钻石膜的情况下,依据需求,可在表面膜上通过偏压处理来形成钻石的晶核。
本发明的化学气相沉积法,作为实例,能够举出微波等离子体化学气相沉积(microwave plasma CVD)、直流等离子体化学气相沉积(DC plasma CVD)、热灯丝化学气相沉积(hot-filament CVD)、电弧放电等离子体喷射化学气相沉积(arc discharge plasmajet CVD)等。
发明效果
若使用本发明的衬底基板,则能够利用化学气相沉积法来获得一种突起(hillock)、异常成长粒子、位错缺陷等少且低应力又高质量的钻石膜。
又,通过在成膜钻石膜后,移除衬底基板,能够获得高质量的钻石自立式基板。
若将本发明的钻石基板用于电子和磁性器件,则能够获得一种高性能器件。
附图说明
图1表示衬底基板的结构例(1)。
图2表示衬底基板的结构例(2)。
图3表示偏离角的说明图。
图4表示钻石的表面照片。
图5表示腐蚀坑(etch pit)的评估结果。
图6表示腐蚀坑的扫描电子显微镜(scanning electron microscope,SEM)影像。
具体实施方式
衬底基板的剖面如图1所示,首先,准备一种经过双面研磨的单晶硅(Si)基板3,其直径10.0mm、厚度1.0mm、表面是(100)面,并且,在晶轴[011]方向上,偏离角是0°,除此之外,准备偏离角成为4°和8°的单晶硅基板。
在所准备的单晶硅基板3的单面上,通过电子束蒸镀来形成由单晶MgO所构成的中间膜2。
此时,将条件设为真空中且基板温度900℃来外延生长单晶MgO(中间膜)至成为1μm为止。
进一步,在此由单晶MgO所构成的中间膜上,形成由Ir所构成的表面膜1。
在Ir表面膜1的形成中,使用射频磁控溅射法(RF magnetron sputtering)(13.56MHz),其将直径6英寸(150mm)、厚度5.0mm、纯度99.9%以上的Ir作为靶材。
将形成有单晶MgO层的基板加热至800℃,并确认基础压力(base pressure)已成为6×10-7Torr(约8.0×10-5Pa)以下后,导入Ar气体10sccm。
调节连通至排气系统的阀的开口度来使压力成为5×10-2Torr(约6.7Pa)后,输入RF电力1000W来进行15分钟的成膜。
所获得的Ir层,其厚度是0.7μm。
这样获得的在单晶硅基板上积层有单晶MgO层、Ir层的基板,其成为在单晶硅基板附有偏离角,且为异质外延生长,所以此在硅基板中具有偏离角者,其表面是(100)面且在晶轴[011]方向具有4°和8°的偏离角。
并且,偏离角可在最初的硅基板或形成在其上的中间膜等任何阶段形成。
例如,可在无偏离角的状态下将衬底基板表面作修整(finishing)处理后,通过研磨等来制作如图3示意性显示的基板,其最终在晶轴[011]方向附加了4°和8°的偏离角。
随后,为了形成钻石晶核,进行预处理(偏压处理)。
将Ir层侧设成在上方来将衬底基板安置在直径15mm的平板型电极上。
确认基础压力已成为1×10-6Torr(约1.3×10-4Pa)以下后,将氢稀释甲烷(CH4/(CH4+H2)=5.0vol.%)导入500sccm。
调整连通至排气系统的阀的开口度来使压力成为100Torr(约1.3×104Pa)后,对基板侧电极施加负电压并曝露于等离子体中90秒来偏压处理衬底表面。
在利用上述所制作的偏离角0°、4°、8°的各个衬底基板上,通过直流等离子体CVD(化学气相沉积)法来异质外延生长钻石10。
将已进行偏压处理的衬底基板安置于直流等离子体CVD装置的腔室内,并利用旋转泵(rotary pump)排气至10-3Torr(约1.3×10-1Pa)以下的基础压力为止后,将原料气体也就是氢稀释甲烷(CH4/(CH4+H2)=5.0vol.%)导入1000sccm。
调节连通至排气系统的阀的开口度来使腔室内的压力成为110Torr(约1.5×104Pa)后,流通2.0A的直流电流来进行成膜。
将成膜中的衬底基板的温度利用高温计(pyrometer)测定的结果是950℃。
将所获得的钻石膜作X射线衍射测定(入射X射线波长)的结果,归属于钻石(004)的位于2θ=119.5°的衍射强度峰,其摇摆曲线(rocking curve)半高宽是720arcsec(约0.2°)。
利用上述所获得的钻石膜,其通过光学显微镜所得的观察照片显示于图4。
偏离角0°的图4(a),其产生大量的突起,相较于此,偏离角4°、偏离角8°的基板,则如图4(b)、图4(c)所示,显示在一方向上阶梯状推移而成的台阶聚束(step bunching)形态,并未识别到产生突起、异常成长粒子。
随后,针对腐蚀坑密度作评估。
使用微波等离子体CVD装置(Astex Model AX6350),在2200W、氢气500sccm、110Torr的条件下,将钻石膜的表面作等离子体处理1小时。
将利用上述处理后的表面作SEM观察的结果显示于图6。
偏离角0°的图6(a),其腐蚀坑密度(EPD)是1×108cm-2,偏离角4°的图6(b),其EPD是5×107cm-2,偏离角8°的EPD是3×107cm-2
图5显示调查钻石膜的膜厚与EPD的关系所得的结果的图表。
可知利用在衬底基板的表面附加偏离角,能够抑制突起、异常成长粒子的产生,并且,能够减少位错缺陷(EPD)。
尤其是,在偏离角0°时,突起、异常成长粒子会大量产生,而无法作成厚膜,相较于此,在偏离角8°时,能够将膜厚约1mm的厚膜中的EPD减少至二位数程度。
如图2所示,在单晶MgO、YSZ、SrTiO3、α-氧化铝(Al2O3)的基板3a的表面附加偏离角,并且,作为表面膜,可形成Rh、Pd、Ir、Pt的表面膜1。
在已附加偏离角的MgO基板上,与上述实施例同样地形成由Ir层所构成的表面膜,并在其上形成钻石膜的结果,能够确认利用附加偏离角,位错缺陷会减少。

Claims (3)

1.一种钻石成膜用衬底基板,是用于利用化学气相沉积法来成膜钻石膜的衬底基板,所述钻石成膜用衬底基板的特征在于:
所述衬底基板是由形成于硅基板上的中间膜和形成于所述中间膜上的表面膜构成的多层结构,
所述表面膜由铱构成,
所述中间膜是单结晶氧化镁,
所述衬底基板的表面膜相对于晶面方位{100},在晶轴方向<110>具有2~15°的偏离角,并且,绕着与晶面正交的轴的偏差即偏离方向的偏差为±15°以内,所述偏离角形成于所述硅基板或中间膜。
2.一种钻石成膜用衬底基板,是用于利用化学气相沉积法来成膜钻石膜的衬底基板,
所述衬底基板是由形成于硅基板上的中间膜和形成于所述中间膜上的表面膜构成的多层结构,
所述表面膜由铱构成,
所述中间膜是单结晶氧化镁,
所述衬底基板的表面膜,其相对于晶面方位{111},在晶轴方向<-1-1 2>具有2~15°的偏离角,并且,绕着与晶面正交的轴的偏差即偏离方向的偏差为±15°以内,所述偏离角形成于所述硅基板或中间膜。
3.一种钻石基板的制造方法,其特征在于:在权利要求1或2所述的钻石成膜用衬底基板上,异质外延生长钻石。
CN201810104358.7A 2017-02-06 2018-02-02 钻石成膜用衬底基板、以及使用其的钻石基板的制造方法 Active CN108400157B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017019159A JP7078947B2 (ja) 2017-02-06 2017-02-06 ダイヤモンド製膜用下地基板及びそれを用いたダイヤモンド基板の製造方法
JP2017-019159 2017-02-06

Publications (2)

Publication Number Publication Date
CN108400157A CN108400157A (zh) 2018-08-14
CN108400157B true CN108400157B (zh) 2023-07-28

Family

ID=61163613

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810104358.7A Active CN108400157B (zh) 2017-02-06 2018-02-02 钻石成膜用衬底基板、以及使用其的钻石基板的制造方法

Country Status (6)

Country Link
US (1) US11180865B2 (zh)
EP (1) EP3358049A1 (zh)
JP (1) JP7078947B2 (zh)
KR (1) KR102551587B1 (zh)
CN (1) CN108400157B (zh)
TW (1) TWI787234B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109292498B (zh) * 2018-09-28 2019-12-03 南通市通州区标阳纺织品有限公司 一种具有滤碳处理的薄膜粗化膜卷一体机
JP7256635B2 (ja) * 2018-12-04 2023-04-12 信越化学工業株式会社 積層基板、積層基板の製造方法及び自立基板の製造方法
US11753740B2 (en) * 2019-11-18 2023-09-12 Shin-Etsu Chemical Co., Ltd. Diamond substrate and method for manufacturing the same
KR102393733B1 (ko) * 2020-05-07 2022-05-06 한국세라믹기술원 반도체용 다이아몬드 박막 제조방법
JP2023071085A (ja) * 2021-11-10 2023-05-22 信越化学工業株式会社 下地基板及び単結晶ダイヤモンド積層基板並びにそれらの製造方法
JP2023116122A (ja) * 2022-02-09 2023-08-22 信越化学工業株式会社 下地基板及び単結晶ダイヤモンド積層基板並びにそれらの製造方法
WO2024048357A1 (ja) * 2022-09-02 2024-03-07 信越化学工業株式会社 下地基板及び単結晶ダイヤモンド積層基板並びにそれらの製造方法
WO2024053384A1 (ja) * 2022-09-07 2024-03-14 信越化学工業株式会社 下地基板及び単結晶ダイヤモンド積層基板並びにそれらの製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006303131A (ja) * 2005-04-20 2006-11-02 Sumitomo Electric Ind Ltd ダイヤモンド半導体の製造方法及びダイヤモンド半導体
JP5454867B2 (ja) * 2009-04-17 2014-03-26 独立行政法人産業技術総合研究所 単結晶ダイヤモンド基板

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3612960A (en) * 1968-10-15 1971-10-12 Tokyo Shibaura Electric Co Semiconductor device
JP3728465B2 (ja) * 1994-11-25 2005-12-21 株式会社神戸製鋼所 単結晶ダイヤモンド膜の形成方法
DE10320133B4 (de) 2003-05-06 2011-02-10 Universität Augsburg Verfahren zur Herstellung von einkristallinen oder quasi-einkristallinen Diamantschichten und auf einem Körper angeordnete einkristalline oder quasi-einkristalline Diamantschicht
US7829377B2 (en) * 2005-01-11 2010-11-09 Apollo Diamond, Inc Diamond medical devices
JP5163920B2 (ja) * 2005-03-28 2013-03-13 住友電気工業株式会社 ダイヤモンド単結晶基板の製造方法及びダイヤモンド単結晶基板
JP4873467B2 (ja) * 2006-07-27 2012-02-08 独立行政法人産業技術総合研究所 オフ角を有する単結晶基板の製造方法
US8193020B2 (en) * 2006-11-15 2012-06-05 The Regents Of The University Of California Method for heteroepitaxial growth of high-quality N-face GaN, InN, and AlN and their alloys by metal organic chemical vapor deposition
WO2008066209A1 (fr) * 2007-12-26 2008-06-05 Sumitomo Electric Industries, Ltd. Procédé d'élaboration d'un monocristal de diamant en film mince, et monocristal de diamant en film mince
JP4849691B2 (ja) * 2008-12-25 2012-01-11 独立行政法人産業技術総合研究所 大面積ダイヤモンド結晶基板及びその製造方法
GB2488498B (en) * 2009-12-16 2017-11-22 Nat Inst Advanced Ind Science & Tech Method for producing mosaic diamond
DE102010023952A1 (de) * 2010-06-16 2011-12-22 Universität Augsburg Verfahren zum Herstellen von Diamantschichten und mit dem Verfahren hergestellte Diamanten
CN106884202B (zh) * 2012-06-29 2019-12-03 住友电气工业株式会社 金刚石单晶和单晶金刚石工具
JP5761536B2 (ja) * 2013-04-24 2015-08-12 横河電機株式会社 力変換素子
JP6112485B2 (ja) * 2013-09-19 2017-04-12 国立研究開発法人産業技術総合研究所 単結晶ダイヤモンドの製造方法
US10121657B2 (en) * 2016-05-10 2018-11-06 Arizona Board Of Regents On Behalf Of Arizona State University Phosphorus incorporation for n-type doping of diamond with (100) and related surface orientation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006303131A (ja) * 2005-04-20 2006-11-02 Sumitomo Electric Ind Ltd ダイヤモンド半導体の製造方法及びダイヤモンド半導体
JP5454867B2 (ja) * 2009-04-17 2014-03-26 独立行政法人産業技術総合研究所 単結晶ダイヤモンド基板

Also Published As

Publication number Publication date
KR20180091741A (ko) 2018-08-16
TW201829857A (zh) 2018-08-16
JP2018127367A (ja) 2018-08-16
KR102551587B1 (ko) 2023-07-05
US20180223447A1 (en) 2018-08-09
JP7078947B2 (ja) 2022-06-01
US11180865B2 (en) 2021-11-23
EP3358049A1 (en) 2018-08-08
CN108400157A (zh) 2018-08-14
TWI787234B (zh) 2022-12-21

Similar Documents

Publication Publication Date Title
CN108400157B (zh) 钻石成膜用衬底基板、以及使用其的钻石基板的制造方法
KR101797428B1 (ko) 단결정 다이아몬드 성장용 기재 및 단결정 다이아몬드 기판의 제조 방법
US11066757B2 (en) Diamond substrate and freestanding diamond substrate
US9200379B2 (en) Base material for growing single crystal diamond and method for producing single crystal diamond substrate
KR101130630B1 (ko) 적층기판, 적층기판의 제조방법 및 디바이스
CN107130293B (zh) 金刚石基板的制造方法
JP7298832B2 (ja) ダイヤモンド製膜用下地基板及びそれを用いたダイヤモンド基板の製造方法
JP7226722B2 (ja) ダイヤモンド基板
WO2023153396A1 (ja) 下地基板及び単結晶ダイヤモンド積層基板並びにそれらの製造方法
WO2024048357A1 (ja) 下地基板及び単結晶ダイヤモンド積層基板並びにそれらの製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant