CN108384240A - 可提高折射率的led封装材料 - Google Patents
可提高折射率的led封装材料 Download PDFInfo
- Publication number
- CN108384240A CN108384240A CN201810059858.3A CN201810059858A CN108384240A CN 108384240 A CN108384240 A CN 108384240A CN 201810059858 A CN201810059858 A CN 201810059858A CN 108384240 A CN108384240 A CN 108384240A
- Authority
- CN
- China
- Prior art keywords
- refractive index
- organic siliconresin
- powder
- improved
- led encapsulation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 32
- 238000005538 encapsulation Methods 0.000 title claims abstract description 16
- 239000011858 nanopowder Substances 0.000 claims abstract description 22
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 16
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims abstract description 10
- 238000009833 condensation Methods 0.000 claims abstract description 6
- 230000005494 condensation Effects 0.000 claims abstract description 6
- 238000003980 solgel method Methods 0.000 claims abstract description 6
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 claims abstract description 5
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims abstract description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 10
- 230000007062 hydrolysis Effects 0.000 claims description 10
- 238000006460 hydrolysis reaction Methods 0.000 claims description 10
- 239000000741 silica gel Substances 0.000 claims description 10
- 229910002027 silica gel Inorganic materials 0.000 claims description 10
- 229910002808 Si–O–Si Inorganic materials 0.000 claims description 7
- 238000006482 condensation reaction Methods 0.000 claims description 6
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 5
- 239000000843 powder Substances 0.000 claims description 5
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical group [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 4
- 125000003118 aryl group Chemical group 0.000 claims description 4
- 229910052736 halogen Inorganic materials 0.000 claims description 4
- 150000002367 halogens Chemical class 0.000 claims description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 4
- 239000011347 resin Substances 0.000 claims description 4
- 229920005989 resin Polymers 0.000 claims description 4
- 230000004913 activation Effects 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 238000003756 stirring Methods 0.000 claims description 3
- 230000003301 hydrolyzing effect Effects 0.000 abstract 1
- 239000002245 particle Substances 0.000 description 9
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 4
- 229920002521 macromolecule Polymers 0.000 description 4
- 230000032683 aging Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 241000209094 Oryza Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 235000013339 cereals Nutrition 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 235000013312 flour Nutrition 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 208000032170 Congenital Abnormalities Diseases 0.000 description 1
- 206010010356 Congenital anomaly Diseases 0.000 description 1
- 229910018557 Si O Inorganic materials 0.000 description 1
- 230000006750 UV protection Effects 0.000 description 1
- 230000007698 birth defect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000002114 nanocomposite Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Inorganic materials [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 238000006557 surface reaction Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/52—Encapsulations
- H01L33/56—Materials, e.g. epoxy or silicone resin
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2237—Oxides; Hydroxides of metals of titanium
- C08K2003/2241—Titanium dioxide
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2244—Oxides; Hydroxides of metals of zirconium
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2296—Oxides; Hydroxides of metals of zinc
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/003—Additives being defined by their diameter
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/011—Nanostructured additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/20—Applications use in electrical or conductive gadgets
- C08L2203/206—Applications use in electrical or conductive gadgets use in coating or encapsulating of electronic parts
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Led Device Packages (AREA)
Abstract
本发明公开一种可提高折射率的LED封装材料,是由含量为35%~50wt%的有机硅树脂、含量为50%~65wt%的高折射纳米粉体TiO2、ZrO2、Ta2O5或ZnO之至少一种组成,其中,高折射纳米粉体的粒径小于5nm;利用溶胶‑凝胶方法,经过水解与缩合方式制备非晶之高折射纳米粉体,将该高折射纳米粉体导入有机硅树脂中复合而成,使有机硅树脂之折射率从原来的1.50‑1.58提升到1.797。
Description
技术领域
本发明涉及LED领域技术,尤其是指一种可提高折射率的LED封装材料。
背景技术
目前LED常用的封装材料是有机硅树脂和有机硅材料。有机硅树脂因为其具有优良的粘结性、电绝缘性、密着性和介电性能,且成本比较低、配方灵活多变、易成型、生产效率高等优点成为小功率LED封装的主流材料。对于功率型LED,由于有机硅树脂吸湿性强、易老化、耐热性差等先天缺陷直接影响LED寿命;且在高温和短波光照下易变色,进而影响发光效率;而且其在固化前有一定的毒性等等缺点,已远远不能满足封装材料在高折射率、低应力、高导热性能、高耐紫外光能力和耐高温老化性能方面的要求,因此不适用于作为功率型LED的封装材料。有机硅材料耐热老化性和耐紫外光老化性优良,并且具有高透光率、低内应力等优点,被认为是LED封装用高折射率有机硅材料用最佳基体树脂,也成为近年来功率型LED封装用材料的研究热点。
然而有机硅材存在折射率偏低的缺点,为了有效减少界面折射率带来的光损失,须要求封装材的折射率尽可能高,以提高LEE和组件性能。
发明内容
有鉴于此,本发明针对现有技术存在之缺失,其主要目的是提供一种可提高折射率的LED封装材料。
为实现上述目的,本发明采用如下之技术方案:
一种可提高折射率的LED封装材料,是由含量为35%~50wt%的有机硅树脂、含量为50%~65wt%的高折射纳米粉体TiO2、ZrO2、Ta2O5或ZnO之至少一种组成,其中,高折射纳米粉体的粒径小于5nm;利用溶胶-凝胶方法,经过水解与缩合方式制备非晶之高折射纳米粉体,将该高折射纳米粉体导入有机硅树脂中,可得到均一分散的纳米复合材料。
作为一种优选方案,所述有机硅树脂是硅胶通过导入芳香环、卤素、硫原子、金属原子之至少一种而制得。
作为一种优选方案,所述有机硅树脂是有机硅树脂以Si-O-Si键为主链的甲基取代型硅胶。
作为一种优选方案,所述有机硅树脂是有机硅树脂以Si-O-Si键为主链的苯基取代型硅胶。
作为一种优选方案,所述高折射纳米粉体为TiO2,其水解和缩合反应方程式是:
水解反应
缩合反应
作为一种优选方案,所述高折射纳米粉体与有机硅树脂倒入搅拌器内,搅拌速度为25-40转/分钟。
作为一种优选方案,搅拌的同时辅予超声波振动。
本发明与现有技术相比具有明显的优点和有益效果,具体而言,由上述技术方案可知,应用溶胶-凝胶方法,经过水解与缩合方式制备非晶之TiO2,将其导入有机硅树脂中,可得到均一分散的纳米复合材,分别加入TiO2含量为50%到65wt%,有机硅树脂之折射率从原来的1.50-1.58提升到1.797。
为更清楚地阐述本发明的结构特征和功效,下面结合附图与具体实施例来对本发明进行详细说明。
附图说明
图1是本发明之实施例的图瑞利散射系数与粉体粒径大小的关系。
图2是本发明之实施例中折射率和TiO2含量关系图。
具体实施方式
本发明的一种可提高折射率的LED封装材料,是由含量为35%~50wt%的有机硅树脂、含量为50%~65wt%的高折射纳米粉体TiO2、ZrO2、Ta2O5或ZnO之至少一种组成,其中,高折射纳米粉体的粒径小于5nm;利用溶胶-凝胶方法,经过水解与缩合方式制备非晶之高折射纳米粉体,将该高折射纳米粉体导入有机硅树脂中,可得到均一分散的纳米复合材料。
所述有机硅树脂是硅胶通过导入芳香环、卤素、硫原子、金属原子之至少一种而制得。例如,所述有机硅树脂可以是有机硅树脂以Si-O-Si键为主链的甲基取代型硅胶,也可以是有机硅树脂以Si-O-Si键为主链的苯基取代型硅胶。
有机硅树脂改质可由式(1)可以预测官能基之种类对于高分子折射率大小
其中,n、R、M及V分别代表折射率、分子折射、分子重量及分子体在高分子重复单元下,所以R/M和M/V分别可视为莫耳折射(RM)和莫耳体积(VM),因此,式(1)可改写成式(2):
根据式(2),高分子中引进高莫耳折射和低莫耳体积,可以有效增加高分子折射率,当导入芳香环、卤素(F除外)、硫原子、金属原子皆可使折射率提高,另外上述官能基互相结合使用,亦可达到协同效应,更能提高折射率大小且阿贝数较高。
有机硅树脂以Si-O-Si键为主链,由于Si-O键具有很高的键能,使其拥有多项的优点和性能,甲基取代型硅胶具有较低折射率约1.40-1.43左右,当苯基取代型有机硅树脂不但可提高折射率(1.50-1.58)和透光率,还可透过提高封装材料中苯基的质量分率来降低此类有机硅材料的收缩率,并提高黏着性和和机械性能。
在此基础上,将一些高折射率的纳米粉体添加入有机硅树脂树脂中来改善LEE不足问题,所述高折射纳米粉体如TiO2、ZrO2、Ta2O5和ZnO等,当有机机混成时,必须考虑到纳米粉体所产生的瑞利散射(Rayleigh Scattering)现象而造成穿透度下降。
因此选择纳米粉体粒径大小是很重要的,须低于可见光波长十分之一大小之小粒径粒子(一般<25nm)以避免瑞利散射。另外,高含量纳米粉体容易造成粉体聚集引起此散射现象,所以粉体必蝢做表面官能化改质/修饰,来防止粒子之间产生严重聚集。图1显示了瑞利散射系数与粉体粒径大小的关系。
当选用TiO2和有机硅树脂混成纳米复合材,计算瑞利散射系数(R)与粉体粒径大小(d)之关系,如式(3)
其中,n、λ、N分别为折射率、光波长和单位体积粒子数目。如图所示,瑞利散射依循着粒径大小与波长关系,且图中结果粒子须小于5nm才有较低散射。
以纳米粉体做为提高折射率的方式,利用溶胶-凝胶方法,经过水解与缩合方式制备非晶之TiO2,反应如图所示,将其导入有机硅树脂中,可得到均一分散的纳米复合材,分别加入TiO2含量为50%到65wt%,有机硅树脂之折射率从原来的1.50-1.58提升到1.797,如图2所示。
TiO2与有机硅树脂的水解和缩合反应方程式是:
水解反应
缩合反应
反应过程中,所述高折射纳米粉体与有机硅树脂倒入搅拌器内,搅拌速度为25-40转/分钟,搅拌的同时辅予超声波振动,可以使化学反应更充分,生产的封装材料更均匀并且无气泡。
以上所述,仅是本发明的较佳实施例而已,并非对本发明的技术范围作任何限制,故凡是依据本发明的技术实质对以上实施例所作的任何细微修改、等同变化与修饰,均仍属于本发明技术方案的范围内。
Claims (7)
1.一种可提高折射率的LED封装材料,其特征在于:是由含量为35%~50wt%的有机硅树脂、含量为50%~65wt%的高折射纳米粉体TiO2、ZrO2、Ta2O5或ZnO之至少一种组成,其中,高折射纳米粉体的粒径小于5nm;利用溶胶-凝胶方法,经过水解与缩合方式制备非晶之高折射纳米粉体,将该高折射纳米粉体导入有机硅树脂中复合而成。
2.根据权利要求1所述的可提高折射率的LED封装材料,其特征在于:所述有机硅树脂是硅胶通过导入芳香环、卤素、硫原子、金属原子之至少一种而制得。
3.根据权利要求1所述的可提高折射率的LED封装材料,其特征在于:所述有机硅树脂是有机硅树脂以Si-O-Si键为主链的甲基取代型硅胶。
4.根据权利要求1所述的可提高折射率的LED封装材料,其特征在于:所述有机硅树脂是有机硅树脂以Si-O-Si键为主链的苯基取代型硅胶。
5.根据权利要求1所述的可提高折射率的LED封装材料,其特征在于:所述高折射纳米粉体为TiO2,其水解和缩合反应方程式是:
水解反应
缩合反应(1)
(2)
6.根据权利要求1所述的可提高折射率的LED封装材料,其特征在于:所述高折射纳米粉体与有机硅树脂倒入搅拌器内,搅拌速度为25-40转/分钟。
7.根据权利要求6所述的可提高折射率的LED封装材料,其特征在于:搅拌的同时辅予超声波振动。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810059858.3A CN108384240A (zh) | 2018-01-22 | 2018-01-22 | 可提高折射率的led封装材料 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810059858.3A CN108384240A (zh) | 2018-01-22 | 2018-01-22 | 可提高折射率的led封装材料 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108384240A true CN108384240A (zh) | 2018-08-10 |
Family
ID=63076176
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810059858.3A Pending CN108384240A (zh) | 2018-01-22 | 2018-01-22 | 可提高折射率的led封装材料 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108384240A (zh) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102079877A (zh) * | 2010-12-02 | 2011-06-01 | 杭州格灵新材料科技有限公司 | 高性能led封装材料的制备方法 |
CN103881651A (zh) * | 2013-10-18 | 2014-06-25 | 广州众恒光电科技有限公司 | 一种高折射led封装硅胶的制备方法 |
-
2018
- 2018-01-22 CN CN201810059858.3A patent/CN108384240A/zh active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102079877A (zh) * | 2010-12-02 | 2011-06-01 | 杭州格灵新材料科技有限公司 | 高性能led封装材料的制备方法 |
CN103881651A (zh) * | 2013-10-18 | 2014-06-25 | 广州众恒光电科技有限公司 | 一种高折射led封装硅胶的制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Facile synthesis of highly transparent polymer nanocomposites by introduction of core–shell structured nanoparticles | |
CN102702441B (zh) | 一种有机硅-聚甲基丙烯酸甲酯复合材料的制备方法 | |
CN102250462B (zh) | 一种聚碳酸酯复合材料及其制备方法与led灯罩的制作方法 | |
Kim et al. | Pore characteristics for improving luminous efficacy of phosphor-in-glass | |
CN104151707B (zh) | 导热性能优良的碳纤维增强树脂复合材料及其制备方法 | |
Chung et al. | Preparation and evaluation of a zirconia/oligosiloxane nanocomposite for LED encapsulation | |
JP2008120848A (ja) | 無機酸化物透明分散液と透明複合体およびその製造方法、発光素子封止用組成物並びに発光素子 | |
CN106883580A (zh) | 激光直接成型用pc复合材料及其制备工艺 | |
CN107915912A (zh) | 一种聚苯乙烯组合物及其应用 | |
CN103910979A (zh) | 用于发光装置反射器的聚酯树脂组合物和使用其的模制品 | |
CN103937186A (zh) | 一种高遮光率pc复合材料及其制备方法 | |
CN106047275A (zh) | 一种纳米金刚石‑钛杂化改性的高导热led有机硅封装胶及其制备方法 | |
CN102634124A (zh) | 一种纤维增强热塑性聚合物基复合材料及其制备方法 | |
CN103922580A (zh) | 一种水晶石英玻璃杯及其制备方法 | |
CN110016319A (zh) | 一种led封装用耐老化硅胶材料的制备方法 | |
CN108384240A (zh) | 可提高折射率的led封装材料 | |
CN105885320B (zh) | 一种具有超高韧性的pmma树脂 | |
Shen et al. | Recent advances in encapsulation materials for light emitting diodes: a review | |
CN103145896A (zh) | 一种可耐温的丙烯酸树脂镜片的生产方法 | |
CN106916429A (zh) | 白色高韧性高灼热丝起燃温度聚碳酸酯组合物及其制备方法 | |
CN102911449A (zh) | 一种新型复合钙pvc复合材料 | |
JP6057582B2 (ja) | Led用封止材料 | |
CN105086349A (zh) | 一种高强度耐腐蚀热固性塑料 | |
CN101457020B (zh) | 纳米氮化硅/环氧基硅烷/氰酸酯树脂复合材料及其制备方法 | |
CN109181292A (zh) | 一种玻纤增强pa66高铁轨道基板材料及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180810 |