CN108380226A - 一种超薄卤氧化铋纳米片及其制备和应用 - Google Patents

一种超薄卤氧化铋纳米片及其制备和应用 Download PDF

Info

Publication number
CN108380226A
CN108380226A CN201810114010.6A CN201810114010A CN108380226A CN 108380226 A CN108380226 A CN 108380226A CN 201810114010 A CN201810114010 A CN 201810114010A CN 108380226 A CN108380226 A CN 108380226A
Authority
CN
China
Prior art keywords
ultra
thin
biox
nanometer sheet
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810114010.6A
Other languages
English (en)
Inventor
叶立群
王丽
马照宇
谢海泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanyang Normal University
Original Assignee
Nanyang Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanyang Normal University filed Critical Nanyang Normal University
Priority to CN201810114010.6A priority Critical patent/CN108380226A/zh
Publication of CN108380226A publication Critical patent/CN108380226A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/08Production of synthetic natural gas
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2527/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • C07C2527/06Halogens; Compounds thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种超薄卤氧化铋纳米片及其制备和应用,所述的超薄卤氧化铋纳米片以五水硝酸铋、氯化钾或者溴化钾为原料,以羟丙基瓜尔豆胶作为增稠剂,采用水解法低温制备。该制备方法工艺简单、成本低廉、绿色环保、易于控制并大规模生产,制备过程中加入瓜尔豆胶作为增稠剂,使得各种原料混合更加均匀,从而避免了制备过程中大分子颗粒团聚的发生,有利制备出比表面积更大,更加超薄的卤氧化铋光催化剂;同时制得的超薄卤氧化铋纳米片为纳米级别的层状结构,能在可见光范围内响应,稳定性更强、催化效率更高,在光催化还原CO2领域具有显著效果和巨大的应用空间。

Description

一种超薄卤氧化铋纳米片及其制备和应用
【技术领域】
本发明属于光催化技术领域,具体涉及一种超薄卤氧化铋纳米片及其制备和应用。
【背景技术】
随着人口的快速增长和现代工业的不断发展,环境污染和能源匮乏问题日益严峻,尤其是以煤、石油、天然气为主的化石能源燃烧而引起的CO2过量排放更成为近年来人们关注的热点。因此如何解决CO2过量排放所造成的温室效应,将 CO2有效转化为清洁能源,实现CO2的减排和碳资源的循环利用,缓解化石能源过度使用引起的能源危机已成为众多科研工作者研究的重点。
近年来,光催化技术作为一种在半导体催化剂作用下利用光能进行环境净化和能量转化的新型技术,由于它具有无选择性、氧化能力强、反应速度快、处理效率高,无二次污染等诸多优点,已被广泛应用到有机合成、催化化学、生物医学、环境治理和能源生产等各个领域。目前普遍研究的应用到CO2催化还原领域的半导体催化材料主要是TiO2、CdS、ZnO、Cu2O等宽禁带半导体材料,但是由于它们只能受到太阳光中含量较低的紫外光激发,这不仅严重影响了它们对太阳光的有效利用,而且较高的载流子复合率导致其具有较低的量子效率,从而使得光催化效率降低,更是不利于其大规模应用及商业推广,因此开发和研制在可见光范围内有效光催化还原CO2的光催化材料已是大势所趋。
卤氧化铋BiOX (X = Cl、Br、I) 是近几年被发现的一类新型光催化剂,其自身特有的开放式片层结构、内部电场和间接跃迁模式使其具有较好的光催化活性,能被大部分可见光激发。但是由于其单体的电子-空穴复合效率较高,其催化性能还有待于提高。研究表明卤氧化铋BiOX光催化活性与材料粒子的尺寸和形貌息息相关,一方面具有明显层状结构的BiOX,双层卤素原子交错排列的[Bi2O2]平板层在BiOX内部能够形成自身内电场,诱导光生电子-空穴对的有效分离,有利于载流子分离效率增强;另一方面超薄的BiOX二维晶体能够有效的增大其比表面积,提高表面于光子接触范围,有利于光子吸收效率的增强。因此进一步调控卤氧化铋BiOX材料粒子的尺寸和形貌,并改进其制备工艺和条件,对于提高其催化性能具有十分重要的意义。此外,目前关于卤氧化铋光催化剂的报道主要是在光降解有机染料领域,而其作为 CO2光还原催化剂的报道还尚未发现。
【发明内容】
本发明要解决的问题是针对以上不足,提供一种工艺简单、成本低廉、催化效率高、稳定性强、易于操作并大规模生产的超薄卤氧化铋纳米片及其制备和应用。
本发明采用的技术方案如下:
一种超薄卤氧化铋纳米片的制备方法,包括以下步骤:
(1)称取瓜尔豆胶和五水硝酸铋,混合均匀后研磨得前驱体;
(2)将上述制得的前驱体缓慢加入到含有含卤素阴离子的水溶液中,混合搅拌均匀制得糊状液体;
(3)向糊状液体中加入水,然后搅拌反应制得产物,然后将产物洗涤、干燥制得超薄卤氧化铋纳米片。
具体的,所述步骤(1)中瓜尔豆胶的用量为五水硝酸铋质量的0.2%-2%,研磨时间为30-45min。
具体的,所述步骤(2)中含卤素阴离子的水溶液为氯化钾或溴化钾的一种,浓度为0.01-0.1mol/L。
具体的,所述步骤(3)中水的加入量为卤素阴离子水溶液的18-21倍,搅拌时间为3-5h,反应温度为30-70℃。
具体的,所述步骤(3)中制得的超薄卤氧化铋纳米片为层状结构,材料尺寸为10-15nm。
具体的,采用以上任一方法制备的超薄卤氧化铋纳米片及其在CO2催化还原领域的应用。
本发明的优点是:
1.本发明提供的超薄卤氧化铋纳米片采用水解法低温制备,工艺简单、成本低廉、绿色环保、易于控制并大规模生产,同时制得的卤氧化铋光催化剂稳定性强、催化效率高。
2.相对于传统的卤氧化铋光催化剂,本发明加入瓜尔豆胶作为增稠剂,使得各种原料混合更加均匀,从而避免了制备过程中大分子颗粒团聚的发生,有利于制备出比表面积更大,更加超薄的卤氧化铋光催化剂,不仅有效降低了电子-空穴复合率,而且大大提高了催化特性。
3.本发明制得超薄卤氧化铋纳米片具有片层状结构,尺寸可达纳米级别,从而使得卤氧化铋的光催化性能得到进一步提高,大大提高了可见光的利用率,同时其在光催化还原CO2领域还具有显著效果和巨大的应用空间。
【附图说明】
图1为参照物BiOX (X = Cl、Br)以及本发明制得的超薄卤氧化铋纳米片BiOX-U (X =Cl、Br,U=瓜尔豆胶)的XRD图。
图2为参照物BiOX (X = Cl、Br)以及本发明制得的超薄卤氧化铋纳米片BiOX-U(X = Cl、Br,U=瓜尔豆胶)的SEM图。
图3为参照物BiOX (X = Cl、Br)以及本发明制得的超薄卤氧化铋纳米片BiOX-U(X = Cl、Br,U=瓜尔豆胶)的紫外可见漫反射光谱图。
图4为参照物BiOX (X = Cl、Br)以及本发明制得的超薄卤氧化铋纳米片BiOX-U(X = Cl、Br,U=瓜尔豆胶)的光催化CO2还原成CO和CH4的性能图。
【具体实施方式】
为了更充分理解本发明的技术内容,下面结合附图通过具体实施例对本发明技术方案进行进一步介绍和说明。以下实施例只是描述性的,不是限定性的,不能以此限定本发明的保护范围。
实施例1
(1)称取0.019g瓜尔豆胶和9.701g五水硝酸铋,混合均匀后研磨30min得前驱体;
(2)将上述制得的前驱体缓慢加入到浓度为0.01mol/L的10ml氯化钾水溶液中,混合搅拌均匀制得糊状液体;
(3)将糊状液体转移至500ml烧瓶中,加入180ml水,然后在30℃下搅拌反应3h制得产物,然后将产物洗涤、干燥制得超薄氯氧化铋纳米片。
实施例2
(1)称取0.097g瓜尔豆胶和9.701g五水硝酸铋,混合均匀后研磨35min得前驱体;
(2)将上述制得的前驱体缓慢加入到浓度为0.05mol/L的10ml溴化钾水溶液中,混合搅拌均匀制得糊状液体;
(3)将糊状液体转移至500ml烧瓶中,加入190ml水,然后在45℃下搅拌反应3.5h制得产物,然后将产物洗涤、干燥制得超薄溴氧化铋纳米片。
实施例3
(1)称取0.146瓜尔豆胶和9.701g五水硝酸铋,混合均匀后研磨40min得前驱体;
(2)将上述制得的前驱体缓慢加入到浓度为0.08mol/L的10ml氯化钾水溶液中,混合搅拌均匀制得糊状液体;
(3)将糊状液体转移至500ml烧瓶中,加入200ml水,然后在65℃下搅拌反应4h制得产物,然后将产物洗涤、干燥制得超薄氯氧化铋纳米片。
实施例4
(1)称取0.194g瓜尔豆胶和9.701g五水硝酸铋,混合均匀后研磨45min得前驱体;
(2)将上述制得的前驱体缓慢加入到浓度为0.1mol/L的10ml溴化钾水溶液中,混合搅拌均匀制得糊状液体;
(3)将糊状液体转移至500ml烧瓶中,加入210ml水,然后在70℃下搅拌反应5h制得产物,然后将产物洗涤、干燥制得超薄溴氧化铋纳米片。
【图谱分析】
图1为参照物BiOX (X = Cl、Br)以及本发明制得的超薄卤氧化铋纳米片BiOX-U (X =Cl、Br,U=瓜尔豆胶)的XRD图。由图可知BiOBr和BiOBr-U的XRD衍射峰与标准BiOBr图谱完全一致;BiOCl和BiOCl-U的XRD衍射峰与标准BiOCl图谱完全一致;此外在超薄卤氧化铋纳米片BiOX-U (X = Cl、Br,U=瓜尔豆胶)中也没有发现其他的杂质峰,由此可知本发明制得的固溶体超薄卤氧化铋纳米片BiOX-U (X = Cl、Br,U=瓜尔豆胶)具有较高的纯度和洁净度;同时由BiOBr-U和BiOCl-U的XRD衍射峰宽化表明,本发明制得的超薄卤氧化铋纳米片BiOX-U (X = Cl、Br,U=瓜尔豆胶)相对于参照物BiOX (X = Cl、Br)的厚度更薄。
图2(a)和图2(b)为参照物BiOX (X = Cl、Br)的SEM图,图2(c)和图2(d)本发明制得的超薄卤氧化铋纳米片BiOX-U (X = Cl、Br,U=瓜尔豆胶)的SEM图。由图可知,参照物BiOX (X = Cl、Br)纳米片的的厚度约为50nm,而本发明制得的超薄卤氧化铋纳米片
BiOX-U (X = Cl、Br,U=瓜尔豆胶)厚度约为10nm,厚度更薄,这也与XRD衍射图谱分析结果相一致。
图3为参照物BiOX (X = Cl、Br)以及本发明制得的超薄卤氧化铋纳米片BiOX-U(X = Cl、Br,U=瓜尔豆胶)的紫外可见漫反射光谱图。由图可知,参照物BiOCl和BiOBr分别在445nm和365nm处具有的吸附边缘,而本发明制得的BiOCl-U和BiOBr-U分别在365nm处和436nm处显示出吸附边缘。
图4为参照物BiOX (X = Cl、Br)以及本发明制得的超薄卤氧化铋纳米片BiOX-U(X = Cl、Br,U=瓜尔豆胶)的光催化CO2还原成CO和CH4的性能图。由图可知,本发明制得的超薄卤氧化铋纳米片BiOX-U (X = Cl、Br,U=瓜尔豆胶)相对于参照物BiOX (X = Cl、Br)具有更好的CO2光催化还原活性,而在同等条件下,BiOCl-U的光催化还原活性最好,在反应4小时后,光催化CO2还原成CO和CH4的量分别为57μmol/g和 4.5μmol/g 。具体测试方法如下:
称取0.05g被测样品平铺到350ml恒温密闭反应器中设置的圆形玻璃板上,在反应器底部加入1.3g NaHCO3,对反应器进行真空处理,然后将10ml浓度为8%的稀硫酸注入到反应器中与碳酸氢钠进行反应,保持反应过程中的温度为20℃,以300W高压氙灯为光源照射,每隔半个小时从反应器中抽取1ml气体注入到GC9790II气相色谱仪中进行定性分析。
以上所述实施例仅表达了本发明的实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (7)

1.一种超薄卤氧化铋纳米片的制备方法,其特征在于,包括以下步骤:
(1)称取瓜尔豆胶和五水硝酸铋,混合均匀后研磨得前驱体;
(2)将上述制得的前驱体缓慢加入到含有含卤素阴离子的水溶液中,混合搅拌均匀制得糊状液体;
(3)向糊状液体中加入水,然后搅拌反应制得产物,然后将产物洗涤、干燥制得超薄卤氧化铋纳米片。
2.如权利要求1所述的超薄卤氧化铋纳米片的制备方法,其特征在于:所述步骤(1)中瓜尔豆胶的用量为五水硝酸铋质量的0.2%-2%,研磨时间为30-45min。
3.如权利要求1所述的超薄卤氧化铋纳米片的制备方法,其特征在于:所述步骤(2)中含卤素阴离子的水溶液为氯化钾或溴化钾的一种,浓度为0.01-0.1mol/L。
4.如权利要求1所述的超薄卤氧化铋纳米片的制备方法,其特征在于:所述步骤(3)中水的加入量为卤素阴离子水溶液的18-21倍,搅拌时间为3-5h,反应温度为30-70℃。
5.如权利要求1所述的超薄卤氧化铋纳米片的制备方法,其特征在于:所述步骤(3)中制得的卤氧化铋纳米片为层状结构,材料尺寸为10-15nm。
6.如权利要求1-5所述的任一方法制备的超薄卤氧化铋纳米片。
7.如权利要求6所述的超薄卤氧化铋纳米片在光催化还原CO2领域的应用。
CN201810114010.6A 2018-02-05 2018-02-05 一种超薄卤氧化铋纳米片及其制备和应用 Pending CN108380226A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810114010.6A CN108380226A (zh) 2018-02-05 2018-02-05 一种超薄卤氧化铋纳米片及其制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810114010.6A CN108380226A (zh) 2018-02-05 2018-02-05 一种超薄卤氧化铋纳米片及其制备和应用

Publications (1)

Publication Number Publication Date
CN108380226A true CN108380226A (zh) 2018-08-10

Family

ID=63075021

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810114010.6A Pending CN108380226A (zh) 2018-02-05 2018-02-05 一种超薄卤氧化铋纳米片及其制备和应用

Country Status (1)

Country Link
CN (1) CN108380226A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110227503A (zh) * 2019-06-11 2019-09-13 杭州电子科技大学 一种常温一步制备卤化氧铋纳米片的方法
CN111254461A (zh) * 2020-01-19 2020-06-09 安徽大学 一种光还原二氧化碳的氧化钨/碘氧铋异质结材料及其制备方法和应用
CN111482187A (zh) * 2020-04-15 2020-08-04 重庆科技学院 一种处理油田返排液的富铋复合光催化剂的制备方法
CN113713834A (zh) * 2021-09-14 2021-11-30 南昌航空大学 一种改性BiOBr纳米片及其制备方法和应用
CN114797910A (zh) * 2022-05-26 2022-07-29 青岛大学 一种二维超薄结构的异质结纳米片的制备方法及应用
CN115124076A (zh) * 2022-07-07 2022-09-30 中南大学 一种铋基卤氧化物的批量制备方法
CN115350715A (zh) * 2022-04-20 2022-11-18 南昌航空大学 Co掺杂超薄卤氧铋光催化CO2还原材料的制备方法
CN115364874A (zh) * 2022-04-20 2022-11-22 南昌航空大学 一种一锅水热构建异质结制备复合光催化材料的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105460974A (zh) * 2014-09-13 2016-04-06 南阳师范学院 一种富含缺陷的超薄碘氧化铋纳米片的制备方法
CN107497456A (zh) * 2017-07-26 2017-12-22 湖南大学 层状氯氧化铋可见光催化剂的制备方法及其应用
CN107497457A (zh) * 2017-06-12 2017-12-22 南阳师范学院 一种Bi3O4Cl0.5Br0.5固溶体光催化剂及其制备和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105460974A (zh) * 2014-09-13 2016-04-06 南阳师范学院 一种富含缺陷的超薄碘氧化铋纳米片的制备方法
CN107497457A (zh) * 2017-06-12 2017-12-22 南阳师范学院 一种Bi3O4Cl0.5Br0.5固溶体光催化剂及其制备和应用
CN107497456A (zh) * 2017-07-26 2017-12-22 湖南大学 层状氯氧化铋可见光催化剂的制备方法及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHENGHUA DING,ET AL: "Large-scale preparation of BiOX (X = Cl, Br) ultrathin nanosheets for efficient photocatalytic CO2 conversion", 《JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110227503A (zh) * 2019-06-11 2019-09-13 杭州电子科技大学 一种常温一步制备卤化氧铋纳米片的方法
CN111254461A (zh) * 2020-01-19 2020-06-09 安徽大学 一种光还原二氧化碳的氧化钨/碘氧铋异质结材料及其制备方法和应用
CN111254461B (zh) * 2020-01-19 2021-08-27 安徽大学 一种光还原二氧化碳的氧化钨/碘氧铋异质结材料及其制备方法和应用
CN111482187A (zh) * 2020-04-15 2020-08-04 重庆科技学院 一种处理油田返排液的富铋复合光催化剂的制备方法
CN111482187B (zh) * 2020-04-15 2022-08-12 重庆科技学院 一种处理油田返排液的富铋复合光催化剂的制备方法
CN113713834A (zh) * 2021-09-14 2021-11-30 南昌航空大学 一种改性BiOBr纳米片及其制备方法和应用
CN115350715A (zh) * 2022-04-20 2022-11-18 南昌航空大学 Co掺杂超薄卤氧铋光催化CO2还原材料的制备方法
CN115364874A (zh) * 2022-04-20 2022-11-22 南昌航空大学 一种一锅水热构建异质结制备复合光催化材料的方法
CN114797910A (zh) * 2022-05-26 2022-07-29 青岛大学 一种二维超薄结构的异质结纳米片的制备方法及应用
CN115124076A (zh) * 2022-07-07 2022-09-30 中南大学 一种铋基卤氧化物的批量制备方法
CN115124076B (zh) * 2022-07-07 2023-03-10 中南大学 一种铋基卤氧化物的批量制备方法

Similar Documents

Publication Publication Date Title
CN108380226A (zh) 一种超薄卤氧化铋纳米片及其制备和应用
Zhao et al. A novel Z-scheme CeO2/g-C3N4 heterojunction photocatalyst for degradation of Bisphenol A and hydrogen evolution and insight of the photocatalysis mechanism
Qi et al. Preparation and photocatalytic properties of g-C3N4/BiOCl heterojunction
CN101811044B (zh) 铌酸钾纳米管光催化剂及其制备方法和应用
CN106732524A (zh) 一种α/β‑氧化铋相异质结光催化剂及其制法和用途
CN106669744B (zh) 一种Ag2Mo2O7@AgBr复合光催化剂及其制备方法
CN106807430B (zh) 具有特殊包覆结构的g-C3N4@硅藻土复合光催化剂的制备方法
CN102658177B (zh) 一种双功能可见光响应催化剂及其制备方法和应用
CN110252370A (zh) 一种二维ZnO/g-C3N4复合光催化剂的制备方法及用途
CN102671676A (zh) 一种SnO2/SnS2异质结光催化剂的制备方法
CN110624566B (zh) CuInS2量子点/NiAl-LDH复合光催化剂的制备方法及其应用
CN110237834A (zh) 一种碳量子点/氧化锌可见光催化剂的制备方法
CN103191725A (zh) BiVO4/Bi2WO6复合半导体材料及其水热制备方法和其应用
CN109847780A (zh) 一种AgBr/BiOI/g-C3N4三元复合催化材料的制备方法及其应用
CN108043429A (zh) 一种复合型纳米Tb/BiOCl材料的制备方法
CN108620113A (zh) 一种氮掺杂的碳-铈复合纳米片的制备方法
CN108421551A (zh) 一种CdIn2S4纳米点杂化TiO2空心球复合光催化剂及其制备方法和用途
CN105964275A (zh) CuS/CdIn2S4/ZnIn2S4复合光催化剂的微波辅助一步合成方法
CN106902852A (zh) 一种ZnFe2O4/AgBr/Ag复合光催化剂及其制备方法
CN106622293A (zh) 一种H‑TiO2/CdS/Cu2‑xS纳米带的制备方法
CN108671951B (zh) 一种氮化碳复合光催化剂及其制备方法和应用
CN105148972A (zh) 可见光条件下还原水中硝态氮的新型催化剂的制备方法及其应用
CN106693996A (zh) 硫化铋‑铁酸铋复合可见光催化剂的制备方法及其应用
Zhang et al. High value-added fluorescence upconversion agents-assisted nano-semiconductors for efficient wide spectral response photocatalysis: Exerting energy transfer effect and applications
CN107497455A (zh) 一种微量硫表面修饰的超薄钨酸铋纳米片光催化剂的制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180810

WD01 Invention patent application deemed withdrawn after publication