CN108374160B - 一种钛基掺硼金刚石涂层的制备方法 - Google Patents

一种钛基掺硼金刚石涂层的制备方法 Download PDF

Info

Publication number
CN108374160B
CN108374160B CN201810192363.8A CN201810192363A CN108374160B CN 108374160 B CN108374160 B CN 108374160B CN 201810192363 A CN201810192363 A CN 201810192363A CN 108374160 B CN108374160 B CN 108374160B
Authority
CN
China
Prior art keywords
titanium
doped diamond
flow
diamond film
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810192363.8A
Other languages
English (en)
Other versions
CN108374160A (zh
Inventor
徐健
张云龙
邓朝阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Zhongke Terahertz Technology Co.,Ltd.
Original Assignee
Nanjing Yuan Ting Environmental Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Yuan Ting Environmental Technology Co Ltd filed Critical Nanjing Yuan Ting Environmental Technology Co Ltd
Priority to CN201810192363.8A priority Critical patent/CN108374160B/zh
Publication of CN108374160A publication Critical patent/CN108374160A/zh
Application granted granted Critical
Publication of CN108374160B publication Critical patent/CN108374160B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/276Diamond only using plasma jets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/513Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明涉及一种钛基掺硼金刚石涂层的制备方法,包括(1)Ar、C离子轰击在钛表面形成TiC,避免钛氢合金层形成;(2)在TiC上沉积过渡层SiC以利于金刚石形核;(3)形核阶段用强磁场约束H离子,在工件表面获得较高的C/H比。同时辅以Ar、C离子轰击,使SiC表面金刚石相择优形成;(4)沉积阶段降低磁场强度,减少磁场对H离子的束缚,达到降低工件表面C/H比的目的,有利于掺硼金刚石涂层生长。本发明提供的方法在掺硼金刚石形核前,通过离子轰击避免脆性相钛氢合金层形成。在形核过程中以富C离子轰击,择优生成金刚石相,从而在钛基工件表面获得结合力强、金刚石相含量高的掺硼金刚石涂层。

Description

一种钛基掺硼金刚石涂层的制备方法
技术领域
本发明属于金刚石涂层制备领域,涉及一种在钛上沉积掺硼金刚石涂层的方法。
背景技术
二十一世纪初,随着掺硼金刚石涂层研究的深入,该材料在降解有机废水过程中展现了高效、广谱、长寿等特点,在水污染治理领域具有优异的应用前景。目前,国际上采用在硅基和铌基上通过热丝化学气相法沉积掺硼金刚石涂层。但是硅的不易加工性和铌的高昂价格都成为了掺硼金刚石电极材料推广应用的障碍。最新的研究热点是在钛基上沉积掺硼金刚石电极。然而,金属钛表面吸氢能力很强,会在表层形成钛氢合金层,该脆性相大幅度降低了掺硼金刚石涂层与钛基材的结合力,同时对金刚石的形核与生长都有不利影响。因此,在钛基上沉积结合力强、金刚石相含量高的掺硼金刚石成为一个难点。新的研究显示,离子轰击对于金刚石的形核具有特殊作用。热丝化学气相沉积技术是采用灯丝加热的方式,让工件达到发生化学反应的条件。该方法离化率低,即使在工件上施加负偏压,依旧无法获得理想的离子轰击效果。如何把离子轰击应用到钛基掺硼金刚石涂层的沉积中,充分发挥离子轰击的优点,避免其缺点,是获得结合力强、金刚石相含量高的钛基掺硼金刚石涂层的关键。
发明内容
为了解决上述问题,本发明提供了一种钛基掺硼金刚石涂层的制备方法,其涉及的装置包括:真空室,钛基工件,工件架,阳极,等离子体柱,阴极,电磁线圈组成的掺硼金刚石沉积系统,其制备步骤包括:
(1)将钛基工件安装在真空室中的工件架上,抽真空至背底真空;
(2)通入高纯Ar,调节Ar流量达到设定的真空度,在阴极和阳极间放电形成直流电弧伸展等离子体柱,调节弧电流至设定值;
(3)通入H2和CH4,调节H2流量和CH4流量达到设定真空度,在等离子体作用下形成Ar离子、C离子和H离子等;
(4)给电磁线圈施加磁场电流,在真空腔室中形成强磁场,在钛基工件表面形成高的C/H比;
(5)在钛基工件上施加负偏压,使得等离子柱外层的Ar离子、C离子轰击钛基工件表面,形成TiC富集层,并持续设定时间;
(6)关闭负偏压,通入设定的SiH4流量,持续设定时间,在TiC富集层上形成过渡层SiC;
(7)关闭SiH4,通入设定的B2H6流量,调节电磁线圈中的磁场电流,同时在钛基工件上施加负偏压,使得Ar、C等离子不断轰击钛基工件表面,择优生长金刚石相,该阶段持续设定时间;
(8)关闭负偏压,减小电磁线圈内的磁场电流以降低真空室内的磁场强度,调整H2,CH4,B2H6流量,通过控制沉积时间,获得预期厚度的掺硼金刚石涂层。
所述的一种钛基掺硼金刚石涂层的制备方法,其特征在于,步骤(1)所述的背底真空优于1Pa。
所述的一种钛基掺硼金刚石涂层的制备方法,其特征在于,步骤(2)所述的Ar流量为0.5~5SLM,真空度为100~500Pa,弧电流为80~200A。
所述的一种钛基掺硼金刚石涂层的制备方法,其特征在于,步骤(3)所述的H2流量为50~500sccm,CH4流量为5~100sccm,真空度为500~1500Pa。
所述的一种钛基掺硼金刚石涂层的制备方法,其特征在于,步骤(4)所述的磁场电流为40~60A。
所述的一种钛基掺硼金刚石涂层的制备方法,其特征在于,步骤(5)所述的负偏压为50~250V,设定时间为5~30min。
所述的一种钛基掺硼金刚石涂层的制备方法,其特征在于,步骤(6)所述的SiH4流量为5~100sccm,设定时间为5~30min。
所述的一种钛基掺硼金刚石涂层的制备方法,其特征在于,步骤(7)所述的B2H6流量为0.1~10sccm,磁场电流为40~60A,负偏压为100~250V,设定时间为5~180min。
所述的一种钛基掺硼金刚石涂层的制备方法,其特征在于,步骤(8)所述的磁场电流为10~30A,H2流量为10~500sccm,CH4流量为1~100sccm,B2H6流量为0.1~10sccm,沉积时间0.1~1000h。
本发明的技术方案是利用直流电弧等离子体化学气相沉积装置离化率高的特点,产生多种带电离子。利用强磁场选择有利的Ar离子和C离子对钛基材进行适当能量的轰击,Ti-H键(键能226.6kJ/mol)被打断,Ti-C键(键能423kJ/mol)被保留,钛基表面逐渐富集Ti-C键,在表面形成TiC富集层,同时轰击避免钛氢脆性相层的形成;再在其上沉积SiC层;利用强磁场约束H离子,使钛基材表面形成高的C/H比,提高形核密度;利用Ar离子和C离子轰击,提高金刚石核心中金刚石相的比例;最后降低磁场强度,使钛基材表面的C/H比降低,以获得结合力强、金刚石相含量高的掺硼金刚石涂层。
附图说明
附图为用于制备钛基掺硼金刚石涂层的装置示意图。
具体实施方式
下面对本发明作进一步描述:
实施例1:
在直流电弧等离子体化学气相沉积装置的工件架3上安装外径50毫米,壁厚2毫米,长300毫米的钛管2,钛管2中心距真空室中心70毫米。具体操作过程如下:1)用真空泵将真空室1的背底真空抽至1Pa以下。2)通入流量为1.5SLM的Ar,控制真空室真空度为300Pa。在阴极4和阳极6之间放电产生等离子体柱5,调节弧电流为100A。3)通入流量为200sccm的H2和流量为40sccm的CH4,调节真空度至1200Pa。4)调节磁线圈7的磁场电流至50A。5)旋转钛管2,并在钛管2上施加100V的负偏压,持续20分钟,制备TiC富集层。6)通入流量为30sccm的SiH4,调节钛管负偏压至0V,持续10分钟,沉积SiC过渡层。7)关闭SiH4,通入流量为5sccm的B2H6。维持磁线圈7磁场电流50A。调节钛管2负偏压至150V。进行掺硼金刚石的形核过程,持续时间60分钟。8)磁线圈7磁场电流减小至15A。调整H2流量为150sccm,CH4流量为20sccm,B2H6流量为2.5sccm,进行20小时的掺硼金刚石涂层的沉积。
本实施例中首先获得优于1Pa的真空环境。然后在50A磁场电流条件下选择Ar离子和C离子以100V负偏压的能量轰击钛管表面,打断Ti-H键,保留Ti-C键,获得TiC富集层,避免钛氢脆性相层的形成。接着在钛基材表层沉积20分钟SiC层作为金刚石形核基底;再施加50A的磁场电流,提高钛管表面的C/H比,从而提高金刚石的形核密度;同时,在钛管上施加150V的负偏压,利用适当能量的Ar离子和C离子轰击,去除C sp2键,保留C sp3键,提高金刚石核心中金刚石相的比例;最后降低磁场电流至15A,使钛基材表面的C/H比降低,以获得结合力强、金刚石相含量高的掺硼金刚石涂层。

Claims (9)

1.一种钛基掺硼金刚石涂层的制备方法,其涉及的装置包括:真空室(1),钛基工件(2),工件架(3),阳极(4),等离子体柱(5),阴极(6),电磁线圈(7)组成的掺硼金刚石沉积系统,其制备步骤包括:
(1)将钛基工件(2)安装在真空室(1)中的工件架(3)上,抽真空至背底真空;
(2)通入高纯Ar,调节Ar流量达到设定的真空度,在阴极(6)和阳极(4)间放电形成直流电弧伸展等离子体柱(5),调节弧电流至设定值;
(3)通入H2和CH4,调节H2流量和CH4流量达到设定真空度,在等离子体作用下形成Ar离子、C离子和H离子等;
(4)给电磁线圈(7)施加磁场电流,在真空腔室中形成强磁场,在钛基工件(2)表面形成高的C/H比;
(5)在钛基工件(2)上施加负偏压,使得等离子柱(5)外层的Ar离子、C离子轰击钛基工件(2)表面,形成TiC富集层,并持续设定时间;
(6)关闭负偏压,通入设定的SiH4流量,持续设定时间,在TiC富集层上形成过渡层SiC;
(7)关闭SiH4,通入设定的B2H6流量,调节电磁线圈(7)中的磁场电流,同时在钛基工件(2)上施加负偏压,使得Ar、C等离子不断轰击钛基工件(2)表面,择优生长金刚石相,该阶段持续设定时间;
(8)关闭负偏压,减小电磁线圈(7)内的磁场电流以降低真空室(1)内的磁场强度,调整H2,CH4,B2H6流量,通过控制沉积时间,获得预期厚度的掺硼金刚石涂层。
2.根据权利要求1所述的一种钛基掺硼金刚石涂层的制备方法,其特征在于,步骤(1)所述的背底真空优于1Pa。
3.根据权利要求1所述的一种钛基掺硼金刚石涂层的制备方法,其特征在于,步骤(2)所述的Ar流量为0.5~5SLM,真空度为100~500Pa,弧电流为80~200A。
4.根据权利要求1所述的一种钛基掺硼金刚石涂层的制备方法,其特征在于,步骤(3)所述的H2流量为50~500sccm,CH4流量为5~100sccm,真空度为500~1500Pa。
5.根据权利要求1所述的一种钛基掺硼金刚石涂层的制备方法,其特征在于,步骤(4)所述的磁场电流为40~60A。
6.根据权利要求1所述的一种钛基掺硼金刚石涂层的制备方法,其特征在于,步骤(5)所述的负偏压为50~250V,设定时间为5~30min。
7.根据权利要求1所述的一种钛基掺硼金刚石涂层的制备方法,其特征在于,步骤(6)所述的SiH4流量为5~100sccm,设定时间为5~30min。
8.根据权利要求1所述的一种钛基掺硼金刚石涂层的制备方法,其特征在于,步骤(7)所述的B2H6流量为0.1~10sccm,磁场电流为40~60A,负偏压为100~250V,设定时间为5~180min。
9.根据权利要求1所述的一种钛基掺硼金刚石涂层的制备方法,其特征在于,步骤(8)所述的磁场电流为10~30A,H2流量为10~500sccm,CH4流量为1~100sccm,B2H6流量为0.1~10sccm,沉积时间0.1~1000h。
CN201810192363.8A 2018-03-08 2018-03-08 一种钛基掺硼金刚石涂层的制备方法 Active CN108374160B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810192363.8A CN108374160B (zh) 2018-03-08 2018-03-08 一种钛基掺硼金刚石涂层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810192363.8A CN108374160B (zh) 2018-03-08 2018-03-08 一种钛基掺硼金刚石涂层的制备方法

Publications (2)

Publication Number Publication Date
CN108374160A CN108374160A (zh) 2018-08-07
CN108374160B true CN108374160B (zh) 2019-10-22

Family

ID=63018672

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810192363.8A Active CN108374160B (zh) 2018-03-08 2018-03-08 一种钛基掺硼金刚石涂层的制备方法

Country Status (1)

Country Link
CN (1) CN108374160B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112030133B (zh) * 2020-11-06 2021-03-23 上海征世科技有限公司 一种金刚石及其制备方法和应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5645900A (en) * 1993-04-22 1997-07-08 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Diamond composite films for protective coatings on metals and method of formation
US6613442B2 (en) * 2000-12-29 2003-09-02 Lam Research Corporation Boron nitride/yttria composite components of semiconductor processing equipment and method of manufacturing thereof
JP6110126B2 (ja) * 2012-12-19 2017-04-05 太陽誘電ケミカルテクノロジー株式会社 非磁性体からなる中間層上に形成された薄膜
CN103397314B (zh) * 2013-08-15 2015-06-17 王涛 一种金刚石涂层刀具的制备方法及该方法所得金刚石涂层刀具在印刷线路板制备中的应用
CN103695863B (zh) * 2013-12-09 2016-04-13 四川大学 一种掺硼金刚石膜/碳膜复合电极材料的制备方法
CN106435518B (zh) * 2016-10-21 2018-07-17 中南大学 一种高比表面积硼掺杂金刚石电极及其制备方法和应用
CN105887038A (zh) * 2016-04-15 2016-08-24 天津理工大学 一种掺硼金刚石刻蚀的方法

Also Published As

Publication number Publication date
CN108374160A (zh) 2018-08-07

Similar Documents

Publication Publication Date Title
CN108149219B (zh) 一种金刚石复合涂层刀具及其制备方法
CN111748789B (zh) 一种石墨阴极弧增强辉光放电沉积纯dlc的装置及其方法
CN111364017B (zh) 一种氮化铝薄膜及其制备方法和用途
TW200400552A (en) Method for passivating a semiconductor substrate
CN112853482B (zh) 一种微波等离子体-磁控溅射复合气相沉积原位制备100面金刚石的方法及设备
WO2021109377A1 (zh) 用于制备dlc的镀膜设备及其应用
CN108277474A (zh) 一种在管状工件内壁沉积高品质金刚石涂层的方法
CN108374160B (zh) 一种钛基掺硼金刚石涂层的制备方法
CN103708444A (zh) 石墨烯薄膜的制备方法及设备
CN108677144A (zh) 一种制备铝氮共掺类金刚石复合薄膜的方法
CN107740068A (zh) 一种在不锈钢表面沉积金刚石薄膜的新方法
CN112063975A (zh) 一种通过调制强流脉冲电弧制备ta-C涂层的方法
CN114703452A (zh) 一种CoCrFeNi高熵合金掺杂非晶碳薄膜及其制备方法
CN100395371C (zh) 微波等离子体增强弧辉渗镀涂层的装置及工艺
CN111826612B (zh) 基于氢储运装备内表面的阻氢涂层及制备方法
CN1059716C (zh) 射频化学气相沉积法合成β-C3N4超硬薄膜材料
MXPA03008426A (es) Proceso y dispositivo para la deposicion de una capa de silicio al menos parcialmente cristalino sobre un substrato.
Van de Sanden et al. Deposition of a-Si: H and aC: H using an expanding thermal arc plasma
CN113151797B (zh) 一种基于硬质合金表面镀ta-C膜的离子清洗工艺
CN208856962U (zh) 掺硼金刚石/石墨复合电极、双电池反应器
Dong et al. Effects of discharge voltage on the characteristics of aC: H films prepared by H-assisted Plasma CVD method
CN109837522A (zh) 一种红外光学元件表面成型类金刚石膜镀膜工艺
JP3898622B2 (ja) 炭素膜形成方法及びその装置、並びに炭素膜及びその炭素膜を被覆された製造物
CN203639159U (zh) 石墨烯薄膜的制备设备
CN114807851A (zh) 一种利用磁控溅射技术制备氢化硅碳薄膜涂层的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20220907

Address after: Room 1602, 16th Floor, Building 14 (Block G), No. 8 Beichen East Road, Chaoyang District, Beijing 100101

Patentee after: Beijing Zhongke Terahertz Technology Co.,Ltd.

Address before: No. 1009, Tianyuan East Road, High-tech Park, Jiangning District, Nanjing City, Jiangsu Province, 211121

Patentee before: NANJING YUANTING ENVIRONMENTAL TECHNOLOGY Co.,Ltd.

TR01 Transfer of patent right