CN108360250A - 一种原位合成碳纳米管改性碳纤维增强树脂基结构-阻尼复合材料的制备方法 - Google Patents

一种原位合成碳纳米管改性碳纤维增强树脂基结构-阻尼复合材料的制备方法 Download PDF

Info

Publication number
CN108360250A
CN108360250A CN201810114081.6A CN201810114081A CN108360250A CN 108360250 A CN108360250 A CN 108360250A CN 201810114081 A CN201810114081 A CN 201810114081A CN 108360250 A CN108360250 A CN 108360250A
Authority
CN
China
Prior art keywords
carbon fiber
carbon
conditions
under
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810114081.6A
Other languages
English (en)
Inventor
何芳
闫德道
赵乃勤
师春生
何春年
李家俊
刘恩佐
马丽颖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201810114081.6A priority Critical patent/CN108360250A/zh
Publication of CN108360250A publication Critical patent/CN108360250A/zh
Pending legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/73Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
    • D06M11/74Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof with carbon or graphite; with carbides; with graphitic acids or their salts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/58Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with nitrogen or compounds thereof, e.g. with nitrides
    • D06M11/64Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with nitrogen or compounds thereof, e.g. with nitrides with nitrogen oxides; with oxyacids of nitrogen or their salts
    • D06M11/65Salts of oxyacids of nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/40Fibres of carbon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

本发明涉及一种原位合成碳纳米管改性碳纤维增强树脂基结构‑阻尼复合材料的制备方法,包括下列的步骤:1)碳纤维表面去胶;2)以Fe(NO3)3为纳米金属催化剂的前躯体,制备催化剂前躯体溶液;3)将碳纤维浸泡在催化剂前躯体溶液中0.5‑1h,取出在90‑120℃的条件下烘干0.5‑1h;4)将烘干的碳纤维置于管式炉中,在氩气240‑400sccm条件下加热到250‑450℃,氢气150‑200sccm条件下保温还原2‑4h,氩气240‑400sccm条件下加热到560‑800℃,通入乙炔20‑40sccm保温0.5‑1h。

Description

一种原位合成碳纳米管改性碳纤维增强树脂基结构-阻尼复 合材料的制备方法
技术领域
本发明属于复合材料领域,具体涉及一种碳纤维表面原位合成碳纳米管的方法。
背景技术
阻尼材料是当下研究的热点,和其他阻尼材料相比碳纤维复合材料具有以下优点:1.环氧树脂复合材料的抗拉强度高达3500Mpa以上。2.并且碳纤维具有高的比强度和高的比模量,其比强度高达2000Mpa/(g/cm3)以上。3.相比于金属阻尼材料,其具有优异的耐腐蚀性能和良好的加工性。但是碳纤维复合材料作为结构材料也有一些缺点:1.碳纤维复合材料的阻尼性能较差,在周期性载荷作用的情况下,容易造成材料的疲劳损伤,降低系统的稳定性。2.碳纤维复合材料的修复工艺复杂。
大量文献表明,人们对提高碳纤维复合材料阻尼性能的手段主要集中在:将粘弹性材料嵌入到碳纤维复合材料中、与高粘弹性材料共固化和碳纤维表面改性三个方面。将粘弹性材料嵌入到碳纤维复合材料中的方法主要是在碳纤维复合材料的表面添加例如橡胶这种具有高粘弹性的高分子材料,使得振动能在传播的过程中大部分耗散在阻尼层中。共固化的方法是将碳纤维铺层之间添加高阻尼性能的热塑性材料,然后加热使纤维与阻尼层形成互穿网络,提高碳纤维复合材料的阻尼性能。碳纤维界面改性法主要是通过气相氧化法,液相氧化法和化学气相沉积法增加碳纤维表面的含氧官能团,改善碳纤维与树脂基体的结合性,增强纤维与树脂之间界面的强度,提高载荷在界面处传递的能力,提高材料的力学性能和阻尼性能。
前文提到的提高碳纤维复合材料阻尼性能的研究中,碳纤维表面改性的方法是比较有效的方法。碳纤维表面改性的方法较多,通常可以通过液相氧化法,气相氧化法,电化学去理法和化学气相沉积法等方法对碳纤维表面进行处理,提高碳纤维表面的基团改善复合材料的力学性能。碳纳米管作为一种纳米增强体,具有高的强度、弹性和比表面积等优异的力学性能。将碳纳米管添加到碳纤维表面,可以显著的改善碳纤维与树脂基体的结合性。并且在周期性载荷的作用下,碳纳米管在复合材料中会发生滑移变形,耗散大量的振动能显著的提高材料阻尼性能。通过化学气相沉积法可以有效的将碳纳米管修饰到碳纤维的表面,但是通常使用的化学气相沉积法工艺繁琐且过程中会使用具有毒性的液体碳源和催化剂前躯体溶液,因此我们需要找到更简单安全绿色的方法将碳纳米管均匀的修饰到碳纤维的表面上。
发明内容
本发明的目的是提供一种原位合成碳纳米管改性碳纤维增强树脂基结构-阻尼复合材料的制备方法,以为了解决碳纳米管在树脂基体中团聚的问题,本发明提供的是一种利用Fe(NO3)3溶液处理碳纤维,经过氢气还原后利用气体碳源在碳纤维表面原位合成取向性的碳纳米管方法,显著的提高了碳纤维复合材料的阻尼性能。本发明的技术方案如下:
一种原位合成碳纳米管改性碳纤维增强树脂基结构-阻尼复合材料的制备方法,包括下列的步骤:
1)碳纤维表面去胶;
2)以Fe(NO3)3为纳米金属催化剂的前躯体,制备催化剂前躯体溶液:将Fe(NO3)3溶解在无水乙醇中,形成0.005-0.05mol/L的溶液;
3)将碳纤维浸泡在催化剂前躯体溶液中0.5-1h,取出在90-120℃的条件下烘干0.5-1h;
4)将烘干的碳纤维置于管式炉中,在氩气240-400sccm条件下加热到250-450℃,氢气150-200sccm条件下保温还原2-4h,氩气240-400sccm条件下加热到560-800℃,通入乙炔20-40sccm保温0.5-1h。
5)将沉积碳纳米管的碳纤维与环氧树脂复合生成碳纤维复合材料。
步骤1中,将碳纤维浸泡在丙酮溶液中8-12h,将纤维取出后超声处理0.5-1h,用去离子水清洗干净90-120℃烘干4-8h。
综上所述,本发明的核心是配置纳米金属催化剂前躯体溶液,在通过烘干,还原和气体碳源裂解在碳纤维表面均匀的沉积一层碳纳米管。与现有的技术相比,本发明的优点在于:
(1)本发明通过化学气相沉积法在碳纤维表面合成分布均匀的有一定取向的碳纳米管。
(2)本发明制备的碳纤维复合材料,显著的提高了碳纤维复合材料的阻尼性能。
(3)本发明制备设备简单,工艺简便。
(4)本发明可靠性高,可重复性强,有良好的应用前景。
附图说明
图1为沉积碳纳米管前后的碳纤维表面形貌SEM图。
图2为碳纤维表面的碳纳米管的TEM图。
图3为本发明所制备的碳纤维复合材料的自由振动衰减曲线及频率响应曲线。
具体实施方式
大量的文献表明Fe、Co、Ni的纳米金属颗粒都有催化碳纳米管的作用,金属纳米颗粒可以通过氢气还原金属的盐溶液得到,并且在通入气体碳源的过程中,纳米金属颗粒催化碳纳米管的生长。目前还没有报道用Fe的金属盐溶液处理碳纤维,经过氢气还原后利用气体碳源在碳纤维表面原位合成碳纳米管的文献和专利。本发明利用Fe的金属盐溶液处理碳纤维,经过氢气还原后利用气体碳源在碳纤维表面原位合成碳纳米管的方法将碳纳米管均匀的修饰到碳纤维表面,有效的提高碳纤维复合材料的阻尼性能。下面结合实施例对本发明进行说明。
实施例1
将碳纤维浸泡在丙酮溶液中,静置8小时,取出碳纤维置于去离子水中超声30min,之后用去离子水清洗干净置于90℃的环境中烘干8小时;0.202g的Fe(NO3)3溶解在100ml无水乙醇中,搅拌30min;将配好的溶液涂覆在烘干后的碳纤维表面,之后将碳纤维置于90℃条件下烘干30min;烘干后的碳纤维置于管式炉中,然后将Ar以240sccm通入管式炉中,将炉温以10℃/min升温到250℃停止通入Ar,将H2以150sccm通入管式炉中并保温1小时,在的气氛下将炉温以10℃/min升温到450℃并保温1小时,停止通H2,将Ar以240sccm通入管式炉中,炉温以10℃/min升温到600℃后通入C2H2,并保温1小时。将沉积碳纳米管的碳纤维与环氧树脂复合生成碳纤维复合材料。
实施例2
将碳纤维浸泡在丙酮溶液中,静置8小时,取出碳纤维置于去离子水中超声30min,之后用去离子水清洗干净置于90℃的环境中烘干8小时;0.404g的Fe(NO3)3溶解在100ml无水乙醇中,搅拌30min;将配好的溶液涂覆在烘干后的碳纤维表面,之后将碳纤维置于90℃条件下烘干30min;烘干后的碳纤维置于管式炉中,然后将Ar以240sccm通入管式炉中,将炉温以10℃/min升温到250℃停止通入Ar,将H2以150sccm通入管式炉中并保温1小时,在的气氛下将炉温以10℃/min升温到450℃并保温1小时,停止通H2,将Ar以240sccm通入管式炉中,炉温以10℃/min升温到600℃后通入C2H2,并保温1小时。将沉积碳纳米管的碳纤维与环氧树脂复合生成碳纤维复合材料。
实施例3
将碳纤维浸泡在丙酮溶液中,静置8小时,取出碳纤维置于去离子水中超声30min,之后用去离子水清洗干净置于90℃的环境中烘干8小时;0.808g的Fe(NO3)3溶解在100ml无水乙醇中,搅拌30min;将配好的溶液涂覆在烘干后的碳纤维表面,之后将碳纤维置于90℃条件下烘干30min;烘干后的碳纤维置于管式炉中,然后将Ar以240sccm通入管式炉中,将炉温以10℃/min升温到250℃停止通入Ar,将H2以150sccm通入管式炉中并保温1小时,在的气氛下将炉温以10℃/min升温到450℃并保温1小时,停止通H2,将Ar以240sccm通入管式炉中,炉温以10℃/min升温到600℃后通入C2H2,并保温1小时。将沉积碳纳米管的碳纤维与环氧树脂复合生成碳纤维复合材料。
对照样
将碳纤维浸泡在丙酮溶液中,静置8小时,取出碳纤维置于去离子水中超声30min,之后用去离子水清洗干净置于90℃的环境中烘干8小时,碳纤维与环氧树脂复合的碳纤维复合材料。

Claims (2)

1.一种原位合成碳纳米管改性碳纤维增强树脂基结构-阻尼复合材料的制备方法,包括下列的步骤:
1)碳纤维表面去胶;
2)以Fe(NO3)3为纳米金属催化剂的前躯体,制备催化剂前躯体溶液:将Fe(NO3)3溶解在无水乙醇中,形成0.005-0.05mol/L的溶液;
3)将碳纤维浸泡在催化剂前躯体溶液中0.5-1h,取出在90-120℃的条件下烘干0.5-1h;
4)将烘干的碳纤维置于管式炉中,在氩气240-400sccm条件下加热到250-450℃,氢气150-200sccm条件下保温还原2-4h,氩气240-400sccm条件下加热到560-800℃,通入乙炔20-40sccm保温0.5-1h。
5)将沉积碳纳米管的碳纤维与环氧树脂复合生成碳纤维复合材料。
2.根据权利要求1所述的方法,其特征在于,步骤1中,将碳纤维浸泡在丙酮溶液中8-12h,将纤维取出后超声处理0.5-1h,用去离子水清洗干净90-120℃烘干4-8h。
CN201810114081.6A 2018-02-05 2018-02-05 一种原位合成碳纳米管改性碳纤维增强树脂基结构-阻尼复合材料的制备方法 Pending CN108360250A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810114081.6A CN108360250A (zh) 2018-02-05 2018-02-05 一种原位合成碳纳米管改性碳纤维增强树脂基结构-阻尼复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810114081.6A CN108360250A (zh) 2018-02-05 2018-02-05 一种原位合成碳纳米管改性碳纤维增强树脂基结构-阻尼复合材料的制备方法

Publications (1)

Publication Number Publication Date
CN108360250A true CN108360250A (zh) 2018-08-03

Family

ID=63004437

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810114081.6A Pending CN108360250A (zh) 2018-02-05 2018-02-05 一种原位合成碳纳米管改性碳纤维增强树脂基结构-阻尼复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN108360250A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109181228A (zh) * 2018-08-24 2019-01-11 天津大学 一种多巴胺包覆碳纳米管改性碳纤维增强树脂基结构-阻尼复合材料的制备方法
CN109252359A (zh) * 2018-08-23 2019-01-22 天津大学 一种固体碳源原位生长碳纳米管改性碳纤维增强树脂基电磁屏蔽复合材料的制备方法
CN109610159A (zh) * 2018-12-20 2019-04-12 山东大学 一种使用双金属催化剂在碳纤维织物表面催化生长碳纳米管的制备方法
CN113753877A (zh) * 2021-10-13 2021-12-07 山东大学 一种在碳纤维表面沉积螺旋碳纳米管的制备方法及应用
CN114232329A (zh) * 2021-10-25 2022-03-25 西安航空学院 B4c@cnt纳米线复合材料的制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007126311A (ja) * 2005-11-01 2007-05-24 Sonac Kk カーボンファイバの製造方法および触媒基板
CN101365740A (zh) * 2005-11-28 2009-02-11 夏威夷大学 三维增强多功能纳米复合材料
CN102330328A (zh) * 2011-06-13 2012-01-25 中国科学院上海硅酸盐研究所 一种三维纤维/碳纳米管多级增强体及其制备方法
CN102351166A (zh) * 2011-06-30 2012-02-15 中国科学院上海硅酸盐研究所 一种直接在碳纤维表面生长碳纳米管的方法
JP2012046369A (ja) * 2010-08-26 2012-03-08 Sunstar Engineering Inc 炭素繊維強化炭素複合材料及びその製造方法
CN103088648A (zh) * 2013-01-25 2013-05-08 中国科学院新疆生态与地理研究所 一种复合纳米结构碳纤维材料的制备方法
CN103496688A (zh) * 2013-09-18 2014-01-08 西南交通大学 一种制备碳系三元网络复合材料的方法
CN104532548A (zh) * 2015-01-29 2015-04-22 中国兵器工业集团第五三研究所 一种碳纤维表面原位生长碳纳米管的方法
CN104831252A (zh) * 2015-04-02 2015-08-12 中南大学 炭纤维纸单面原位气相生长碳纳米纤维复合结构的制备方法及其应用
CN106207132A (zh) * 2016-08-31 2016-12-07 深圳博磊达新能源科技有限公司 一种钛酸锂/碳纤维/碳纳米管/石墨烯四元复合材料的制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007126311A (ja) * 2005-11-01 2007-05-24 Sonac Kk カーボンファイバの製造方法および触媒基板
CN101365740A (zh) * 2005-11-28 2009-02-11 夏威夷大学 三维增强多功能纳米复合材料
JP2012046369A (ja) * 2010-08-26 2012-03-08 Sunstar Engineering Inc 炭素繊維強化炭素複合材料及びその製造方法
CN102330328A (zh) * 2011-06-13 2012-01-25 中国科学院上海硅酸盐研究所 一种三维纤维/碳纳米管多级增强体及其制备方法
CN102351166A (zh) * 2011-06-30 2012-02-15 中国科学院上海硅酸盐研究所 一种直接在碳纤维表面生长碳纳米管的方法
CN103088648A (zh) * 2013-01-25 2013-05-08 中国科学院新疆生态与地理研究所 一种复合纳米结构碳纤维材料的制备方法
CN103496688A (zh) * 2013-09-18 2014-01-08 西南交通大学 一种制备碳系三元网络复合材料的方法
CN104532548A (zh) * 2015-01-29 2015-04-22 中国兵器工业集团第五三研究所 一种碳纤维表面原位生长碳纳米管的方法
CN104831252A (zh) * 2015-04-02 2015-08-12 中南大学 炭纤维纸单面原位气相生长碳纳米纤维复合结构的制备方法及其应用
CN106207132A (zh) * 2016-08-31 2016-12-07 深圳博磊达新能源科技有限公司 一种钛酸锂/碳纤维/碳纳米管/石墨烯四元复合材料的制备方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109252359A (zh) * 2018-08-23 2019-01-22 天津大学 一种固体碳源原位生长碳纳米管改性碳纤维增强树脂基电磁屏蔽复合材料的制备方法
CN109181228A (zh) * 2018-08-24 2019-01-11 天津大学 一种多巴胺包覆碳纳米管改性碳纤维增强树脂基结构-阻尼复合材料的制备方法
CN109610159A (zh) * 2018-12-20 2019-04-12 山东大学 一种使用双金属催化剂在碳纤维织物表面催化生长碳纳米管的制备方法
CN109610159B (zh) * 2018-12-20 2020-03-20 山东大学 一种使用双金属催化剂在碳纤维织物表面催化生长碳纳米管的制备方法
CN113753877A (zh) * 2021-10-13 2021-12-07 山东大学 一种在碳纤维表面沉积螺旋碳纳米管的制备方法及应用
CN113753877B (zh) * 2021-10-13 2023-08-08 山东大学 一种在碳纤维表面沉积螺旋碳纳米管的制备方法及应用
CN114232329A (zh) * 2021-10-25 2022-03-25 西安航空学院 B4c@cnt纳米线复合材料的制备方法
CN114232329B (zh) * 2021-10-25 2023-07-04 西安航空学院 B4c@cnt纳米线复合材料的制备方法

Similar Documents

Publication Publication Date Title
CN108360250A (zh) 一种原位合成碳纳米管改性碳纤维增强树脂基结构-阻尼复合材料的制备方法
Ma et al. Interfacial enhancement of carbon fiber composites by growing TiO2 nanowires onto amine-based functionalized carbon fiber surface in supercritical water
Sharma et al. Impact behavior and fractographic study of carbon nanotubes grafted carbon fiber-reinforced epoxy matrix multi-scale hybrid composites
CN105152671B (zh) SiCf/SiC复合材料的界面改性方法
CN109181228A (zh) 一种多巴胺包覆碳纳米管改性碳纤维增强树脂基结构-阻尼复合材料的制备方法
Liao et al. Interface enhancement of glass fiber reinforced vinyl ester composites with flame-synthesized carbon nanotubes and its enhancing mechanism
CN104150939B (zh) 一种电泳沉积CNTs增强陶瓷基复合材料的制备方法
CN101649508B (zh) 一种高强度碳纤维的制备方法
Yan et al. Radiation resistance of carbon fiber-reinforced epoxy composites optimized synergistically by carbon nanotubes in interface area/matrix
Fang et al. Strong and flaw-insensitive two-dimensional covalent organic frameworks
CN102330328A (zh) 一种三维纤维/碳纳米管多级增强体及其制备方法
Li et al. Improving the oxidation resistance of carbon/carbon composites at low temperature by controlling the grafting morphology of carbon nanotubes on carbon fibres
Zhang et al. Performance of composites via multiple interface engineering techniques: plasma etching, UV-induced grafting and nanotube deposition
Sun et al. A two-step method for high efficient and continuous carbon fiber treatment with enhanced fiber strength and interfacial adhesion
CN111572115B (zh) 具有高疲劳强度的cf/peek复合材料及其制备方法
Park et al. Surface treatment and sizing of carbon fibers
Sharma et al. Comparative study of the effect of fiber surface treatments on the flexural and interlaminar shear strength of carbon fiber-reinforced composites
CN108329056A (zh) 一种补强连续纤维增强陶瓷基复合材料表面的方法
CN106930094B (zh) 一种碳纤维复合材料界面层的制备方法
Li et al. Multiscale interfacial enhancement of surface grown carbon nanotubes carbon fiber composites
Ma et al. Constructing “soft‐stiff” structure on the surface of carbon fiber to enhance the interfacial properties of its epoxy composites
Sharma et al. Advanced Carbon–Carbon Composites: Processing Properties and Applications
BR112013027543B1 (pt) método de tratamento de superfície para um material de metal
Ma et al. Organic–inorganic interface enhancement for boosting mechanical and tribological performances of carbon fiber reinforced composites
CN105668543B (zh) 一种碳纳米管增强碳材料粘结强度的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180803