CN108352811A - 三线压控振荡器 - Google Patents

三线压控振荡器 Download PDF

Info

Publication number
CN108352811A
CN108352811A CN201680063093.XA CN201680063093A CN108352811A CN 108352811 A CN108352811 A CN 108352811A CN 201680063093 A CN201680063093 A CN 201680063093A CN 108352811 A CN108352811 A CN 108352811A
Authority
CN
China
Prior art keywords
inductor
grid
nmos transistor
pmos transistors
coupled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201680063093.XA
Other languages
English (en)
Other versions
CN108352811B (zh
Inventor
萨钦·卡利亚
斯瓦米纳坦·桑卡兰
布拉德利·A·克拉梅尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texas Instruments Inc
Original Assignee
Texas Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texas Instruments Inc filed Critical Texas Instruments Inc
Publication of CN108352811A publication Critical patent/CN108352811A/zh
Application granted granted Critical
Publication of CN108352811B publication Critical patent/CN108352811B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1206Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device using multiple transistors for amplification
    • H03B5/1212Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device using multiple transistors for amplification the amplifier comprising a pair of transistors, wherein an output terminal of each being connected to an input terminal of the other, e.g. a cross coupled pair
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1228Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device the amplifier comprising one or more field effect transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1206Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device using multiple transistors for amplification
    • H03B5/1212Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device using multiple transistors for amplification the amplifier comprising a pair of transistors, wherein an output terminal of each being connected to an input terminal of the other, e.g. a cross coupled pair
    • H03B5/1215Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device using multiple transistors for amplification the amplifier comprising a pair of transistors, wherein an output terminal of each being connected to an input terminal of the other, e.g. a cross coupled pair the current source or degeneration circuit being in common to both transistors of the pair, e.g. a cross-coupled long-tailed pair
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1237Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator
    • H03B5/124Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator the means comprising a voltage dependent capacitance
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1237Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator
    • H03B5/124Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator the means comprising a voltage dependent capacitance
    • H03B5/1243Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator the means comprising a voltage dependent capacitance the means comprising voltage variable capacitance diodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1237Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator
    • H03B5/1275Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator having further means for varying a parameter in dependence on the frequency
    • H03B5/1278Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator having further means for varying a parameter in dependence on the frequency the parameter being an amplitude of a signal, e.g. maintaining a constant output amplitude over the frequency range
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1296Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device the feedback circuit comprising a transformer

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)

Abstract

在用于提供振荡输出信号(vout)的压控振荡器VCO(30)的所描述实例中,所述VCO(30)包含第一电感器(I1),且所述振荡输出信号(vout)响应于通过所述第一电感器(I1)的变化电流。所述VCO(30)还包含:第二电感器(I2),其接近所述第一电感器(I1)且耦合到第一交叉耦合级(36、38);以及第三电感器(I3),其接近所述第一电感器(I1)且耦合到第二交叉耦合级(42、44)。

Description

三线压控振荡器
技术领域
本发明大体上涉及压控振荡器(VCO)技术,且更具体地说,涉及具有三线(trifilar)电感线圈的VCO。
背景技术
VCO是一种以由施加到VCO的输入电压的电平控制的频率输出振荡信号的装置(即,振荡器)。因此,理想的是,到VCO的固定DC输入电压应产生固定输出频率信号,但是所述输入电压还可变化以使VCO输出频率变化。因此,关于VCO输出频率,可施加调制输入信号以使VCO以调制频率(或相位)输出信号。
作为进一步的背景知识,图1说明大体上以10示出的常规VCO的示意图。VCO 10包含偏置控制电路12,所述偏置控制电路12可根据用于偏置VCO 10的已知原理构建,如下文进一步研究。从偏置控制电路12的一个连接是到第一nMOS晶体管14的栅极,所述第一nMOS晶体管14使它的源极连接到接地。第一nMOS晶体管14的漏极连接到第二nMOS晶体管16的源极和第三nMOS晶体管18的源极。
VCO 10还包含变换器20,其以虚线方框示出且包含第一电感器I1和第二电感器I2,其中根据熟知的点规定示出电感器I1和I2之间的极性。电感器I1的第一端子T1I1连接到nMOS晶体管16的漏极,电感器I1的第二端子T2I1连接到nMOS晶体管18的漏极,且电感器I1的中心抽头连接到示出为VDD的固定电压电位。电感器I2的第一端子T1I2连接到第三nMOS晶体管18的栅极,电感器I2的第二端子T2I2连接到第二nMOS晶体管16的栅极,且电感器I2的中心抽头连接到偏置控制电路18。提供振荡器输出信号vout作为第二nMOS晶体管16和第三nMOS晶体管18的相应漏极之间的差分信号。
一般来说,在操作中,VCO 10基于变换器20的电感和寄生电容、nMOS晶体管16和18的寄生电容以及来自偏置控制电路12的偏压,提供vout的频率响应,从而基于nMOS晶体管14的偏置进一步控制对vout的促成作用。因此,能量在电感和电容之间振荡,从而产生振荡输出vout。在电路中,还存在电阻(其自身将易于减弱电路的响应),但是VCO 10具有负电导(有时也被称作-R)以补偿此电阻。在VCO 10中,通过由nMOS晶体管16和18关于电感器I2的交叉耦合配置提供的正反馈实现负电导。更具体地说,电感器I1的电感与电容组合以提供谐振输出,同时还将信号诱导到电感器I2中,所述电感器I2是交叉耦合的并由此向nMOS晶体管16和18的栅极提供同相正反馈,从而维持vout。
上述和相关方法服务于各种需要,但是它们同样具有各种缺点。例如,当VCO 10实施在(例如,硅)集成电路中时,通常使用后端金属工艺的不同层构建变换器电感器。因此,对于两个电感器变换器,每一电感器通常建构在单独的金属层中,从而消耗相当大数量的二维面积,其中对于众多装置和应用来说,面积本身就可为关键设计考虑因素。此外,在已指定用于VCO的此类变换器面积的情况下,希望具有各种性能量度。第一且关键的此类量度是所消耗的功率。第二量度是相位噪声,所述相位噪声是关于给定偏压的vout频率的准确性的优值,其中此类准确性还包含在给定偏压下围绕预期频调抖动的敏感性。
发明内容
在用于提供振荡输出信号的压控振荡器(VCO)的所描述实例中,VCO包含第一电感器,且振荡输出信号响应于通过第一电感器的变化电流。VCO还包含:第二电感器,其接近第一电感器且耦合到第一交叉耦合级;以及第三电感器,其接近第一电感器且耦合到第二交叉耦合级。
附图说明
图1说明常规压控振荡器的电气示意图。
图2说明根据实例实施例的压控振荡器的电气示意图。
图3A说明一个实例实施例压控振荡器中的三个电感器的分解透视图。
图3B说明一个实例实施例压控振荡器中的三个电感器的截面图。
图4利用几个额外的所说明方面再次说明图2的VCO。
具体实施方式
图2说明大体上以30示出的实例实施例压控振荡器(VCO)的示意图。VCO 30包含偏置控制电路32,所述偏置控制电路32可根据用于偏置VCO,且更具体地说用于偏置VCO 30的已知原理构建,如下文进一步研究。从偏置控制电路32的一个连接是到第一nMOS晶体管34的栅极,所述第一nMOS晶体管34使它的源极连接到参考电位,例如接地。第一nMOS晶体管34的漏极连接到第二nMOS晶体管36的源极和第三nMOS晶体管38的源极。从偏置控制电路32的另一连接是到第一pMOS晶体管40的栅极,所述第一pMOS晶体管40使它的源极连接到标示为VDD的固定供应电压。第一pMOS晶体管40的漏极连接到第二pMOS晶体管42的源极和第三pMOS晶体管44的源极。
VCO 30还包含三线变换器30,其是具有如虚线方框示出的三个不同电感器线圈且包含第一电感器I1、第二电感器I2和第三电感器I3的变换器,其中根据熟知的点规定示出电感器I1、I2和I3之间的极性。电感器I1的第一端子T1I1连接到第二nMOS晶体管36的漏极,电感器I1的第二端子T2I1连接到第三nMOS晶体管38的漏极,且电感器I1的中心抽头(或替代地,它的端子之间的某一其它中间点)连接到偏置控制电路32。电感器I2的第一端子T1I2连接到第三nMOS晶体管38的栅极,电感器I2的第二端子T2I2连接到第二nMOS晶体管36的栅极,且电感器I2的中心抽头(或替代地,它的端子之间的某一其它中间点)连接到偏置控制电路32。电感器I3的第一端子T1I3连接到第三pMOS晶体管44的栅极,电感器I3的第二端子T2I3连接到第二pMOS晶体管42的栅极,且电感器I3的中心抽头(或替代地,它的端子之间的某一其它中间点)连接到偏置控制电路32。第二pMOS晶体管42的漏极连接到第二nMOS晶体管36的漏极以及端子T1I1。第三pMOS晶体管44的漏极连接到第三nMOS晶体管38的漏极以及端子T2I1。提供振荡器输出信号vout作为端子T1I1(即,与第二nMOS晶体管36和第二pMOS晶体管42的漏极相同的节点)和端子T2I1(即,与第三nMOS晶体管38和第三pMOS晶体管44的漏极相同的节点)之间的差分信号。
一般来说,在操作中,VCO 30基于变换器30的电感和寄生、nMOS晶体管36和38及pMOS晶体管42和44的寄生电容以及来自偏置控制电路32的偏压,提供vout的频率响应,从而基于第一nMOS晶体管34的偏置和第一pMOS晶体管40的偏置,进一步控制对vout的促成作用。在替代实例中,还可添加通过离散装置的显式电容,由此进一步影响vout的特征。因此,在所有情况下,能量在三线电感和电容之间振荡,从而产生振荡输出,且通过两个不同的交叉耦合配置实现负交叉电导,一个交叉耦合配置是相对于电感器I2,且另一交叉耦合配置是相对于电感器I3。
鉴于这些点,实例实施例VCO 30提供众多优点。
VCO 30的一个益处是实现vout的振荡输出所需的功率相对于常规技术减小,可能减小了二分之一以上。实例实施例包含两个交叉耦合级,由与nMOS晶体管36和38的nMOS交叉耦合和与pMOS晶体管42和44的pMOS交叉耦合的实例所示。相比于图1的VCO 10,这些级由此使净增益变成双倍。并且,取决于实施方案,可在多个线圈对之间实现增益;例如,如果电感器I1是初级线圈,那么它可诱导电压(或电流)提升到电感器I2和I3中的一者或两者中,例如通过电感器I1和I2对或I1和I3对之间的相对转动量。此类额外的磁性提升可进一步减小对VCO 30的DC功率要求。
VCO 30的另一益处是单独偏置可同时用于nMOS晶体管34到接地和pMOS晶体管40到VDD。就此而言,通过nMOS晶体管34和pMOS晶体管40的相应栅极电位。每一者对噪声的敏感度可分开地或独立地进行抑制。实际上,此益处具有放宽到VCO 30的电压供应的标准的额外可能益处。通常,低压降(LDO)供应用于VDD,且对于LDO供应具有严格的且受成本影响的要求,以允许其抑制噪声。因此,实例实施例分别地抑制噪声的能力准许降低对此类LDO的要求,由此改进成本和效率考虑因素。
VCO 30的另一益处是单独偏置可用于所有电感器I1、I2和I3的中心抽头。同样,因此,与一个装置相关联的噪声影响可以和与其它装置相关联的噪声影响分开。此外,实例实施例提供对栅极摆动的改进,一个针对PMOS侧,且一个针对NMOS侧。
图3A说明其中可结合已知半导体和集成电路制造工艺形成电感器I1、I2和I3中的每一个的配置的透视分解视图,且图3B说明所述配置的侧视横截面图。在本实例实施例中,每一电感器大体上为相同形状,且可形成以使得电感器的大部分金属在半导体工艺中定位在不同的相应金属层中。因此,如图3A的分解图中所示,在半导体工艺的金属层中,在形成的金属电感器I1下,将由金属形成电感器I2,且在电感器I1上方,将由金属形成电感器I3;这同样在图3B中由横截面示出,其中中间(例如,绝缘)层IL形成于电感器之间(为了简化)。因此,在图3A和3B中给定二维(例如,从自上向下的视角)形状和定向,电感器I1、I2和I3的形状和边界竖直对准,以使得那些二维的三线装置所消耗的面积不大于常规的两个电感器装置。这产生了另一益处,因为典型的电感器会消耗相当大数量的二维面积,特别是相对于实施VCO(和相关电路)所需的电路的其余部分来说。图2的实例实施例可通过图3A和3B实现,其中通过在第三维度中(例如,竖直)使它的额外电感器与其它电感器对准而在相同二维空间中形成所述额外电感器。因此,上文所描述的各种益处在表面积没有出现二维增加的情况下实现。
图4利用几个额外的所说明方面再次说明图2的VCO 30。确切地说,作为三线线圈VCO,VCO 30的输出可跨越三个电感器I1、I2和I3中的任一个从相应的差分信号分接。因此,在图4中,示出了相应的输出vout1、vout2和vout3。并且,跨越每一此类输出的是相应的调谐(即,可变)电容器C1、C2和C3。在实例实施例中,每一此类电容器是开关电容器(用于频带调谐)和变容器(用于连续调谐)的组合。作为替代方案,电容器C1、C2或C3中的任一个可由并联的显式开关电容器和MOS变容器替换。此外,并不是所有电容器C1、C2或C3都需要连续(或模拟)调谐,且各自可以是按比例差分的,且可具有不同位大小和其它参数,这取决于振荡频率和是否存在多个振荡模式。因此,VCO 30可具有多个振荡模式,且一种振荡模式的选择(和其余部分的抑制)还将影响电容器C1、C2和C3的选择和调谐。
从上可知,实例实施例提供一种具有三线电感变换器的VCO,所述三线电感变换器具有交叉耦合级以相比于常规技术改进众多度量。在一个实例实施例中,第一交叉耦合级由nMOS晶体管相对于三线变换器的一个电感器形成,而第二交叉耦合级由pMOS晶体管相对于三线变换器的另一电感器形成。在交叉耦合的级中的相应者和相应的电感器中心抽头的实例实施例中,存在单独的偏置装置(例如,晶体管)。实例实施例构造可使用呈二维形式的与供常规配置使用的面积相当的面积,但性能大大优于常规配置。此外,尽管已经提供各种实施例,但是根据应用和其它考虑因素,可调整各种量度和架构。例如,图3A和3B示出三线变换器中的每一电感器在单独金属层中,但是(在替代实例中),两个或两个以上电感器可在相同层中形成,且连接可能延伸到其它金属层。
在权利要求的范围内,在所描述的实施例中有可能进行修改,且其它实施例是可能的。

Claims (23)

1.一种用于提供振荡输出信号的压控振荡器,包括:
第一电感器,其中所述振荡输出信号响应于通过所述第一电感器的变化电流;
第二电感器,其接近所述第一电感器且耦合到第一交叉耦合级;以及
第三电感器,其接近所述第一电感器且耦合到第二交叉耦合级。
2.根据权利要求1所述的压控振荡器,其中:所述第一交叉耦合级包括多个nMOS晶体管;以及所述第二交叉耦合级包括多个pMOS晶体管。
3.根据权利要求1所述的压控振荡器,其中所述第一交叉耦合级包括:具有连接到所述第二电感器的第一端子的栅极的第一nMOS晶体管;以及具有连接到所述第二电感器的第二端子的栅极的第二nMOS晶体管。
4.根据权利要求3所述的压控振荡器,进一步包括具有耦合到所述第一nMOS晶体管的源极和所述第二nMOS晶体管的源极的漏极的第三nMOS晶体管。
5.根据权利要求4所述的压控振荡器,进一步包括耦合到所述第三nMOS晶体管的栅极以施加栅极偏压的偏置电路。
6.根据权利要求1所述的压控振荡器,其中所述第二交叉耦合级包括:具有连接到所述第三电感器的第一端子的栅极的第一pMOS晶体管;以及具有连接到所述第三电感器的第二端子的栅极的第二pMOS晶体管。
7.根据权利要求6所述的压控振荡器,进一步包括具有耦合到所述第一pMOS晶体管的源极和所述第二pMOS晶体管的源极的漏极的第三pMOS晶体管。
8.根据权利要求7所述的压控振荡器,进一步包括耦合到所述第三pMOS晶体管的栅极以施加栅极偏压的偏置电路。
9.根据权利要求1所述的压控振荡器:
其中所述第一交叉耦合级包括:具有连接到所述第二电感器的第一端子的栅极的第一nMOS晶体管;以及具有连接到所述第二电感器的第二端子的栅极的第二nMOS晶体管;以及
其中所述第二交叉耦合级包括:具有连接到所述第三电感器的第一端子的栅极的第一pMOS晶体管;以及具有连接到所述第三电感器的第二端子的栅极的第二pMOS晶体管。
10.根据权利要求9所述的压控振荡器,进一步包括:
具有耦合到所述第一nMOS晶体管的源极和所述第二nMOS晶体管的源极的漏极的第三nMOS晶体管;
具有耦合到所述第一pMOS晶体管的源极和所述第二pMOS晶体管的源极的漏极的第三pMOS晶体管;以及
耦合到所述第三nMOS晶体管的栅极和所述第三pMOS晶体管的栅极以施加相应的栅极偏压的偏置电路。
11.根据权利要求1所述的压控振荡器,进一步包括偏置电路,所述偏置电路耦合到所述第一电感器、所述第二电感器和所述第三电感器中的至少一个的第一抽头和第二抽头之间的中间抽头,以施加抽头偏置,从而调整所述振荡输出信号的频率。
12.根据权利要求1所述的压控振荡器,进一步包括偏置电路,所述偏置电路耦合到所述第一电感器的第一和第二抽头之间的第一中间抽头,且耦合到所述第二电感器的第一和第二抽头之间的第二中间抽头,且耦合到所述第三电感器的第一和第二抽头之间的第三中间抽头,其中所述振荡输出信号至少部分地响应于通过耦合到所述第一中间抽头、所述第二中间抽头和所述第三中间抽头的所述偏置电路施加的偏置而具有频率。
13.根据权利要求1所述的压控振荡器,其中所述第一电感器、所述第二电感器和所述第三电感器中的每一个具有类似形状。
14.根据权利要求1所述的压控振荡器,其中形成所述第一电感器、所述第二电感器和所述第三电感器中的每一个的结构的大部分在集成电路的不同的相应金属层中形成。
15.根据权利要求1所述的压控振荡器,其中所述第一电感器、所述第二电感器和所述第三电感器中的每一个在集成电路的金属中形成。
16.一种形成用于提供振荡输出信号的压控振荡器的方法,包括:
形成第一电感器,其中所述振荡输出信号响应于通过所述第一电感器的变化电流;
形成第二电感器,其接近所述第一电感器且耦合到第一交叉耦合级;以及
形成第三电感器,其接近所述第一电感器且耦合到第二交叉耦合级。
17.根据权利要求16所述的方法,其中:所述第一交叉耦合级包括多个nMOS晶体管;以及所述第二交叉耦合级包括多个pMOS晶体管。
18.根据权利要求16所述的方法,其中所述第一交叉耦合级包括:具有连接到所述第二电感器的第一端子的栅极的第一nMOS晶体管;以及具有连接到所述第二电感器的第二端子的栅极的第二nMOS晶体管。
19.根据权利要求18所述的方法,进一步包括形成具有耦合到所述第一nMOS晶体管的源极和所述第二nMOS晶体管的源极的漏极的第三nMOS晶体管。
20.根据权利要求16所述的方法,其中所述第二交叉耦合级包括:具有连接到所述第三电感器的第一端子的栅极的第一pMOS晶体管;以及具有连接到所述第三电感器的第二端子的栅极的第二pMOS晶体管。
21.根据权利要求20所述的方法,进一步包括形成具有耦合到所述第一pMOS晶体管的源极和所述第二pMOS晶体管的源极的漏极的第三pMOS晶体管。
22.根据权利要求16所述的方法:
其中所述第一交叉耦合级包括:具有连接到所述第二电感器的第一端子的栅极的第一nMOS晶体管;以及具有连接到所述第二电感器的第二端子的栅极的第二nMOS晶体管;
其中所述第二交叉耦合级包括:具有连接到所述第三电感器的第一端子的栅极的第一pMOS晶体管;以及具有连接到所述第三电感器的第二端子的栅极的第二pMOS晶体管;以及
其中所述方法进一步包括:形成具有耦合到所述第一nMOS晶体管的源极和所述第二nMOS晶体管的源极的漏极的第三nMOS晶体管;以及形成具有耦合到所述第一pMOS晶体管的源极和所述第二pMOS晶体管的源极的漏极的第三pMOS晶体管。
23.根据权利要求22所述的方法,进一步包括形成偏置电路,所述偏置电路耦合到所述第三nMOS晶体管的栅极和所述第三pMOS晶体管的栅极以施加相应的栅极偏压。
CN201680063093.XA 2015-10-30 2016-10-31 三线压控振荡器 Active CN108352811B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/928,268 US20170126177A1 (en) 2015-10-30 2015-10-30 Trifilar Voltage Controlled Oscillator
US14/928,268 2015-10-30
PCT/US2016/059738 WO2017075597A1 (en) 2015-10-30 2016-10-31 Trifilar voltage controlled oscillator

Publications (2)

Publication Number Publication Date
CN108352811A true CN108352811A (zh) 2018-07-31
CN108352811B CN108352811B (zh) 2023-06-23

Family

ID=58631981

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680063093.XA Active CN108352811B (zh) 2015-10-30 2016-10-31 三线压控振荡器

Country Status (3)

Country Link
US (1) US20170126177A1 (zh)
CN (1) CN108352811B (zh)
WO (1) WO2017075597A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113615080A (zh) * 2019-04-04 2021-11-05 华为技术有限公司 一种振荡器及设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3442118A4 (en) * 2016-08-02 2019-05-22 Huawei Technologies Co., Ltd. OSCILLATOR FOR FORMING VOLTAGE WAVEFORM
US10778145B2 (en) * 2019-01-02 2020-09-15 Mediatek Inc. Magnetically pumped voltage controlled oscillator
CN110620552A (zh) * 2019-08-30 2019-12-27 苏州闻颂智能科技有限公司 一种基于电容补偿技术的线性压控振荡器
US11139778B1 (en) * 2020-03-31 2021-10-05 Taiwan Semiconductor Manufacturing Co., Ltd. Apparatus, circuits and methods for clock generation

Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050275469A1 (en) * 2004-06-10 2005-12-15 Emmanuel Metaxakis Quadrature voltage controlled oscillators with phase shift detector
JP2006345116A (ja) * 2005-06-07 2006-12-21 Nippon Telegr & Teleph Corp <Ntt> 電圧制御発振器
US20080007364A1 (en) * 2006-06-15 2008-01-10 Oki Electric Industry Co., Ltd. Voltage controlled oscillator
KR100835979B1 (ko) * 2007-04-30 2008-06-09 한국전자통신연구원 스위칭 바이어스를 갖는 전압 제어 발진기
CN101227169A (zh) * 2007-01-04 2008-07-23 国际商业机器公司 压控振荡器电路及其操作方法
US20080258827A1 (en) * 2007-04-19 2008-10-23 Mediatek Inc. Radio frequency voltage controlled oscillators
US20080315964A1 (en) * 2007-06-22 2008-12-25 Dongbu Hitek Co., Ltd. Voltage controlled oscillator using tunable active inductor
US20090146750A1 (en) * 2007-12-05 2009-06-11 Mobius Microsystems, Inc. Common Mode Controller for a Clock, Frequency Reference, and Other Reference Signal Generator
JP2010504676A (ja) * 2006-09-21 2010-02-12 アイティーアイ スコットランド リミテッド 電圧制御発振器
US20100238843A1 (en) * 2009-03-18 2010-09-23 Qualcomm Incorporated Transformer-based cmos oscillators
CN102195645A (zh) * 2011-03-31 2011-09-21 复旦大学 一种适用于软件无线电系统的频率综合器
US20110248787A1 (en) * 2010-04-13 2011-10-13 Xilinx, Inc. Varactor circuit and voltage-controlled oscillation
US8102216B1 (en) * 2009-05-06 2012-01-24 Qualcomm Atheros, Inc. Voltage controlled oscillator having reduced phase noise
US20120025921A1 (en) * 2010-07-31 2012-02-02 Quintic Holdings Low Noise VCO Circuit Having Low Noise Bias
US20130169374A1 (en) * 2011-12-29 2013-07-04 Industrial Technology Research Institute Voltage controlled oscillator
CN103236818A (zh) * 2013-04-22 2013-08-07 武汉大学 一种高电源抑制比lc-vco的装置
US20130307630A1 (en) * 2010-10-21 2013-11-21 Nanyang Technological University Integrated Circuit Architecture with Strongly Coupled LC Tanks
CN103475309A (zh) * 2013-09-17 2013-12-25 南京中科微电子有限公司 一种恒定调谐增益压控振荡器
US20140159825A1 (en) * 2012-12-10 2014-06-12 Texas Instruments Incorporated Voltage controlled oscillator with low phase noise and high q inductive degeneration
CN103891134A (zh) * 2011-10-28 2014-06-25 高通股份有限公司 单差分变压器核
US20140203881A1 (en) * 2013-01-18 2014-07-24 Taiwan Semiconductor Manufacturing Co., Ltd. Ultra-Low Voltage-Controlled Oscillator with Trifilar Coupling
WO2014120602A1 (en) * 2013-02-01 2014-08-07 Qualcomm Incorporated Apparatus and method for generating an oscillating output signal
CN104052402A (zh) * 2013-03-13 2014-09-17 美国亚德诺半导体公司 具有初级和次级lc电路的振荡器
CN104052404A (zh) * 2014-06-10 2014-09-17 北京大学 一种低相位噪声电感电容压控振荡器
US20150084708A1 (en) * 2012-09-11 2015-03-26 Broadcom Corporation Low Phase Noise Voltage Controlled Oscillators
WO2015138105A1 (en) * 2014-03-11 2015-09-17 Qualcomm Incorporated LOW NOISE AND LOW POWER VOLTAGE-CONTROLLED OSCILLATOR (VCO) USING TRANSCONDUCTANCE (gm) DEGENERATION
US20150280645A1 (en) * 2014-03-25 2015-10-01 Avago Technologies General Ip (Singapore) Pte. Ltd. Inductive-Capacitive (LC) Voltage Controlled Oscillator (VCO) Having Tuning Range Controlled By A Digital-To-Analog Converter (DAC) With Programmable Tail Current

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2795790B1 (en) * 2011-12-19 2020-06-03 Intel Corporation Voltage-controlled oscillator with reduced single-ended capacitance

Patent Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050275469A1 (en) * 2004-06-10 2005-12-15 Emmanuel Metaxakis Quadrature voltage controlled oscillators with phase shift detector
JP2006345116A (ja) * 2005-06-07 2006-12-21 Nippon Telegr & Teleph Corp <Ntt> 電圧制御発振器
US20080007364A1 (en) * 2006-06-15 2008-01-10 Oki Electric Industry Co., Ltd. Voltage controlled oscillator
JP2010504676A (ja) * 2006-09-21 2010-02-12 アイティーアイ スコットランド リミテッド 電圧制御発振器
CN101227169A (zh) * 2007-01-04 2008-07-23 国际商业机器公司 压控振荡器电路及其操作方法
US20080258827A1 (en) * 2007-04-19 2008-10-23 Mediatek Inc. Radio frequency voltage controlled oscillators
KR100835979B1 (ko) * 2007-04-30 2008-06-09 한국전자통신연구원 스위칭 바이어스를 갖는 전압 제어 발진기
US20080315964A1 (en) * 2007-06-22 2008-12-25 Dongbu Hitek Co., Ltd. Voltage controlled oscillator using tunable active inductor
US20090146750A1 (en) * 2007-12-05 2009-06-11 Mobius Microsystems, Inc. Common Mode Controller for a Clock, Frequency Reference, and Other Reference Signal Generator
US20100238843A1 (en) * 2009-03-18 2010-09-23 Qualcomm Incorporated Transformer-based cmos oscillators
US8102216B1 (en) * 2009-05-06 2012-01-24 Qualcomm Atheros, Inc. Voltage controlled oscillator having reduced phase noise
CN103004087A (zh) * 2010-04-13 2013-03-27 吉林克斯公司 变容器电路以及电压控制振荡
US20110248787A1 (en) * 2010-04-13 2011-10-13 Xilinx, Inc. Varactor circuit and voltage-controlled oscillation
US20120025921A1 (en) * 2010-07-31 2012-02-02 Quintic Holdings Low Noise VCO Circuit Having Low Noise Bias
US20130307630A1 (en) * 2010-10-21 2013-11-21 Nanyang Technological University Integrated Circuit Architecture with Strongly Coupled LC Tanks
CN102195645A (zh) * 2011-03-31 2011-09-21 复旦大学 一种适用于软件无线电系统的频率综合器
CN103891134A (zh) * 2011-10-28 2014-06-25 高通股份有限公司 单差分变压器核
US20130169374A1 (en) * 2011-12-29 2013-07-04 Industrial Technology Research Institute Voltage controlled oscillator
US20150084708A1 (en) * 2012-09-11 2015-03-26 Broadcom Corporation Low Phase Noise Voltage Controlled Oscillators
US20140159825A1 (en) * 2012-12-10 2014-06-12 Texas Instruments Incorporated Voltage controlled oscillator with low phase noise and high q inductive degeneration
US20140203881A1 (en) * 2013-01-18 2014-07-24 Taiwan Semiconductor Manufacturing Co., Ltd. Ultra-Low Voltage-Controlled Oscillator with Trifilar Coupling
WO2014120602A1 (en) * 2013-02-01 2014-08-07 Qualcomm Incorporated Apparatus and method for generating an oscillating output signal
CN104052402A (zh) * 2013-03-13 2014-09-17 美国亚德诺半导体公司 具有初级和次级lc电路的振荡器
CN103236818A (zh) * 2013-04-22 2013-08-07 武汉大学 一种高电源抑制比lc-vco的装置
CN103475309A (zh) * 2013-09-17 2013-12-25 南京中科微电子有限公司 一种恒定调谐增益压控振荡器
WO2015138105A1 (en) * 2014-03-11 2015-09-17 Qualcomm Incorporated LOW NOISE AND LOW POWER VOLTAGE-CONTROLLED OSCILLATOR (VCO) USING TRANSCONDUCTANCE (gm) DEGENERATION
US20150280645A1 (en) * 2014-03-25 2015-10-01 Avago Technologies General Ip (Singapore) Pte. Ltd. Inductive-Capacitive (LC) Voltage Controlled Oscillator (VCO) Having Tuning Range Controlled By A Digital-To-Analog Converter (DAC) With Programmable Tail Current
CN104052404A (zh) * 2014-06-10 2014-09-17 北京大学 一种低相位噪声电感电容压控振荡器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
T.I. AHRENS: "A 1.4-GHz 3-mW CMOS LC low phase noise VCO using tapped bond wire inductances", 《PROCEEDINGS. 1998 INTERNATIONAL SYMPOSIUM ON LOW POWER ELECTRONICS AND DESIGN》 *
罗将: "43 GHz低功耗和低相噪VCO设计", 《微电子学与计算机》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113615080A (zh) * 2019-04-04 2021-11-05 华为技术有限公司 一种振荡器及设备

Also Published As

Publication number Publication date
CN108352811B (zh) 2023-06-23
WO2017075597A1 (en) 2017-05-04
US20170126177A1 (en) 2017-05-04

Similar Documents

Publication Publication Date Title
CN108352811A (zh) 三线压控振荡器
US8957739B2 (en) Ultra-low voltage-controlled oscillator with trifilar coupling
JP4922369B2 (ja) 電圧制御発振器
US9813023B2 (en) Common-mode impedance network for reducing sensitivity in oscillators
US20160285319A1 (en) Tuned Resonant Microcell-Based Array for Wireless Power Transfer
CN205509976U (zh) 具有宽调谐范围的lc振荡器电路
US11749710B2 (en) Adjustable multi-turn magnetic coupling device
JP4889761B2 (ja) 電圧制御発振器
AU2014390744B2 (en) Series-resonance oscillator
US20120169428A1 (en) Ac coupled stack inductor for voltage controlled oscillator
Lim et al. A multiphase resonance-based boosting rectifier with dual outputs for wireless power transmission
JP4836030B2 (ja) Lc発振回路
TW201427269A (zh) 壓控振盪電路結構
CN101159427A (zh) 电压控制振荡器的对称噪声滤波技术
CN105553473A (zh) 补偿装置和基于电感的装置
JP4669130B2 (ja) 発振装置
Amin On the selection of passive elements for low phase noise LC tank VCO in 65 nm process
WO2020206609A1 (zh) 一种差分振荡器
KR101478949B1 (ko) 트랜스포머와 전류 재사용 방식을 사용한 암스트롱 및 암스트롱 콜핏츠 전압 제어 발진기
KR101624462B1 (ko) 저 전력의 특성을 가지는 주입 잠금형 주파수 분주기
Lee et al. A 65-nm CMOS ultra-low-power LC quadrature VCO
KR101563408B1 (ko) 저 전력과 저 위상 잡음의 특성을 가지는 컴플리멘터리 콜피츠 전압 제어 발진기
Clapera et al. A quantum device driven by an on-chip CMOS ring oscillator
Aslam Study and Comparison of On-Chip LC Oscillators for Energy Recovery Clocking
KR20080046941A (ko) 능동 인덕터를 이용한 전압제어 발진기

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant