CN108352560B - 锂二次电池 - Google Patents

锂二次电池 Download PDF

Info

Publication number
CN108352560B
CN108352560B CN201780003672.XA CN201780003672A CN108352560B CN 108352560 B CN108352560 B CN 108352560B CN 201780003672 A CN201780003672 A CN 201780003672A CN 108352560 B CN108352560 B CN 108352560B
Authority
CN
China
Prior art keywords
carbonate
secondary battery
electrolyte
lithium secondary
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780003672.XA
Other languages
English (en)
Other versions
CN108352560A (zh
Inventor
金赫洙
金志姸
朴成烈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lg Energy Solution
Original Assignee
LG Chem Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Chem Ltd filed Critical LG Chem Ltd
Publication of CN108352560A publication Critical patent/CN108352560A/zh
Application granted granted Critical
Publication of CN108352560B publication Critical patent/CN108352560B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0563Liquid materials, e.g. for Li-SOCl2 cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/497Ionic conductivity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Separators (AREA)

Abstract

本公开内容涉及一种锂二次电池,即便使用高负载电极时,该锂二次电池也可确保反应均匀性,并因此具有高的容量和改善的循环特性。所述锂二次电池包括:包括正极、负极和插置于正极和负极之间的隔板在内的电极组件;包括锂盐和有机溶剂在内的电解质;和容纳所述电极组件和所述电解质的电池壳体;其中正极具有3.5mAh/cm2以上的负载量,隔板具有200秒/100mL‑1200秒/100mL的透气率,并且电解质具有11mS/cm‑20mS/cm的锂离子电导率。

Description

锂二次电池
技术领域
本发明涉及一种锂二次电池。更具体地,本发明涉及一种具有高容量特性的锂二次电池。
本申请要求在2016年2月26日在韩国提交的韩国专利申请第10-2016-0023442号的优先权,将上述专利申请的公开内容通过引用结合在此。
背景技术
近年来,能量储存技术已经受到越来越多的关注。随着能量储存技术的应用已经扩展到用于移动电话、便携式摄像机及笔记本电脑的能量乃至用于电动汽车的能量,对于电化学装置的研究和开发的努力已经越来越多地得以实现。在这种情况下,电化学装置一直是最受关注的。特别是,随着近来电子设备已小型化和轻量化,具有紧凑尺寸、轻质和高容量的可再充电二次电池的开发已成焦点。
关于电化学装置的持续研究已经开发出具有显著改善的性能(特别是输出特性)的电极活性材料。在市售的二次电池中,在20世纪90年代早期开发的锂二次电池备受关注,因为相较于诸如Ni-MH电池之类的传统电池,它们具有更高的驱动电压以及明显更高的能量密度。
这种锂二次电池包括正极、负极和电解质。在首次充电期间从正极活性材料中脱嵌的锂离子被嵌入到负极活性材料(例如碳粒子)中,然后在放电期间锂离子再次从中脱嵌出来。锂离子在两个电极之间的这种移动有助于传递能量并使得电池充电/放电。
随着技术发展和对移动仪器的需求增加,对于作为能源的二次电池的需求迅速地增加。在这样的二次电池中,具有高的能量密度和电压、长循环寿命和低放电率的锂二次电池已经商品化并广为使用。除此之外,随着对环境问题的关注增加,诸如电动车辆和混合动力车辆之类的使用高容量电池的系统的市场已经成长,所述电动车辆和混合动力车辆能够替代包括汽油车辆和柴油车辆在内的使用化石燃料的车辆,这是空气污染的主要原因之一。
在这些情况下,对于高容量电池的需求的基础已经扩大,需要设计一种用于制造作为上述系统用的电源且具有高能量密度、高输出和高放电电压的锂二次电池的高容量电极。
在电池市场中,基于正极3.5mAh/cm2以上的负载量被评估作为高负载电极的必要条件。由于出于高负载的目的,高负载电极包括了增量的活性材料,所以高负载电极通常具有较厚的厚度。然而,厚电极经受在其厚度方向上不均匀的反应,导致循环特性的劣化。
发明内容
技术问题
设计本公开内容以解决现有技术的问题,因此本公开内容是致力于提供一种高负载电极,通过导致均匀的电极反应,所述电极得以控制锂离子的移动以满足适当的范围,并因此提供一种具有优异循环特性的锂二次电池。
技术方案
设计本公开内容以解决根据现有技术的上述问题。在本公开内容的一个方面中,提供一种锂二次电池,所述锂二次电池包括:包括正极、负极以及插置于正极和负极之间的隔板在内的电极组件;包括锂盐和有机溶剂在内的电解质;和容纳所述电极组件和所述电解质的电池壳体,其中所述正极具有3.5mAh/cm2以上的负载量,所述隔板具有200秒/100mL-1200秒/100mL的透气率,所述电解质具有11mS/cm-20mS/cm的锂离子电导率。
优选地,所述隔板可具有250秒/100mL-1000秒/100mL的透气率,并且所述电解质可具有12mS/cm-19mS/cm的锂离子电导率。
更优选地,所述隔板可具有300秒/100mL-800秒/100mL的透气率,并且所述电解质可具有14mS/cm-18mS/cm的锂离子电导率。
优选地,所述隔板可具有2μm-50μm的厚度。
优选地,所述隔板可以是多孔聚合物基材。
优选地,所述多孔聚合物基材可包括选自由聚乙烯、聚丙烯、聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚酯、聚缩醛、聚酰胺、聚碳酸酯、聚酰胺、聚碳酸酯、聚酰亚胺、聚醚醚酮、聚芳醚酮、聚醚酰亚胺、聚酰胺酰亚胺、聚苯并咪唑、聚醚砜、聚苯醚、环烯烃共聚物、聚苯硫醚和聚乙烯萘组成的群组中的任一种聚合物、或其两种以上的组合。
优选地,所述电解质可以具有1.0cP-3.0cP的粘度。
优选地,所述电解质可进一步包括添加剂。
优选地,所述锂盐可以是选自由LiPF6、LiBF4、LiSbF6、LiAsF6、LiClO4、LiN(C2F5SO2)2、LiN(CF3SO2)2、CF3SO3Li和LiC(CF3SO2)3组成的群组中的任一种、或其两种以上的组合。
优选地,所述有机溶剂可以是选自由碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸1,2-丁烯酯、碳酸2,3-丁烯酯、碳酸1,2-戊烯酯、碳酸2,3-戊烯酯、碳酸亚乙烯酯、碳酸乙烯基亚乙酯、氟代碳酸乙烯酯(FEC)、碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、碳酸二丙酯、碳酸甲乙酯(EMC)、碳酸甲丙酯、碳酸乙丙酯、二甲醚、二乙醚、二丙醚、甲乙醚、甲丙醚、乙丙醚、乙酸甲酯、乙酸乙酯、乙酸丙酯、丙酸甲酯、丙酸乙酯、丙酸丙酯、γ-丁内酯、γ-戊内酯、γ-己内酯、σ-戊内酯和ε-己内酯组成的群组中的任一种、或其两种以上的组合。
优选地,所述正极可具有50μm-200μm的厚度。
有益效果
根据本公开内容的锂二次电池即使使用高负载电极,也确保反应均匀性,并因此具有高的容量和改善的循环特性。
附图说明
附图图解说明了本公开内容的优选实施方式,并且与前述公开内容一起用于提供对本公开内容的技术精神的进一步理解,因此,本公开内容不被解释为受限于附图。
图1为示出实施例和比较例中所制备的各电池的容量测定结果的曲线图。
具体实施方式
应理解的是,在说明书和所附权利要求书中使用的术语不应解释为受限于一般意义和字典意义,而是应在以允许发明人对最佳解释适当地定义术语的原则的基础上根据对应于本公开内容的技术方面的意义和概念来解释。因此,本文中给出的描述仅仅是为了说明目的的优选实施例,并非旨在限制本公开内容的范围,因此应当理解,可在不背离本公开内容的范围的情况下对其进行其他等同替换和修改。
在传统的具有3.5mAh/cm2以上的正极负载量的高负载电极的情况下,由于电极的厚度增加,锂离子的移动可能会不好,使得在电极厚度方向上的电极反应不均匀,由此电池的循环特性可能会劣化。除此之外,仅当锂离子的移动增加时,锂离子不能扩散到电极活性材料中,因此锂离子滞留并积聚在电极表面上。
根据本公开内容,通过实验已经发现,当隔板的透气率和电解质的锂离子电导率被调控为在隔板和电解质中锂离子良好移动的期望范围时,锂离子能够很好地扩散到电极活性材料中以使得在电极中均匀反应,从而改善电池的循环特性。
与常规的锂二次电池一样,根据本公开内容的锂二次电池包括:包括正极、负极以及插置于正极和负极之间的隔板在内的电极组件;包括锂盐和有机溶剂在内的电解质;以及容纳所述电极组件和所述电解质的电池壳体。
根据本公开内容的锂二次电池是具有3.5mAh/cm2以上的正极负载量的高负载电池。为了设计高负载电极,正极可具有50μm-200μm的厚度。
除此之外,根据本公开内容,为了确保锂离子的移动满足适当的范围,隔板被调控为具有200秒/100mL-1200秒/100mL的透气率,以允许锂离子很好地扩散进入电极活性材料,并最终实现均匀的电极反应。当隔板具有小于200秒/100mL的透气率时,锂离子的移动增加,因此电池在安全性方面经受快速劣化,并且在电极中锂离子的移动速率不能跟上在隔板中锂离子的移动速率。当隔板具有大于1200秒/100mL的透气率时,在隔板中锂离子的移动减少,导致反复充电/放电过程后的效率和循环特性劣化。优选地,隔板可具有250秒/100mL-1000秒/100mL、更优选300秒/100mL-900秒/100mL的透气率。
在本公开内容中,用于测定隔板的透气率的方法并没有特别地限定,诸如根据日本工业标准(JIS)的Gurley法之类的本领域中的任何常规方法可以使用,以通过利用从Toyoseiki公司获得的Gurley型密度计(No.158)来测定透气率。换句话说,隔板的透气率可以通过测量于室温在0.05MPa的压力下100mL(或100cc)空气穿过1cm2的隔板所需的时间来测定。
根据本公开内容的隔板可具有5μm-20μm的厚度和30%-60%的孔隙率以获得以上定义的透气率。
除此之外,根据本公开内容,为了确保锂离子的移动满足适当的范围,电解质被调控为具有11mS/cm-20mS/cm的锂离子电导率,以允许锂离子很好地扩散进入电极活性材料,并最终实现均匀的电极反应。当电解质具有低于11mS/cm的锂离子电导率时,可能导致在电极中锂离子的移动减少,从而引起在电极表面的内部和表面上的不均匀的反应,由此电池可能经受充电/放电效率和循环特性的劣化。当电解质具有大于20mS/cm的锂离子电导率时,可能导致在隔板中的锂离子的移动相较于在正极中的锂离子的嵌入/脱嵌速率而减少,因此负极和锂离子可能积聚在电极和隔板之间的界面处,由此引起与电解质的副反应。优选地,电解质可以具有12mS/cm-19mS/cm、更优选14mS/cm-18mS/cm的锂离子电导率。通过调节在电解质和溶剂中的盐的浓度,电解质能够满足以上定义的锂离子电导率。此外,锂离子电导率可根据溶剂份额或测量仪器条件而变化。
在本公开内容中,用于测定锂离子电导率的方法并没有特别地限制,本领域的任何常规方法均可使用。例如,锂离子电导率可以通过使用电导率测量仪器(例如Inolab731)来测定。
正极包括正极集电器和在在正极集电器的至少一个表面上所形成的正极层。负极包括负极集电器和在负极集电器的至少一个表面上所形成的负极层。
通常,正极集电器可具有10μm-500μm的厚度。正极集电器并没有特别地限定,只要其具有高的导电性同时不在相应的电池中引起任何化学变化即可。例如,可以使用不锈钢、铝、镍、钛、焙烧碳、或经碳、镍、钛、银等表面处理过的铝或不锈钢。集电器可具有细微的表面不平整以增加正极活性材料对其的粘附,并且可具有诸如膜、片、箔、网、多孔体、泡沫和无纺布体之类的各种形状。
通常,负极集电器可具有10μm-500μm的厚度。负极集电器并没有特别地限定,只要其具有导电性同时不在相应电池中引起任何化学变化即可。例如,可以使用铜、不锈钢、铝、镍、钛、焙烧碳、或经碳、镍、钛、银等表面处理过的铜或不锈钢、铝-镉合金、或类似物。除此之外,与正极集电器相同,负极集电器可具有细微的表面不平整以增强负极的结合力,并且可具有诸如膜、片、箔、网、多孔体、泡沫、无纺布体、或类似物的各种形状。
正极活性材料可以是含锂氧化物,优选地是含锂过渡金属氧化物。含锂过渡金属氧化物的具体实例包括选自由LixCoO2(0.5<x<1.3)、LixNiO2(0.5<x<1.3)、LixMnO2(0.5<x<1.3)、LixMn2O4(0.5<x<1.3)、Lix(NiaCobMnc)O2(0.5<x<1.3,0<a<1,0<b<1,0<c<1,a+b+c=1)、LixNi1-yCoyO2(0.5<x<1.3,0<y<1)、LixCo1-yMnyO2(0.5<x<1.3,0≤y<1)、LixNi1-yMnyO2(0.5<x<1.3,O≤y<1)、Lix(NiaCobMnc)O4(0.5<x<1.3,0<a<2、0<b<2,0<c<2,a+b+c=2)、LixMn2-zNizO4(0.5<x<1.3,0<z<2)、LixMn2-zCozO4(0.5<x<1.3,0<z<2)、LixCoPO4(0.5<x<1.3)和LixFePO4(0.5<x<1.3)组成的群组中的任一种、或其两种以上的组合。含锂过渡金属氧化物可以涂覆有诸如铝(Al)之类的金属或金属氧化物。除了这样的含锂过渡金属氧化物之外,还可以使用含锂过渡金属的硫化物、硒化物和卤化物。
通常,负极活性材料是能够嵌入/脱嵌锂离子,并且可包括锂金属、碳质材料、金属化合物、或其组合。
碳质材料的具体实例可包括低结晶碳和高结晶碳。低结晶碳的代表性实例包括软碳(soft carbon)和硬碳(hard carbon)。高结晶碳的代表性实例包括高温焙烧碳,诸如如天然石墨、Kish石墨(Kish graphite)、热解碳(pyrolytic carbon)、中间相沥青基碳纤维(mesophase pitch based carbon fiber)、中位碳微球(meso-carbon microbeads)、中间相沥青(mesophase pitches),以及石油或煤焦油沥青衍生的焦炭(petroleum or coaltar pitch derived cokes)之类的高温焙烧碳。
金属化合物的具体实例包括含有至少一种诸如Si、Ge、Sn、Pb、P、Sb、Bi、Al、Ga、In、Ti、Mn、Fe、Co、Ni、Cu、Zn、Ag、Mg、Sr和Ba之类的金属元素的化合物。尽管这些金属化合物可以包括单质、合金、氧化物(TiO2、SnO2等)、氮化物、硫化物、硼化物以及与锂的合金在内的各种形式中的任一种来使用,但是单质、氧化物以及与锂的合金可具有高的容量。特别地,含有选自由Si、Ge和Sn中的至少一种元素(特别是Si和Sn)的金属化合物能够提供具有更高容量的电池。
隔板可以是多孔聚合物基材。除此之外,多孔聚合物基材的孔径和孔隙率并没有特别地限定,但可分别为约0.01μm-50μm和约10%-95%。
此外,多孔聚合物基材可包括在多孔聚合物基材的至少一个表面上、含有无机颗粒和聚合物粘合剂的多孔涂层,以提高机械强度并抑制在正极与负极之间的短路。
多孔聚合物基材的非限制性实例包括选自由聚乙烯(polyethylene)、聚丙烯(polypropylene)、聚对苯二甲酸乙二醇酯(polyethylene terephthalate)、聚对苯二甲酸丁二醇酯(polybutylene terephthalate)、聚酯(polyester)、聚缩醛(polyacetal)、聚酰胺(polyamide)、聚碳酸酯(polycarbonate)、聚酰胺(polyamide)、聚碳酸酯(polycarbonate)、聚酰亚胺(polyimide)、聚醚醚酮(polyetherether ketone)、聚芳醚酮(polyarylether ketone)、聚醚酰亚胺(polyether imide)、聚酰胺酰亚胺(polyamideimide)、聚苯并咪唑(polybenzimidazole)、聚醚砜(polyether sulfone)、聚苯醚(polyphenylene oxide)、环烯烃共聚物(cyclic olefin copolymer)、聚苯硫醚(polyphenylene sulfide)和聚乙烯萘(polyethylene naphthalene)组成的群组中的任一种、或其两种以上的组合。
电解质可具有在室温(25℃)1.0cP-4.0cP、优选1.0cP-3.0cP的粘度。电解质可进一步包括可能影响离子电导率、固体电解质界面相(SEI)在负极表面上的形成、粘度、或类似性能的添加剂。
锂盐可以是选自由LiCl、LiBr、LiI、LiClO4、LiBF4、LiB10Cl10、LiPF6、LiCF3SO3、LiCF3CO2、LiAsF6、LiSbF6、LiAlCl4、CH3SO3Li、CF3SO3Li、(CF3SO2)2NLi、氯硼酸锂、低级脂族羧酸锂、和四苯硼酸锂组成的群组的任一种、或其两种以上的组合。根据本公开内容,这样的锂盐可以1.0M-1.5M、优选1.0M-1.3M的浓度来使用,以使电解质满足以上定义的锂离子电导率的范围。
有机溶剂可以是选自由碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸1,2-丁烯酯、碳酸2,3-丁烯酯、碳酸1,2-戊烯酯、碳酸2,3-戊烯酯、碳酸亚乙烯酯、碳酸乙烯基亚乙酯、氟代碳酸乙烯酯(FEC)、碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、碳酸二丙酯、碳酸甲乙酯(EMC)、碳酸甲丙酯、碳酸乙丙酯、二甲醚、二乙醚、二丙醚、甲乙醚、甲丙醚、乙丙醚、乙酸甲酯、乙酸乙酯、乙酸丙酯、丙酸甲酯、丙酸乙酯、丙酸丙酯、γ-丁内酯、γ-戊内酯、γ-己内酯、σ-戊内酯和ε-己内酯组成的群组中的任一种、或其两种以上的组合。在这些溶剂中,优选的是组合地使用诸如碳酸乙烯酯(EC)之类的环状碳酸酯与诸如碳酸二甲酯(DMC)、碳酸甲乙酯(EMC)、乙酸乙酯(EA)或丙酸甲酯(MP)之类的非环状碳酸酯。特别地,为了满足以上定义的电解质的锂离子电导率的范围,诸如碳酸乙烯酯(EC)之类的环状碳酸酯可以基于溶剂的总体积的10体积%-40体积%、优选20体积%-30体积%的量来使用,而诸如碳酸二甲酯(DMC)之类的非环状碳酸酯可以60体积%-90体积%、优选70体积%-80体积%的量来使用。特别地,为了确保锂离子电导率为14mS/cm以上,碳酸二甲酯(DMC)可以50体积%以上的量来使用,或者具有高离子电导率和低粘度的乙酸乙酯(EA)或丙酸甲酯(MP)可以30体积%以上的量来使用。
添加剂可以是选自由在环中具有碳-碳饱和键的磺内酯化合物、在环中具有碳-碳饱和键的硫酸酯化合物、含乙烯基环状碳酸酯化合物和卤素取代的环状草酸硼酸酯化合物组成的群组中的至少一种。添加剂的具体实例包括1,3-丙烷磺内酯(PS)、碳酸亚乙烯酯(VC)、硫酸乙烯酯(ESA)、或类似物。
实施方式
在下文中,将参照各实施例详细地解释本公开内容。然而,以下各实施例可以多种不同的形式来实施,并且不应被解释为受限于在此所阐述的示例性实施方式。相反,提供这些示例性实施方式以使得本公开内容是完全的和完整的,并且将本公开内容的范围充分地传达给本领域的技术人员。
实施例1
首先,将3重量%的炭黑、作为正极活性材料的95重量%的Li(Ni1/3Mn1/3Co1/3)O2和作为粘合剂的2重量%的聚偏二氟乙烯(PVdF)进行混合以形成正极浆料。接着,将该浆料以4.5mAh/cm2的负载量涂布在铝箔上,并于100℃在真空烘箱中干燥10小时以上。然后,藉由使用辊式压制机进行压制以提供具有100μm厚度的正极。
除此之外,将1重量%的炭黑、作为负极活性材料的96重量%的天然石墨、2重量%的丁苯橡胶(SBR)粘结剂和1重量%的羧甲基纤维素(CMC)进行混合以形成负极浆料。接着,将该浆料以5.4mAh/cm2的负载量涂布在铜箔上,并于100℃在真空烘箱中干燥10小时以上。然后,藉由使用辊式压制机进行压制以提供具有120μm厚度的负极。
使用如上所述而获得的负极和正极,将具有900秒/100mL透气率的聚烯烃隔板插置于负极和正极之间。然后,将含有1M LiPF6溶解于碳酸乙烯酯(EC)、碳酸二甲酯(DMC)和碳酸甲乙酯(EMC)(以3:4:3的体积比混合)中的电解质,与包含3wt%碳酸亚乙烯酯(VC)、0.5重量%的1,3-丙烷磺内酯(PS)和1重量%的硫酸乙烯酯(ESA)的添加剂一起,组合地注入以获得基于正极具有16.5cm2尺寸的单电池。所述电解质具有13.5S/cm的锂离子电导率。
实施例2
首先,将3重量%的炭黑、作为正极活性材料的95重量%的Li(Ni1/3Mn1/3Co1/3)O2和作为粘合剂的2重量%的聚偏二氟乙烯(PVdF)进行混合以形成正极浆料。接着,将该浆料以4.5mAh/cm2的负载量涂布在铝箔上,并于100℃在真空烘箱中干燥10小时或以上。然后,藉由使用辊式压制机进行压制以提供具有100μm厚度的正极。
除此之外,将1重量%的炭黑、作为负极活性材料的96重量%的天然石墨、2重量%的SBR粘结剂和1重量%的CMC进行混合以形成负极浆料。接着,将该浆料以5.4mAh/cm2的负载量涂布在铜箔上,并于100℃在真空烘箱中干燥10小时以上。然后,藉由使用辊式压制机进行压制以提供具有120μm厚度的负极。
使用如上所述而获得的负极和正极,将具有900秒/100mL透气率的聚烯烃隔板插置于负极和正极之间。然后,将含有1M LiPF6溶解于碳酸乙烯酯(EC)、碳酸二甲酯(DMC)和乙酸乙酯(EA)(以3:4:3的体积比混合)中的电解质,与包含3wt%碳酸亚乙烯酯(VC)、0.5重量%的1,3-丙烷磺内酯(PS)和1重量%的硫酸乙烯酯(ESA)的添加剂一起,组合地注入以获得基于正极具有16.5cm2尺寸的单电池。所述电解质具有14S/cm的锂离子电导率。
比较例1
以与在实施例1中所述的同样方式获得一个单电池,不同之处在于:通过组合地使用含有1M LiPF6溶解于碳酸乙烯酯(EC)、碳酸二甲酯(DMC)和碳酸甲乙酯(EMC)(以3:3:4的体积比混合)中的电解质,与包含3wt%碳酸亚乙烯酯(VC)、0.5重量%的1,3-丙烷磺内酯(PS)和1重量%的硫酸乙烯酯(ESA)的添加剂,隔板具有100秒/100mL的透气率,以及锂离子电导率被调控为10.9mS/cm。
比较例2
以与在实施例1中所述的同样方式获得一个单电池,不同之处在于:通过组合地使用含有1M LiPF6溶解于碳酸乙烯酯(EC)、碳酸二甲酯(DMC)和碳酸甲乙酯(EMC)(以3:3:4的体积比混合)中的电解质,与包含3wt%碳酸亚乙烯酯(VC)、0.5重量%的1,3-丙烷磺内酯(PS)和1重量%的硫酸乙烯酯(ESA)的添加剂,隔板具有900秒/100mL的透气率,以及锂离子电导率被调控为10.9mS/cm。
比较例3
以与在实施例1中所述的同样方式获得一个单电池,不同之处:通过组合地使用含有1M LiPF6溶解于碳酸乙烯酯(EC)、碳酸二甲酯(DMC)和乙酸乙酯(EA)(以3:3:4的体积比混合)中的电解质,与包含3wt%碳酸亚乙烯酯(VC)、0.5重量%的1,3-丙烷磺内酯(PS)和1重量%的硫酸乙烯酯(ESA)的添加剂,隔板具有1400秒/100mL的透气率,以及锂离子电导率被调控为16.2mS/cm。
比较例4
以与在实施例1中所述的同样方式获得一个单电池,不同之处在于:通过组合地使用含有1M LiPF6溶解于碳酸乙烯酯(EC)、碳酸二甲酯(DMC)和碳酸甲乙酯(EMC)(以3:3:4的体积比混合)中的电解质,与包含3wt%碳酸亚乙烯酯(VC)、0.5重量%的1,3-丙烷磺内酯(PS)和1重量%的硫酸亚乙酯(ESA)的添加剂,隔板具有1400秒/100mL的透气率,以及锂离子电导率被调控为10.9mS/cm。
寿命特性的测试
在1C充电、1C放电和25℃的条件下,根据实施例2和比较例1-4的每个单电池测定相较于初始容量的、在重复循环之后的容量。
参照图1,可以看出,相较于不满足以上定义的物理性质之一或两种的比较例1-4,实施例使用了具有200秒/100mL-1200秒/100mL的透气率的隔板以及具有11mS/cm-16mS/cm的锂离子电导率的电解质而提供了非常优异的循环特性。

Claims (10)

1.一种锂二次电池,所述锂二次电池包括:包括正极、负极以及插置于正极和负极之间的隔板在内的电极组件;包括锂盐和有机溶剂在内的电解质;和容纳所述电极组件和所述电解质的电池壳体,
其中,所述正极具有4.5mAh/cm2以上的负载量,所述隔板具有300秒/100mL-1200秒/100mL的透气率,所述电解质具有13.5mS/cm-20mS/cm的锂离子电导率和具有在25℃时1.0cP-4.0cP的粘度;
其中,所述透气率是通过测量于室温在0.05MPa的压力下100mL空气穿过1cm2的隔板所需的时间来测定,所述锂离子电导率是通过使用电导率测量仪器来测定。
2.根据权利要求1所述的锂二次电池,其中,所述隔板具有300秒/100mL-800秒/100mL的透气率,并且所述电解质具有14mS/cm-18mS/cm的锂离子电导率。
3.根据权利要求1所述的锂二次电池,其中,所述隔板具有2μm-50μm的厚度。
4.根据权利要求1所述的锂二次电池,其中,所述隔板是多孔聚合物基材。
5.根据权利要求4所述的锂二次电池,其中,所述多孔聚合物基材包括选自由聚乙烯、聚丙烯、聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚缩醛、聚酰胺、聚碳酸酯、聚酰亚胺、聚醚醚酮、聚芳醚酮、聚醚酰亚胺、聚酰胺酰亚胺、聚苯并咪唑、聚醚砜、聚苯醚、环烯烃共聚物、聚苯硫醚和聚乙烯萘组成的群组中的任一种聚合物、或其两种以上的组合。
6.根据权利要求1所述的锂二次电池,其中,所述电解质具有1.0cP-3.0cP的粘度。
7.根据权利要求1所述的锂二次电池,其中,所述电解质还包含添加剂。
8.根据权利要求1所述的锂二次电池,其中,所述锂盐是选自由LiPF6、LiBF4、LiSbF6、LiAsF6、LiClO4、LiN(C2F5SO2)2、LiN(CF3SO2)2、LiCF3SO3和LiC(CF3SO2)3组成的群组中的任一种、或其两种以上的组合。
9.根据权利要求1所述的锂二次电池,其中,所述有机溶剂选自由碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸1,2-丁烯酯、碳酸2,3-丁烯酯、碳酸1,2-戊烯酯、碳酸2,3-戊烯酯、碳酸亚乙烯酯、碳酸乙烯基亚乙酯、氟代碳酸乙烯酯(FEC)、碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、碳酸二丙酯、碳酸甲乙酯(EMC)、碳酸甲丙酯、碳酸乙丙酯、二甲醚、二乙醚、二丙醚、甲乙醚、甲丙醚、乙丙醚、乙酸甲酯、乙酸乙酯、乙酸丙酯、丙酸甲酯、丙酸乙酯、丙酸丙酯、γ-丁内酯、γ-戊内酯、γ-己内酯、σ-戊内酯和ε-己内酯组成的群组中的任一种、或其两种以上的组合。
10.根据权利要求1所述的锂二次电池,其中,所述正极具有50μm-200μm的厚度。
CN201780003672.XA 2016-02-26 2017-02-27 锂二次电池 Active CN108352560B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2016-0023442 2016-02-26
KR20160023442 2016-02-26
PCT/KR2017/002171 WO2017146555A1 (ko) 2016-02-26 2017-02-27 리튬 이차전지

Publications (2)

Publication Number Publication Date
CN108352560A CN108352560A (zh) 2018-07-31
CN108352560B true CN108352560B (zh) 2020-12-29

Family

ID=59685641

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780003672.XA Active CN108352560B (zh) 2016-02-26 2017-02-27 锂二次电池

Country Status (6)

Country Link
US (1) US10818960B2 (zh)
EP (1) EP3399582B1 (zh)
JP (1) JP6704457B2 (zh)
KR (1) KR102155332B1 (zh)
CN (1) CN108352560B (zh)
WO (1) WO2017146555A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7068851B2 (ja) * 2018-02-20 2022-05-17 三星エスディアイ株式会社 リチウムイオン二次電池
KR102486136B1 (ko) * 2018-03-26 2023-01-10 주식회사 엘지에너지솔루션 광학 현미경을 이용한 고로딩 전극의 반응 분포 분석 방법
WO2019235883A1 (ko) * 2018-06-07 2019-12-12 주식회사 엘지화학 저온 특성 및 고온 특성이 향상된 리튬 이차전지
KR102389888B1 (ko) * 2018-06-07 2022-04-25 주식회사 엘지에너지솔루션 저온 특성 및 고온 특성이 향상된 리튬 이차전지
WO2020111222A1 (ja) * 2018-11-30 2020-06-04 株式会社村田製作所 二次電池
CN114256502B (zh) * 2021-12-20 2024-09-06 珠海冠宇电池股份有限公司 非水电解液二次电池

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005032670A (ja) * 2003-07-11 2005-02-03 Hitachi Maxell Ltd コイン形非水二次電池
CN104218236A (zh) * 2013-05-31 2014-12-17 索尼公司 电池、电池组、电子装置、电动车辆和电存储装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3578015B2 (ja) 1998-12-03 2004-10-20 住友電気工業株式会社 リチウム二次電池
CA2319460C (en) 1998-12-03 2010-02-02 Sumitomo Electric Industries, Ltd. Lithium storage battery
US20080199764A1 (en) * 2005-04-20 2008-08-21 Holman Richard K Safer high energy battery
JP5192710B2 (ja) * 2006-06-30 2013-05-08 三井金属鉱業株式会社 非水電解液二次電池用負極
CN102171856B (zh) * 2008-09-03 2016-01-27 株式会社Lg化学 具有多孔涂层的隔膜及含有该隔膜的电化学装置
US9673446B2 (en) 2012-02-28 2017-06-06 Hitachi Maxell, Ltd. Lithium ion secondary battery containing a negative electrode material layer containing Si and O as constituent elements
KR101495314B1 (ko) * 2012-04-18 2015-02-25 주식회사 엘지화학 이차전지용 전극 및 이를 포함하는 리튬 이차전지
KR101458468B1 (ko) * 2013-06-27 2014-11-10 한국화학연구원 신규한 공중합체를 함유하는 제조가 용이한 리튬 이차전지용 겔 고분자 전해질
KR20160002173A (ko) 2014-06-30 2016-01-07 주식회사 엘지화학 리튬염을 포함하는 다공성 코팅층을 구비하는 이차 전지용 분리막 및 이의 제조 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005032670A (ja) * 2003-07-11 2005-02-03 Hitachi Maxell Ltd コイン形非水二次電池
CN104218236A (zh) * 2013-05-31 2014-12-17 索尼公司 电池、电池组、电子装置、电动车辆和电存储装置

Also Published As

Publication number Publication date
KR102155332B1 (ko) 2020-09-11
EP3399582A1 (en) 2018-11-07
JP6704457B2 (ja) 2020-06-03
US20180309161A1 (en) 2018-10-25
CN108352560A (zh) 2018-07-31
US10818960B2 (en) 2020-10-27
JP2018530142A (ja) 2018-10-11
EP3399582B1 (en) 2020-04-01
EP3399582A4 (en) 2019-03-06
KR20170101161A (ko) 2017-09-05
WO2017146555A1 (ko) 2017-08-31

Similar Documents

Publication Publication Date Title
US11335909B2 (en) Negative electrode active material for electrochemical device, negative electrode including the negative electrode active material and electrochemical device including the same
KR100881637B1 (ko) 저온 출력 특성이 개선된 리튬 이차전지
CN108352560B (zh) 锂二次电池
KR101607024B1 (ko) 리튬 이차전지
KR20070051383A (ko) 안전성과 저온 출력 특성이 우수한 리튬 이차전지
KR101617415B1 (ko) 리튬 이차전지의 제조방법 및 이를 사용하여 제조되는 리튬 이차전지
KR20190042335A (ko) 리튬 이차전지용 음극, 및 이를 포함하는 리튬 이차전지
KR101595562B1 (ko) 리튬 이차전지
KR20140066056A (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
KR101651143B1 (ko) 사이클 수명이 개선된 리튬 이차전지
CN113678288A (zh) 包含掺杂有掺杂元素的锂镍基氧化物的正极活性材料以及包含该正极活性材料的二次电池
CN107925128B (zh) 用于锂二次电池的电解质溶液和包括该电解质溶液的锂二次电池
KR20140033934A (ko) 이온 전도도가 향상된 전극 및 이를 포함하는 이차전지
KR20140025102A (ko) 리튬이차전지용 양극활물질 및 그 제조방법
KR101499588B1 (ko) 이차전지용 전극 및 이의 제조방법
KR20130134744A (ko) 비수 전해액 및 이를 이용한 리튬 이차전지
KR101561424B1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
KR101809651B1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
US20220293910A1 (en) Anode pre-lithiation-pre-sodiation method, pre-lithiated and pre-sodiated anode, and lithium secondary battery comprising same
KR20170129514A (ko) 패턴 코팅된 리튬 이차전지용 음극 및 이를 포함하는 이차전지
KR101466397B1 (ko) 리튬이차전지의 음극전극, 이의 제조방법, 및 상기 음극전극을 포함하는 리튬 이차전지
KR20140071549A (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
KR101584227B1 (ko) 리튬 이차전지
KR20140025103A (ko) 리튬이차전지용 양극활물질 및 그 제조방법
KR20190027613A (ko) 리튬 이차전지용 양극재 및 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20211224

Address after: Seoul, South Kerean

Patentee after: LG Energy Solution

Address before: Seoul, South Kerean

Patentee before: LG CHEM, Ltd.